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Abstract

We consider the problem of reconstructing a discrete-tipeas (sequence) with continuous-valued components
corrupted by a known memoryless channel. When performanceasured using a per-symbol loss function satisfying
mild regularity conditions, we develop a sequence of damsighat, although independent of the distribution of
the underlying ‘clean’ sequence, is universally optimaltie limit of large sequence length. This sequence of
denoisers is universal in the sense of performing as wellngsstiding window denoising scheme which may be
optimized for the underlying clean signal. Our results argailly developed in a “semi-stochastic” setting, whele t
noiseless signal is an unknown individual sequence, an@rnhesource of randomness is due to the channel noise.
It is subsequently shown that in the fully stochastic sgttiwhere the noiseless sequence is a stationary stochastic
process, our schemes universally attain optimum perfocsaihe proposed schemes draw from nonparametric
density estimation techniques and are practically impleatde. We demonstrate efficacy of the proposed schemes
in denoising gray-scale images in the conventional additiite Gaussian noise setting, with additional promising
results for less conventional noise distributions.

Index Terms

Universal Denoising, kernel density estimation, Quaniira Sliding Window Denoiser, Denoisability, Memory-
less Channels, semi-stochastic setting, discrete degoisi

I. INTRODUCTION

Consider the problem of estimating a clean discrete-tigaai(sequence) X, }:cr, X: € [a,b] C R, based on
its noisy observation§Z, }:ct, Z: € R, where{Z,} is the output of a corruption mechanism, a memoryless channe
This problem finds applications in areas ranging from ergying, cryptography and statistics, to bioinformatics
and beyond. There is significant literature on particulatéantiations of this problem, most notably for the case

where signal and noise components are real-valued and tlse rsadditive, most commonly Gaussian (cf. [9]
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and references therein). Solutions to this problem in [¢] based on wavelet-based soft thresholding and have
various asymptotic optimality properties under a minimaitecion. The scope of wavelet-based thresholding in
[9] has been extended beyond the additive white Gaussianingd 3], [1] where optimality is again established
in an asymptotic minimax sense. The soft-thresholding mehproposed in [1] is among the few denoisers found
in the literature [13], [21] that are designed for the case afon-Gaussian corruption mechanism. Even in this
case, restrictions to additive noise and symmetry assomgptin the noise distribution are made in order to provide
asymptotic performance guarantees. For the case of a ramdotorY = X + 7, where X is independent o¥/
(with known distribution). The Minimum Mean Squared Esttsm@MMSE) of X is well-known to be given by

X = ¢(Y) = E{X|Y}. It was shown in [27] that, fo&Z ~ N (1, %), 1(-) satisfiesy(Y) = M
where fy (y) is the marginal density oY, which can be learned from the noisy sampl€s = {Y7,--- ,Y,,} of

Y. Using techniques for nonparametric density estimatiofr]nan estimate offy (y), fy(y), can be computed,

the (appropriate) gradient of which leads to the followirsgiraate:

fy

The authors in [27] also discuss expressionaZf()Y) for a certain class of non-Gaussian noise distributionk e

1)

corruption mechanism continuing to be additive. This lsar@om for universal denoising schemes for continuous
valued data for a general class of noise distributions wh@reorruption mechanism is also arbitrary. Compression
based approaches pioneered in (cf., e. g., [25] and [10])dissussed in [36], are provably sub-optimal and
suffer from non-practicality of implementation of optimaksy compression schemes. The wavelet-based Bayesian
estimation approach in [26], has demonstrated significaptévement in image denoising. However, despite much
recent progress, the problem of universal denoising fotrdts-time continuous-amplitude data is still a largely
open problem of both theoretical and practical value. Thiblem is particularly relevant in new emerging areas as
microarray imaging [35], array-based comparative gendmyioridization (array-CGH) [19] and medical imaging
[34], [17], [22], where parametric noise models that arerenitty used often fail to capture the true nature of the
noise.

Recently, universal denoising for discrete signals andcbs was considered in [36]. The results of [36], and
the denoising scheme DUDE proposed therein, althoughctitteatheoretically, are restricted in their practicality
to problems with small alphabets. This is a result of

« computational issues involved with collecting higherargbint distributions from the noisy data.

« Mmapping an estimated channel output distribution to aimmedéid channel input distribution.

« count statistics being too sparse to be reliable for evenaraddly large alphabet sizes.

This leaves open challenges in the application of DUDE tdlems like gray-scale image denoising. More recently,
a modified DUDE, using ideas from lossless compression, wesepted in [24]. As discussed in that work, in spite
of circumventing some of the computational issues menticat@ove, the approach leaves room for improvement
in the denoising performance. The problem was further eddrto the discrete-valued input and general output

alphabet setting in [5]. This approach proposes quantizatif the output alphabet space and proceeds on an a



similar line to that in [36], showing that there is no essanlibss of optimality in quantizing the channel output
before denoising (insofar as learning the statistics ofuhéderlying data is concerned). In spite of its theoretical
elegance, this approach faces similar issues as the scHdB88j,dimiting its scope of applications to small channel
input alphabets. The authors of [5], while conjecturing tieed for mild restrictions on the channel, suggest an
extension of the proposed scheme to the case where bothpgitand output alphabet space is continuous-valued
and general. The present work proposes an extension of thetage DUDE-like approach in [36], [5] to the case
of denoising for general alphabets. A natural extensionldvbave been to quantize both the input and the output
space and apply a similar count-statistic based two-pagsoaph. The vast literature on nonparametric density
estimation (cf. [7] and references therein), however, tsoia the opportunity of extracting more reliable statistic
from the observed data, that would lead to better denoisasgnfeasured under a specified loss function). We
do, however, maintain the sliding window approach of [5K][&nd show asymptotic universal optimality of our
schemes with increasing context lengths in the limit of éasgquence lengths.

Recent developments in universal denoising in the pagtcabntext of images have also been reported in [4].
Their approach is based on local smoothing methods that msd@mnptions on the underlying structure of the data
which are more relevant in image denoising due to the inhamglundancy of natural images. The consistency
results showed the convergence of the denoising rule todhdittonal expected value of the clean symbol given
the noisy neighborhood sans the particular noisy symboluiestion. There is potential to improve this result by
incorporating the information from the noisy pixel that isifig denoised too, an approach at the heart of the
denoisers we present below. We establish the universahafity of the suggested denoisers in a generality that
applies to arbitrarily distributed noiseless signals,tesly memoryless channels, and arbitrary loss functiovith(
some benign regularity conditions).

The remainder of the paper is organized as follows. In sedliowe discuss the problem setup and notations.
This is followed by a description of the technical resultatthre key to the construction of the denoisers in section
lll. In section IV, we establish universality of a family okdoisers that we develop for the semi-stochastic setting,
in which the clean data is an individual sequence and pravaends on the difference between the performance
of this proposed family of denoisers and that of the best tmyby-symbol’ denoiser chosen by a genie with full
knowledge of the distribution (or probability law) of theealn data. Section V details an extension of this proposed
family of denoisers to a genie that can select the best glidimdow scheme, of any order, with knowledge of the
underlying clean data. Section VI discusses the implicatibthe performance guarantees in the semi-stochastic
setting to the fully stochastic setting where the clean d&tgenerated by a stationary stochastic process, rather
than an individual sequence. A slightly modified versiontaf proposed denoiser is shown to reduce to the scheme
of [5] when the underlying clean data have finite alphabet.sithe proposed family of denoisers can, hence, be
seen as a natural extension of those in [5] to the currenhgetf denoising continuous valued symbols corrupted
by a continuous memoryless channel where the clean datacs@nfs may take values in a continuum. In section
[VI[] we present some preliminary experimental results gblgipg the proposed schemes to denoising of gray-

scale images. We conclude in sectlon VIIl with a summary aghegropositions for future research directions.



Throughout this paper, we maintain the flow by stating theoFlms and Lemmas corresponding to the optimality

results in the main body of the paper relegating most of tloefgrto the appendices.

Il. PROBLEM SETTING AND NOTATIONS

Letx = (z1,z9, -+ ) be an individual (deterministic) noise-free source si@wlth components taking values in
[a,b] CRandY = (Y1,Y2,---), Y; € R be the corresponding noisy observations, also referred thea‘output of
the channel’ (corruption source). This setting, where tloghunderlying clean sequence and the noisy sequence are
continuous valued, is the continuous-amplitude analodiefsemi-stochastic setting discussed in [5]. The channel
is specified by a family of distribution functior® = {Fy|;}.c[a,;), Where Fy |, denotes the distribution of the
channel output symbol when the input symbolrisAlso, we denote the probability measure Rrcorresponding

to Fy |, by p.. We make the following assumptions about the channel,

C1. A memoryless channel, which is to say that the compor@ns are independent with; ~ Fy,,,.
C2. The family of measureg, },c(q,5, @ssociated with the channél, is uniformly tight in the sense
sup pz([-T,T]°) =0 as T — cc.
z€la,b]
This condition will be needed to guarantee that one can stargly track the evolution of the marginal
density of the noisy symbols at the output of the memoryléssnel, regardless of the underlyirg using
nonparametric Kernel density estimation techniques.

C3. The distribution functiong’y |, are absolutely continuous for all € [a,b] w.r.t the Lebesgue measure and
{fv|=} denotes the corresponding densities. This assumptiontigrooial for the validity of our approach
but is made for concreteness in the construction of our selBesnd the development of their performance
guarantees.

C4. The conditional densities of the channel form a set daddity independent functions. This is equivalent to
the “invertibility” condition of [36] which ensures thatp tany distribution on the input to the channel there
corresponds a unique channel output.

C5. The mapping, w.r.t a metric that will be detailed in secflll] from the space of channel input distributions
to the corresponding channel output distributions is eamus. The precise analytical expression describing
this condition is discussed in Appendix I.

C6. The expected loss, for reasonably well-behaved losstims (conditions L1-L2 listed subsequently in this
section), induced by two output distributions that are el¢ander the metric discussed in sectlod Ill) is

continuous. Again, the analytical expression describing tondition is in the AppendiX I.

The above, are rather benign conditions obeyed by most elsmnmising in practice, an example of this being
the most commonly addressed channel, viz., the Additivet&V/Biaussian Noise Channel (AWGN). It is easy to

verify that even the multiplicative (non-additive) Gawssichannel with a finite variance and mean satisfies these

lthroughout the paper we will be using the terms ‘signal’ asetjuence’ interchangeably



requirements. In this case, the channel input (underlylegrcsignal) affects the variance of the channel. The fact
that the underlying clean signal takes only bounded valogdiés that the tightness condition, C2, is satisfied. In
fact, any additive noise channel with distribution funosothat are absolutely continuous and the corresponding
densities (of finite mean and variance) satisfying cond#i€4-7 (C7 discussed in Appendix 1) will satisfy the
above requirements.

An n-block denoiser is a measurable mapping takigig into [a, b]". We assume a loss functioh : [a, b]?> —
[0, 00) and denote the normalized cumulative loss ofablock denoisetX ”, when the underlying sequencexis
and the observed sequenceyis by

n

L™ y") = 2 3 Aws, X)) @

where X" (y™)[i] denotes the-th component ofX™(y™). In addition to the constraints on the channel, we impose
some conditions on the permissible loss functiahs\We assume the loss functioA,

L1. to be bounded,i.eAn.x < 0o WhereA . = SUP, seab] Az, &)

L2. to be a bounded Lipschitz function. More formally, we ui&g the Lipschitz norm||A||;, < co. The Lipschitz

norm of the loss function, is defined as

A(A
(A= sup A ©
0<A<(b—a)
where,
AMA,z) = sup  sup |A(z,y) — A(z',y)] (4)
y€Ela,b] z’:|lz—a’|<A
and
MA) = sup A(A,z) 6)
z€[a,b]

In words, this condition necessitates continuity of the piap that takes the estimates of the underlying
symbol to the corresponding loss incurred. We require tetinates of the underlying clean symbol that are

close together have corresponding loss values that areclse to each other.

It can be easily verified that the commonly used loss funsetimiil., L; norms satisfy the aforementioned condition.

Let 1l denote the set of all probability distribution functionstiwsupport contained in the intervil, b]. For
F e Flobl we let

U(F) = min / Az, &)dF(x) (6)
#€(a,b] z€(a,b]

denote its ‘Bayes envelope’ (our assumptions on the losstiimwill imply existence of the minimum). In other
words, U/(F') denotes the minimum achievable expected loss when guetisingalue of X ~ F. Define the
symbol-by-symbol minimum loss af™ by

Dy(z") =min E
9

()




where the minimum is over all measurable mgpsR — [a,b]. Dy (2™) denotes the minimum expected loss in
denoising the sequena€’, using a time-invariant symbol-by-symbol rule. This candb&ined by a “genie” with
access to the clean sequenc¢e Dy(z"™), which is the expected per-symbol loss of the optimal syrilyesymbol

rule for the individual sequence®, will be our benchmark for assessing the performance of tireetsal symbol-
by-symbol denoiser that we construct in the next sectior. §dme benchmark was used also in [5]. This is slightly
different than the benchmark used in [36], which corresjgoitd a genie that can choose the best symbol-by-symbol
rule with knowledge not only of the individual sequenc®, but also of the noisy sequence realizatldf. The
latter is irrelevant for our current setting where each & tomponents o™ will take on a different value, with
probability one. For:™ € [a, b]", define

Fonfw) = UEI=MB ST (8)

i.e., the CDF associated with the empirical distributionz6f Note thatD,(2™) can be expressed as

g9

Dy(z") = min/ E Az, g(Y))dFxn(x) 9
[a,b]
where F, denotes expectation when the underlying clean symho| tke expectation being over the channel noise
EA,9(V)) = [ Ale.g) fria(w)dy (10)

For F € Flotl, let F ® C and Ergc denote, respectively, probability and expectation whes ¢hannel input

X ~ F andY is the channel output. So that,

EF®CA(X59(Y)) EwA(,T,g(Y))dF(,T)

[a.b]
/ [/ Az, 9(y)) fy 2 (y)dy | dF (x) (11)
[a,b] R

Letting [F ® C] x|, denote the conditional distribution of givenY = y underF" ® C, we have

m&nEF®cA(X,g(Y)) = Frgcld ([F & C]X|y) (12)

with ¢/ denoting the Bayes envelope as defined above. LeitingF’| denote the achiever of the minimum [n112),

we note that is given by the Bayes responséfta C|x|,, namely,

gopt Fl(y) = argjgl[}lnb] [ b]A(:v,:%)d[F@@C]x\y(f)
= arg min Az, 2) fy |2 (y)dF (2) (13)
z€(a,b] [a,b]

In LemmdI2, we will establish the concavityl@f '), and minimizing this bounded (by our assumption of bounded

A) concave function over a closed compact interya)p], guarantees the existence of the minimizgp;. Note
that from [9), [ID) and_(11) we have

Do(a") = min Br,..scA(X,g(Y) 14

where F,» was defined in[{(8) and the minimum is attained Jay: [F,»]. Thus, only a “genie” with access to the

empirical distribution of the noiseless sequence couldleyngop| Fy»].



II. CONSTRUCTION OFUNIVERSAL ‘SYMBOL-BY-SYMBOL' D ENOISER ANDPRELIMINARIES

F,» and, hencegop|F,»] are not known to an observer of the noisy sequence. The #stistvards constructing
an estimate ofjop F»] is to estimate the input empirical distribution from the ebv&ble noisy sequencg;”,
and knowledge of the channél, We approach this problem by first estimating a function thatks the evolution
of the ‘average’ density function according to which thesyosymbols are distributed. For an input sequence
™, given the memoryless nature of the channel, the output sisnhill be independent with respective distribu-
tions, { Fy|,,,- -, Fy|z, } @and have the corresponding density functiof)s; .., - - , fy|z, }- The function we are

interested in estimating is

)=~ frie) (15)
=1

which can be thought of as the marginal density, of the noisy symbols in the semi-stochastic setting whére
is the unknown deterministic sequence. The estimationisfftinction is done by exploiting the vast literature on
density estimation techniques [7], [6], the details of whaoe discussed in Subsection TlI-A below. Once we have

an estimatefy = f:[Y™] for this function, we use it to estimate the input empiricastibution by

Fun[Y™] = arg mln d fy,/fy‘zdF (16)
FeFle

F®C]Y
where}‘ C Fle:bl denotes the set of empirical distributions inducednbtuples with [a, b]-valued components
and [F ® C],- denotes the marginal density induced at the output of thareizby an input distributiorF’. That

is, every memberF'(z), of Fli"is of the form

1 n
n =1

for somen-tuple, " = (z1, 2, -+ ,x,), With [a, b]-valued components. The nor, in (18) is defined as

/ |fy y)| dy (18)

The channel(, induces a set of ‘feasible’ densities of the output noismisgl corresponding to the family of
empirical distributions of the underlying clean sequenidh@ input of the channel. The density estimgi@, which

is constructed only from the noisy sequenké, is oblivious to the set of achievable marginal densitied la@nce
could lie outside this set. It is thus natural to estimate uhebserved,» by the member ofF ! leading to a
channel output distribution closest to the estimated gfije, This is exactly the estimate ii{16). The uniqueness
of the minimizer in [Z6) follows from the fact that the objiwet function being minimized is a norm-function and
hence convex, coupled with the linear independence assumgt the channel, C4. The assumption, C4, implies
a one-to-one correspondence between channel input anchalhamtput distributions (i.e., “invertibility” of the
channel). Additionally, the search for the minimizer is donted on a convex set of distribution functiodéf’b],

resulting in uniquely achieving the minimizer or in otherngs, the candidate input empirical distribution estimate.



A two-stage quantization of both, the support of the undegyclean symbol|a,b], and the levels of the
estimate of its empirical distribution functiott,., is carried out to give the corresponding quantized prditabi

mass function that has mass points only at the quantized @gmb

Q1. The quantization of the interval, b] is depicted in Fig[1l below. For a given quantization stee,sl¥, the

F ¢ Flab]
F
P&((Ii) = F(-‘.’I%) — F((Ii_l)
PA
A SR
a | ai—1 b

Fig. 1. Quantization of the support of a distribution funoti F € Fla-?l

quantized symbolsy; in the interval[a, b] are constructed in the following manner.

ForA >0, N(A) = (b%“l), if m = |2x%], consider a family of vectors,
FA ={P2: P* = (P(ao), P(a1), - , Plan(ay))}

A2 ={a;=a+iAi=0,--- ,N(A)}

N(A)

st. > Pla)=1

=1
else, define the family of vectors &% = {P?: P® = (P(ao),P(a1), -+, Plan(ay-1), Plana)))}
A® = {a; =a+iAi=0,--- ,N(A) - 1},an(a) = b, 20D P(a) = 1.
As indicated in Fig[1l, the probability mass functiaR2, that we propose is constructed by allocating the
mass of the distribution functiorty, in any quantization interval (of lengti) to the higher end point in that
interval. More precisely,
P2 (a;) = F(a;) — F(ai—1) (19)

whereq;’s as defined above and note that

PA(B) = ) Pla)

a;€EB

with any B € Bletl, Bl is the Borel sigma-algebra generated by open sefs, .



Applying this quantization of the support of the underlyicigan symbol to the estimaté},., we construct

now, the corresponding probability mass functitﬁ?ﬁ

Po(a;) = Fpn(a;) — Fyn(ai—1) (20)

where,a; € A2.

Q2. The quantization of the valudd.. is carried out using a uniform quantiz&)s
P = Qs(PR) (21)
where,§ denotes the gquantization step-size on the intejal].

This is primarily motivated by tractability of the proof ohe asymptotic optimality results. But, it can also be
argued that any practical implementation of this proposebdser only has a finite precision representation of the
underlying clean symbol and the distribution function eautself. Analysis of the asymptotic optimality results
also lends itself nicely to viewing the distribution of thederlying clean symbolf,~, as the asymptotic limit
attained by its quantized, finite precision representaﬂiﬁﬁ. This is formalized in section I[HC where we discuss
the precise convergence notion Bﬁl to the un-quantized probability measure.

The minimizer of the Bayes envelope [n{13) is then constadiétom the quantized probability mass function,
Pf;@A,aSgopt {PS;LA], wheregop for the quantized clean symbol is,

gop(P(y) = arg min > A(a,2) fyla=a(y) - P (X = a) (22)
ac AL

A is finite alphabet approximation ¢, b corresponding to the quantization step sizeAofNote that we have
extended the definition ajop: to accommodate the case wheénis not a valid probability, i.e.ng,gA (it does not

sum up to 1). Equipped WitI?f;A, the candidate for the-block symbol-by-symbol denoiser is now given by

XmOAY6) = go |[PEOW)| ), 1<i<n 3

where, gopt is given in [22). We now proceed to discuss in detail the cootibn and consistency results of the

estimate, fy, F.. and its quantized versio?%2.

i

A. Density Estimation for independent and non identicaistributed random variables

We now obtain an estimatofy?, for the function in [(I5) which depends orf* and therefore unknown to

the denoiser. Given the memoryless nature of the channelsdélquence of output symbols;,Ys,---,Y,, are
independent random variables taking valueRjrhaving conditional densitiegy ., , fy|z,,** » fy|z. r€Spectively.
A density estimate is a sequengé, f2,--- , f™, where for each, f}(y) = f"(y;Y1,---,Y,) is a real-valued

Borel measurable function of its arguments, and for fixedf™ is a density estimate oR. The kernel density

estimateis given by

= YK () (24)
=1
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whereh = h,, is a sequence of positive numbers akids a Borel measurable function satisfyifig > 0, [ K = 1.

v

The choice ofL; distance as elaborated by the authors in [7] is motivatedtbynivariance under monotone

The L, distance,/,,, is defined as

)~ = 3 e 0)| dy (25)
=0

transformations of the coordinate axes and the fact that @hivays well-defined. Before proceeding to discuss
convergence results faf,, we present definitions of certain types of kernel functjdiis that are the backbone to

kernel density estimation techniques, [6].

Definition 1: The class of kernels{ s.t. VK € K, we have

[r=

and K is symmetric abou® are calledclass 0 kernels

Definition 2: A class skernel is a class 0 kernel for which

/|x|S|K(x)|d:17 < 00

and

/le(x)dx =0

forall: =1,--- ,s — 1. Most class 0 kernels are in fact class 2 kernels, the onlytiaddl condition being that

J |z|?K (z) < co. However, nonnegative class 0 kernels cannot possiblyasisel > 3.

Theorem 1:Let K be a nonnegative Borel measurable functionfomwith [ K = 1 of classs = 2. Let f}* be
the kernel estimate il _(24) and,, the corresponding error as defined[in](25). Consider

1) J, — 0 in probability asn — oo, for some sequence = (1,2, -+ )

2) J, — 0 in probability asn — oo, for all sequences = (1,22, -+)

3) J, — 0 almost surely as — oo, for all sequences = (z1,x2,--+)

4) For alle > 0, there existr, ny > 0 such thatP(J,, > ¢) < e~ ", n > ny, for all sequences.

5) lim, oo b =0, lim,_, o nh = c©
Then, 5= 4= 3= 2= 1.

The following lemma is key to the proof of Theoréd 1.
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Lemma 1: For any family of channel probability density fuos,
{fv|z}zelay) ONR, satisfying assumptions C1-C7, and any non-negativegiiabde functionk’, with [ K (x)dz = 1,

condition 4) in Theorerhllholds whenever

1m n — an im n =0
lim h, =0 and li he 26

n—oo n—oo

Proof: [Proof of Theorenil]
The implication that 5= 4 is proved in Lemmall. Since clearly,4 3 = 2 = 1, the proof of Theorefl1 is

complete. ]

B. Channel Inversion

The mapping in[{16) projects the kernel density estimate}; OF" | fvz:(y) to an estimate of the empirical
distribution, F.». This projection is such that it best approximates (in thesense), the kernel density estimate
with a member in the set of achievable channel output digiohs. From the construction of} in (24), it is
clear thatfy is a bona fide density oR. Additionally, from the construction of,» in [@6), we see that for every
Fe .F,[f"b], [F ® Cly is also a valid density ifR. Finally, from the definition of the normi, in (18), it is true that
for f{ and[F @ C]y being bona fide densities d®, 0 < d (f,[F @ Cly) < 2, V, n. These facts, together with
the convexity of F*! show that the estimator in_(116) is well defined. With the Levgtrnit defined as:

Definition 3 (Levy metric):The Levy distance\ (F, G) between any two distribution® and G is defined as

AME,G)=inf{e >0: F(xr —¢) —e <G(z) < F(x +¢) +¢ forall z}

we have:

Theorem 2:For the estimatorf,. defined in equatiori (16) we ha\)e(Fwn,an) — 0 a.s. for allx € [a, b]>
The proof of Theorerh]2 is discussed in detail in the Appehflx |

C. Distribution-independent Approximation of the Estienaf the Input empirical distribution

In this section, we discuss the convergence notioﬁlfbfto the law corresponding to the un-quantized distribution
function F..

Definition 4 (3 metric): For any two lawsP and@Q on S, f: S —w Rlet [ fd(P — Q) := [ fdP — [ fdQ, for
bounded| fdP and | fdQ, the Prohorov metric is defined as

5. =sw{| [ 1a(- @[l F sz 1}

where

I =l lle 4+ 1 f ll (27)
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and

) —
15 i sup LIy s ) (28)
TH£Y x
Equipped with this definition, we now state the following dhem,
Theorem 3:
. - A _
Jim 3 (Pmn, Pzn) —0 (29)

where, P,» denotes the law associated with the distribution functin.

Proof: Follows directly from Lemmal2.

Lemma 2:For anyF € Flot],
. A\
Jlim 8 (P, P%) =0 (30)

where P is the law associated with distribution functions in the iigmF*?!, Particularly, theF and P that
satisfies[(3D) is defined by,
PA(ai) :F(ai) —F(ai_l) (31)

wherea; € A* and A* is the finite alphabet approximation f, b] discussed earlier.
In words, any empirical distribution of the underlying alesequence is approximated arbitrarily well with a PMF
on the quantized set of points when the quantization is fircugh.

Next we discuss the mechanics of the construction of the idenovhich has the density estimation and the

channel inversion steps as its core.

D. Implementation of the symbol-by-symbol denoiser

The implementation of the denoiser in the previous sectimolves a discretization of the density estimation
and the channel inversion steps. The discretized versidgheokernel density estimatgy:(y), in (24) is evaluated
at a set of discrete point$y:,--- ,yn} . This gives anN-dimensional vector of the distribution functiopi (y).
The “channel inversion” in[{16) is also discretized using #stimatep?. (v).

1) Fast kernel density estimatiolhe Kernel density estimation in_(24) for a given kernel fiimr, K, although
simple in construction, is faced with a significant compiotzl burden for a brute-force computation @f Nn)
corresponding ton data points andV points {yi,--- ,y~} at which p}(y) is evaluated. The computational
complexity can be greatly reduced by using FFT based metfgidsRecently, there has been extensive work on
the use of fast gauss transform-based techniques [16] fluction of computational complexity. These techniques
reduce the complexity fro®(Nn) to O(N+n). The cardinal factor in nonparametric density estimatictpdures
is the choice of theoptimal bandwidth,’, in 24). There has been some recent work in [14] on using-ttael
methods to derive fast methods for optimal bandwidth chthed continues to maintain the complexity of this step
at O(N +n). For N = O(n), this reduces t@(n).
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2) Channel inversion using linear programming techniqués:solving the channel inversion problem in{16),
we are looking for a vector in the probability simpleX” = {P : Zfi(lm P(a;),a; € A}, for our candidate

distribution function,?’;*. The discretized version of (IL6) is given by,

Tn

N N(A)
PI% = ang min 3P () = D fyje=s, (50)Qs (b (7)) (32)
i=1 j=1

The objective function, being af;-norm, is clearly a convex function (of the input distrilmrtj p(-)) and the
candidate minimizer also resides in the convex subspaee, thie probability simplexF2. This can be easily
solved using well-studied linear programming algorithmsthie broader area of convex optimization techniques.

The particular reformulation of the problem solved is of fbem

N
SA :
P~ = arg prél;__nA ;51
N(A)
s.t. PY W) = D Fria=e, W)Qs (p(x)) <&
j=1
N(A)
Z fyja=a; (Wi)Qs (p(z5)) —py (yi) <& Vie{l,--- N} (33)
J=1

The computational complexity of solving this problem usihg popular interior point methods [2] ©((N +
N(A))3) =0 ((N + £)®) = O((N +logn)?). This again, forN = O(n), reduces t@ ((n + logn)?’) = 0(n?).
The two-pronged quantization discussed in the previousiosecan be naturally built into the optimization
problem in [32) by searching in
Fo2 ={Qs(P): PeF>} (34)

the set of NV (A)-tuples with components in [0,1] that are integer multiphﬁ% with point masses on the sgt”.

The formulation would then be

N
A6A : .
P = argpénfl?A _ €i
=1
N(A)
s.t. PYWi) = > Frio—s, Wi)p(z;) < &
j=1

N(A)
> Fle=e, Wilp(e;) —pY(yi) <& Vie{l,--- N}
j=1

This channel inversion is at the heart of the denoisdrih §22)its simple formulation makes the scheme patrticularly
elegant and practically implementable. The estimate ofetheirical distribution in[(3R) is then plugged info {22)
to finally give an estimate of the underlying clean symboloading to [23). The denoiser is described as Algorithm
below.

IV. PERFORMANCE GUARANTEES FOR THESYMBOL BY SYMBOL DENOISER

The main result of this section is Theoréi 5 below, which ld#istaes the universal asymptotic optimality of

our proposed symbol-by-symbol denoiser [in](23) with respecthe class of symbol-by-symbol schemes. The
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input : Noisy sequencg™, channelC

output: Denoised sequence]

1 FIRST PASS
2 Density estimation step
input : Noisy sequencey™
output: Density estimatef
3 Determine the optimal bandwidth from any one of the techesgdiscussed in [31], e.g., cross-validation
4 Use techniques discussed in [14] fast evaluation of [(24)
5 Channel inversion step
input : £, Quantization resolutions,A
output: P%A
6 Construct an LP (Linear Program) as in](33) and useprog (in MATLAB) or any complex program
solver to solve it. Alternatively, use log-barrier methatiscussed in [3] to solve for the estimafe,.
7 Use the quantization mapping in{20) to mép. to P2
g Then use a uniform quantizer with resolutiério getPf;;A — Qs (Pﬁ)
9 SECOND PASS
input : Noisy sequencey™, channelC, estimate of input distributionf’f;;A
output: Denoised Sequencg?
10 Use equation[{22)[(23) to denoise at every location,
11 for ¢ + 1ton do
2 | & gopl P (1)

13 end

Algorithm 1. Symbol-by-symbol denoiser in Sectibnl I

predominant technical result leading to Theolgm 5 is Thadfe We continue to restrict ourselves to the semi-
stochastic setting where the underlying clean sequenceusknown, but deterministic, sequencelrhe benchmark
performance for the clean sequence is the minimum possibibal-by-symbol lossD, (™), defined in Sectioflll.
Theorenib shows that our proposed denoi@@;,{ﬁfgﬂ, asymptotically (as the number of observations increases)
achieves that benchmark performance. This is achieved byding the deviation of the cumulative loss incurred
by gopt [Pf;ﬂ from the minimum possible symbol-by-symbol loss in TheoMror any block lengthp. Hence
we show thatggpt [Pf;ﬂ performs essentially as well as the best possible symbalybybol denoiserD, (z™).

In preparation for Theorei 4 8%, defined in[(34), denote the set of probabilities with comgta in [0,1]
that are integer multiples aof (defined under Q2. in sectidnlill). Note th&f;® € F52, where P22 was defined
in (21). Also, letGs A = {gopt| P]} pe7s.2 denote the set of all possible denoisers that can be cotetrérom the
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members of the seF>4 using [22). DefineG (e, B) = 2

B
1 A 2 2
an (€,0,A,p,7) = {3 + 1] [2e—G<€+5AmamAw>” + e—<1—P>+] + e~ (=P (35)
v(e,0,A,A,C) = 3e+ 50Amax + 46aAmax + 4NA)(1 +EA) (36)
_pled) (6’
e (8) @
where
fa= sup  sup / i) — Fria()] dy (38)
z€(a,b] ‘;EL@‘SHA

and A(A) is the moduli of continuity defined i}5). The Lipschitz narfn= ||, of £ is given by

N

[EllL= sup (39)

0<A<(b—a) K

Dy (z™) is the symbol-by-symbol minimum loss ef* defined in [().

Theorem 4:For alle >0, § > 0, p = p(€,6), A >0 andz™ € [a, b]" let,

€
AL +Amax | E [+ —a) [ Azl Z [z +Amax)

’7 =
(
then, we have

Pr(|Lgnsa(x™,Y") = Do(2")| > v (e,6,A,A,C)) < an (6,0, A,p,7) Vn s.t.nh, >ng(C,p,0,K) (40)

where,|| Z || is defined in[(3B) and the form of, in (I12). Note that the tightness condition on the probspili
measures associated with the family of the conditional idessf the channel;, guarantees that, (C, p, d, K) <
00, Vp € (0,1). Theoreni #t formalizes the fact that the probability of déeiaof the cumulative symbol-by-symbol

loss, L gn.5,4 (2™, Y™) from the minimum possible losg)y(z™) is exponentially small with the block length

Intuition behind the proof of Theorem 4

The benchmark for assessing the performance of the propteseaiser is the minimum possible symbol-by-
symbol cumulative lossD, (z™). It has been shown i (14), that this is the minimum over alhsueable mappings,
g : R — [a, b], of the expected loss under the marginal density inducetidyrtie distribution of the underlying clean
sequence. This has been further showilLin (12) to be equat texibected value of the Bayes envelope under the true
conditional empirical distribution of the underlying cteaignal given the noisy observation. This true conditional
empirical distribution of the underlying clean signal i€ thuantity that is unknown to us. However, if we have an
estimate of this conditional empirical distribution thatin some sense “close” to the true conditional empirical
distribution and asymptotically is essentially “it”, weeapnn the right track. Since this is derived as a function of the
marginal empirical distribution of the underlying cleagrsal, all that is needed is, “closeness” of the estimate of

the marginal distribution of the underlying clean signathe true marginal empirical distribution. The almost sure
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convergence of the marginal density at the output of the nngles channel gives us, through the mappind_in (16),
an estimate of the input empirical distribution that weagbnverges, as shown in TheorEm 2, to the true empirical
distribution of the underlying clean signal. This then sdugently lends itself to the convergence of the expected
loss under the corresponding induced densities at the bofphe memoryless channel. From{12) ahdl (14), the
fact that we have well-behaved (satisfying conditions J)-Channel conditional densiti€y |, } »c[q,;), @and loss
function, A (satisfying conditions L1-L2), we can bound the deviatidrttee expected value dff ([F ®C]X‘Y)
under the two corresponding induced densities.

The goal, eventually, is to bound the deviation of the cutivédoss,L ;.. s, incurred by the proposed denoiser
in @23) from Dy (z™) as a function of the block length, This is done by using Lemmas$[5, 6 which formalize the
deviation bounds of the expected loss under densities aulbg weakly converging distributions. Finally, Lemma
[7 is used to bound the deviation of the empirical expected fomm the true expected loss. These Lemmas are
analogous (in spirit) to the corresponding ones, i.e., Lasity 2, 3 (for context lengtlt, = 0) in the discrete-input,
general valued output setting in [5]. There are, howevdstlsudifferences in the bounds and the requirements on
the channel, loss functions (C1-7, L1-2) that make it pdssib this continuous valued setting. The combination
of these results is used to bound the deviation.gf, s » from Dy (z") in the proof of Theoreni]4. Take now,

6 =90,,A=A, such that),, | 0,A, J 0 forall e >0 and

Zan (5,5n,An,p,’7) < o0 (41)
n=1
For exampley,,, A,, = —— would satisfy the above requirements of summability andwtftdor anys > 0. With

logn

the growth rates that satisfy the summability conditiondd))(for o, (¢, 65, Ay, p, ) let,
nguniv: X 0n B (42)

where the subscript ‘ssuniv’ stands for symbol-by-symbaVersal denoiser. A direct consequence of Thedrem 4
and the Borel-Cantelli lemma gives us the following mainotteen that establishes universal asymptotic optimality

of our proposed symbol-by-symbol denoiser for any unknawdividual underlying clean sequence.,.

Theorem 5:For all x € R*>°,

lim [LXTL (2™, Y") = Do(z™)| =0 a.s. (43)

n—o0 ssuniv

V. CONSTRUCTION OF THEUNIVERSAL DENOISER AND ITS PERFORMANCE GUARANTEES

In this section, we propose an extension of the symbol-lmkm} denoiser discussed in previous sections to a
2k + 1-length sliding window denoising scheme, one that compstt#ssliding window schemes. The performance
guarantees made in the symbol-by-symbol case also holceipribposed extension. The first result of this section

is presented in Theorem 6, which assess the performancergiroposed scheme by showing that it does well
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relative to that of the best sliding window scheme of or2ler 1, as would be chosen by a “genie” that knows the
underlying clean sequena#. The main result of this section is TheorEm 7, which esthblighe strong universality

of our proposed sliding window denoiser, showing that itdlessentially as well as any sliding window scheme, of
any order, as the length of the data increases, regardlegsatfthe underlying clean sequence may be. Theaiem 7
will be shown to be a direct consequence of Thedrem 6, anakbgas Theoreml5 of the previous section followed

from Theoreni K.

A. Extension to competition witkk + 1-order sliding window denoisers

The scheme we propose is pictorially depicted in Elg. 2 beldve necessity for independence of the symbols in

—_— 2k + 1 subsequences of supersymbols (each of length, 2k + 1)

1

univ

Fig. 2. Schematic representation of thle + 1-length sliding window denoiser

the density estimation procedure discussed in se€fioAlkbupled with the memoryless nature of the channel is
the motivation for partitioning the problem into subseqeesnthat are processed similarly, but separatelgkA- 1-
tuple super-symbol is formed by jumping a length2df+ 1 to achieve the independence condition between the
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successive super-symbols. Note that there2are- 1 such subsequences and each subsequéifceunting in the

order of symbols in the sequence), consist$1€ﬁ%], 2k + 1-tuple super symbols. We label the subsequences

asz™, for 1 <i <2k + 1. For a fixedn, each subsequeneé@: has the following super symbols,

L — {:1:2’““ akriri( "22;f+1lﬁl)(2k+1)+i+2k}

[ ' V2k—4+1+14 ’ (”’3,?;3’@—1)(2%1)%

This facilitates the extension of the ideas from the symbbithe symbol-by-symbol denoiser to the super-symbol
of the 2k + 1 sliding window denoiser. Some definitions are in order befar set to investigate the optimality
results of the scheme. As in the symbol-by-symbol schermejf;}éC denote thek™ order density estimate of the
noisy sequence of symbols and is computed exactly ds1n @&pey, Y; € R?**1. DenoteF** to be the set

of all probability distribution functions with support ctained in the hypercubje, b]?**1. Let Dy (2™) denote the

k™-order sliding window minimum loss and is defined as

1 n—=k

o > Maig(F) (44)
i=k+1

Di(2") =min F
g
Note the similar definition of symbol-by-symbol denoisépiin (7). As before,D,(z™) can be expressed as
Di(2") = min Epe, gcA(X, g(Y%) (45)

where F*, is the k™ order empirical distribution of the source. Define furthee sliding window denoisability of

the individual sequence = (z1,x2,x3,---) by

D (x) = lim limsup Dg(z") (46)

—0 n—oo
where the limit exists by monotonicity. In wordf)(x) is the loss of a genie who knows the underlying clean
sequence and can choose to denoise with the best slidingwischeme, of arbitrary order. Extending the definition

of kM-order minimum loss to a subsequencé: as
D(a™) = min B, oeA(X, g(Y)) (47)
The mapping to the correspondik order input empirical distribution is given by

FEY" =arg min d f;%k,/ I friedF(at,) (48)

k
FeFl?

[FCly
where F»PF C Flatlk denotes the set of" order (| < k < |5 ]) empirical distributions induced by-tuples
with [a, b]?**+1-valued componentsl—f’fﬁk denotes thé:-th order estimate of the input empirical distribution oéth
source analogously defined as in the symbol-by-symbol dadse2k + 1-length sliding window denoiser for each
of the subsequences, is given by
n—2k—i—1

v i, 0, k[ nY s\ PNk n; Jj+k . . .
Kb &Ry (7) = g [ PRl (9341) jé{k+z,3k+1—|—z,...[ -

1} e
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where thek!" order equivalent of the denoiser [n{22) is given by

golP] (y21) = argmin A(, 2)" [P & Clyy, e,
k
=argmin > A(a,7)- > 11 Friemu )P (UE = uby) | ¢ (50)
* acA uk €A+ iyg=qa Li=—k
Let, f(’iA denote the set otk + 1- dimensional vectors with components in [0,1] that aregate multiples ob.
Note that, P’;5 2] e Fi o for all 2. Finally, letG§ o = {gopt[P]} pe 5, and

XmOAk = Xm0 ARY L opi (51)

be our candidate for the-block 2k + 1-length sliding window denoiser. It is the sequence2bf+ 1 denoisers

that operate individually on each of the subsequences. Tihulative loss incurred by this sequence of denoisers

is defined as
1 2k+1
L. = — L, 52
Knoak = g ; P (52)

where,L ¢, 5,a.% IS the cumulative loss incurred by the proposed denoisethii- subsequence. The following
Lemma illustrates a rather intuitive fact, the average mimn k™ order sliding window loss incurred by operating

on each of the subsequences is at most the minirhfirorder sliding window loss for the entire sequence.

Lemma 3:Foralln > 1, k < [ %],

B. Performance guarantees

In this section we present Theorémh 7, wherein we demonstrate provided certain growth constraints on the
context lengthk, quantization step sizes A and width of the kernel density estimdtare satisfied, the cumulative
loss, L ..5.a.x, incurred by the proposed denoiser asymptotically apgresithe sliding window denoisability. The
growth constraints are specified at the end of this sectibay Bre dictated by an exponential bound on the deviation
between the cumulative l0s$,;.. 5., and D, which we now develop.

Let

an (6k,0,A,p,7) =
A2k+1

[l + 1} “[A(k, € 4+ 6 Amax, Amax) exp (—(n + 1)G (k, € + 6 Amax, Amax)) +

0
A (k, V1-— ,z) exp (—(n—i— 1)G (k, V1-—p, z))} +e_(1_p)%
Y v
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where,

2¢2
A(k,e,B) = (2k + 1) exp (ﬁ) (54)
2¢2
G(k,E,B) = W (55)
and
v (e,0,A,A,C, k) = 3€ + 50 Amax + 46T Apax + 4A(A) (1 + &) (56)

We now state the analogue of TheorEim 4 in the present settinigh bounds the deviation of the cumulative
loss incurred by the proposét + 1-length sliding window denoiser from the minimum possitilg (z™). Note
that herez € [a,b)?**! andY € [a, b]?**+1 ( 2k + 1-tuple super-symbols) is the continuous valued output ef th
memoryless channel.

Theorem 6:For alln > 1, € >0, 6 > 0, p = p(e, 0) defined in[(3V),A > 0,1 <k < [§] andz™ € [a,b]"

Pr(Lgnsax(@™,Y") = Dp(z") >v(e,6,A,A,C,k)) < an(6k,0,A,p,7) Vn stnhk > n (C,p, 6, K)
(57)

where,
€

Tk = = p—
(A2 +Amax [ ENE +Ob—a) [ A LI E 1} +Amax)
IZ]|* (the k™ order equivalent of|Z| 1, in B9)) andny (C, p, 6, K) are defined in[(I89) an@(110) respectively.
Take now,k = k,,, 6 = 0, andA = A,, such thatk,, — oo, d,, J 0, A, | 0,

(58)

Z Qn (67 kn,5n, Anvpv an) < 00

n=1

andny (C, p, 6, K) < oo. With growth rates that satisfy these conditions let,

Xn _ Xn,én,An,kn (59)

univ

For example, it can be verified that unbounded increaking log (log(n)), h, = @ Spkn — 0, (6n, A, = m)
satisfies the requirements for a famit, that hass>» ™" — 0 and loss functions that have(A,) 63 — 0.
Particularly for additive Gaussian noise channels of findeiance, squared and absolute loss functions with the
aforementioned growth rates &f,, A, 6, satisfy the conditions ok (A,,) 53 *! — 0 andd3™ ' — 0.

We now have the following result as a direct consequence ebfiegni® and the Borel-Cantelli Lemma.

Theorem 7:For all x € [a, b]*

lim |Lg, (2",Y") = Dy, (2")| =

| =0
n—oo univ

a.s. (60)

In fact, we can go a step further and show thatlthesup of the cumulative loss incurred by the proposed denoiser

is bounded by the sliding window denoisability. Specifigall
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Corollary 1: For all x € [a, b]*>°

limsup [Lgn (2™, Y"™) — D(x)} <0 a.s. (61)

n—00

which is a corollary of Theoreiln] 7, proved similarly as caaofi 1 in [5].

C. Computation complexity of the proposed denoiser
Let us summarize the computational complexity of the pregagenoisers: the “symbol-by-symbol” and thié
order extensions. For the symbol by-symbol denoiser, we ledready covered the analysis in Sectibns 1IlID.1,
[M=D.2] For X[}, defined in[(5P), we have:
a) Symbol-by-symbol scheme:
1) Fast Kernel Density Estimatio®(n)
Using the techniques of fast kernel density estimation 8j,[R8], [23], [14] it was shown that the complexity
can be reduced from®(n?) to O(n).
2) Channel Inversion) (n?)
The polynomial complexity of the simplex approach in lingaogramming problems is discussed in detail
in [2].
b) k" order sliding window scheme:
1) Fast Kernel Density Estimatiod) (n)
As before, the complexity of the denoiser continues to bedlirin the length of the data, and the context
length, %, i.e., O (nk”) v > 0 [14].
2) Channel Inversion (n5")
From the fact that the dimensionality of the contexts is taritf, the channel inversion now increases in
complexity exponentially and is given iy (nﬁk) Thus, our schemes are practical for small values,djut
become unrealistic to implement asgrows.
This lead to our follow up work in [33] that uses quantizedteswts in conjunction with the (low complexity)
symbol-by-symbol denoiser that asymptotically (with i&sing levels of quantization of the contexts) achieves

the performance of the sequence of denoisers proposed here.

VI. UNIVERSALITY IN THE STOCHASTIC SETTING

Our results also imply optimality for the stochastic segtihen the source (clean signal) is a stationary stochastic

process with distributiorfx. For the pair(Fx,C), define the denoisabilityD(Fx,C), as

D(Fx,C) = lim min ELg, (X", Y"), (62)

n—00 Xn

where the expectation is assumifg® are the firstn symbols emitted by a source with distributidi andY™ is,

as before, the:-tuple of output noisy symbols from the chandethat corruptsX ™. This is achieved by a “genie”
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that has access to the true distributidfx, of the underlying clean signaX. It has been shown in [36], [5] that
the limit in (62) exists and hence the denoisability,Fx,C), is well-defined for every stationarkx.

We now state the main result for the stochastic setting wheve establish that for any stationary underlying
clean sequencX ~ Fx, the expected cumulative loss incurred by our proposednsetresymptotically achieves
the denoisabilityD (Fx,C).

Theorem 8:For all stationaryX

nh—>nolo ELXJ‘HW (X" Y™") =D (Fx,C) (63)
If X is also ergodic then
limsup L¢, (X", Y") =D (Fx,C) a.s. (64)
n—oo univ

Given the results established for the semi-stochastilmgetthe proof is analogous to that of Theorem 3 in [5]
except for some subtle differences in our setting due to timirtuous input and output alphabets. We, however, do
provide the proof of the above statement for completenedsf@maccommodating these differences in Appendix
(VT

We conclude this section by comparing the proposed sequaindenoisers to the DUDE-like schemes in [5]
for the case of finite input (or underlying clean data) andtiooous valued output (noisy data) . By a minor
modification, the proposed denoiser collapses to that inwB¢n, as in the setting onf [5], the channel input
alphabet is finite. This is illustrated by comparing the fppass of the DUDE-like denoiser with a modified version
of the proposed scheme through the schematic representatiéig.[3. The theoretical details of the equivalence

of the modification shown in Fid.]l 3 below to the denoiser in §6 elaborated in Appendix]X.

VIl. EXPERIMENTAL RESULTS

In this section, we discuss experimental results of appglytie proposed scheme to denoising 256-level gray scale
images. We demonstrate efficacy of the scheme with resuits application to cases of additive and multiplicative
Gaussian noise. In addition, we consider a highly nonlinean-conventional noise distribution: a locally varying
Rayleigh noise whose variance is a function of the gray le¥ehe underlying clean image. The first pass of the
denoiser is performed using a Fast Kernel Density Estimadigproach proposed in [15] and a channel inversion
procedure. This channel inversion is performed using a@ooyptimization linear programming technique that maps
the outputk"-order density estimate to the corresponding ingltorder input empirical distribution in accordance
with (@8). The experimental results presented in this sactiave been obtained by implementing the scheme
of the previous sections, with no heuristic modificationatthre likely to boost the performance. The practical
implementation aspects are discussed in greater detaifleptth in [32], [33].

The first example we consider is, denoising of the boats inthgeis corrupted by an additive white noise
channel (AWGN) with,c = 20. The loss function), to be minimized in this case is the squared error between the

true clean image and our denoised estimate. The denoishrsirtdse is a mapping fro — 4 = {0, --- 255}
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X" yn» AL
> fY|x >

Il

X" AL

s M(z,z) —

Fig. 3. Maodification to our proposed scheme that is equivaterthat in [5]

and reduces to that i (50). Results of the proposed degossineme are shown in the Fifl 5 below with context
length, k£, ranging from 1 to 6. The context (fdr > 1) around any location;, in the block of noisy data are 2D
neighborhoods. The 2D contexts for various valuesg @fre shown in Figll4 below. As is evident from both, the
reported Root Mean Squared Error (RMSE) figures and the perakquality, we are able to achieve improved
denoising performance with increasing context lengthealyi, we compare the results of the proposed scheme
to that achieved by wavelet-based thresholding schemen@]Bayesian Least Squares Gaussian Scaled Mixture
(BLS-GSM) denoiser in [26]. Increasing context lengths,translates to accruing increasihi-order statistics
from the finite block length data. This is the classic traffebetween increasing context lengths and reliability of
the associated higher order statistics is seen in Eilg. 6eviver see only marginal gains in the RMSE between,
k = 4 andk = 6. The results for the AWGN case are primarily aimed at dematisg the practicality of the
proposed scheme fully acknowledging the performance ldagtliemes like the BLS-GSM that are particularly
catered to the problem of denoising in the case of AWGN chianiiéae benefits of the proposed approach are in
fact highlighted in unconventional cases like nonlineaisachannels which will be discussed next.

Another example of the application of the proposed schenie d&enoising an image corrupted with an uncon-
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Fig. 4. 2D Contexts for context lengttk,

ventional distribution as discussed earlier in this sectMore specifically, we simulate the noisy image by using
a gray-level dependent Rayleigh distribution (with prabgbdensity function, f(x) = b%e;TI;) whose variance
parameterB, is chosen as a function of clean image’s gray level at thedtion. In this particular example, we
generate a matrix of 256x256 Rayleigh distributed randonakiles whose parametefs are chosen according to
the following rule,B(i, j) = I(i, j)*35/256, wherel (i, j) is the true value of the clean image at locat{eny). We

will discuss the denoising performance only in the symbgkpmbol case in this setting in favor of succinctness
to convey the point of efficacy of the proposed scheme. Motaildd results and discussions on this problem
setting can be found in [32]. We compare, in Fig. 7, the eropirdistribution estimatef,., of the underlying

clean image with the histogram generated from access totthe”“clean image. We also compare these results to
the smoothed histogram estimate of the true clean imagewhastproduced using the Kernel Density estimation
approach in [15]. From a visual inspection of the figure, kvident that we are able to reasonably recover the true
marginal empirical distribution of the underlying cleanaige and correspondingly the estimate of the true image.
Finally, we present the results of denoising the boats imhbgeis corrupted by a multiplicative Gaussian noise
with a distribution,A/(1,0.2) in Fig.[8. The noise in this case literally multiplies thissediterally multiplies the
original clean image to corrupt it and as such, the effeagelatively more catastrophic. We compare, qualitatively

the results from the proposed denoiser with that of [26] tidete its efficacy.

VIII. CONCLUSION AND FUTURE DIRECTIONS

We have presented a family of schemes for denoising contmamplitude signals that is universally optimal. A
salient feature of our setting and results is the wide gdihef channels and loss functions for which they apply.
The techniques presented in this paper draw from the “DURE&work” in [36]. A weighted ‘context aggregation’

was suggested in [36] as an approach to enhance the perfoenofiihe DUDE in the first pass of the statistics
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collection. The proposed technique provides a naturalestaiggregation mechanism whereby neighboring contexts
in addition to the observed are weighted by the kernel in thesily estimation step. The denoiser proposed in
[5] was shown to be asymptotically universal and extendeddiimain of applicability of DUDE-like schemes to
cases where the noise is continuous valued. This approaeh,teough elegant theoretically, suffers from some of
the same issues as the DUDE in terms of sparseness of sgafwtilarge alphabet sizes. Our technique addresses
this problem for the problem setting considered in [5] byunalt context aggregation induced by the kernel density
estimation. In the setting where the underlying clean digmaiscrete-valued, taking values in a finite alphabet
space, a slight modification of our scheme has been showrdteeo the scheme in [5]. We also simultaneously
provide a framework to address the case of continuous vallpthbets, where there is need to learn distribution
functions instead of individual mass points as in the disckalued case. Finally, the proposed scheme is practical
and tractable in its computational requirements as dematrst by the experimental results.

The experimental results in this paper seem promising emtaugotivate further exploration of practical aspects
of the proposed scheme. This is an interesting future dinedhat is currently under investigation. Additional
directions of research include studying the applicabiityecursive density estimation techniques discussedgh [1
in designing recursive denoisers as an alternative to thense presented in this paper. This would be particularly
useful in multidimensional data applications like dermmisnoise corrupted video. It could also be of theoretical

interest to understand the implications of a recursivecttine to the denoiser and its associated optimality results

APPENDIX |

CONDITIONS ON THE CHANNEL

In addition to conditions C1-C4 in sectidg I, the followimgnditions on the channel (noise distribution) round

up the necessary assumptions for the performance guasamizge in this work.

C5. The channel satisfies the uniform Lipschitz continuiiydition,

sup || fy 12 (¥) B < o0 (65)
yeR
where
vzl = [fyieWz + 1 fy)2(®)ll (66)
Ifyve@le = sup ’fyz(iz — qu(y)] < oo, Yy €R (67)
x,z€E[a,b]
[fyie@llec = sup fya(y) (68)
z€la,b]

C6. The conditional densities, additionally, satisfy tle#idwing Lipschitz continuity condition,
[EllL= sup % < 00 (69)
0<A<(b—a)
where, &4 is defined in[(3B).
C7a. The family of conditional densitieS, have uniformly bounded second order universal derivative.,3 a 5¢

S.t.0 < B¢ < o0 and D3 (fy‘m) < Be,Vzx € [a,b], where the second order universal derivative is defined as
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(refer [6] for further details)
D3 (fyz) = 111&1011f/ ‘(fY|m * (bh)@)‘ dy (70)

on(z) = +0 (%), ¢ € C=, C= is a set of functions that have infinitely many continuousivdgives with
compact support and(®) denotes thes-th derivative of f. This is a mild technical condition that enables
the proof of the convergence of marginal density estimatethea output of the memoryless channel to the
true marginal density. Note that we are not imposing theediffitiability of the conditional densities of the
channel themselves. We are, instead, proposing a mildestreamt that the smoothed version of the channel
conditional densities is “differentiable enough”. Thisnddtion is trivially satisfied if we have a family of
conditional densities that have a uniformly absolutelytoarous derivative.

C7b. An alternative to the previous condition on the famiflganditional densities of the channelian; .o Qc(t) =

0, where
Q(t) = sup ws(t) (71)
z€la,b]
and
a®) = [ |Fricly =0 = )] dy (72)

From the fact [37] that, for any € L, (R), the corresponding,;-modulus of continuity,

wlt) = /|f(:v — )= f(2)dz — 0, as[t] — 0

and

[wlloo < 2[1fllx <00

it follows that the globall;-modulus of continuity2¢(¢), is well-defined for allt and families of conditional
densities,C. In other words, this condition demands uniform convergeoicthe L;-moduli of continuity of

the individual members comprising the family of conditibdansities.

APPENDIXII

PROOF OFLEMMA [II

A theorem necessary for the proof of Lempida 1 is as follows
Theorem 9: Every kerndk with fK =1, K > 0 is an approximate identity, i.e fdim,,_,, h,, = 0 and every

fi € L1, s.t. D3 (f;) < oo are uniformly bounded we have
li / ! Xn:f « K ! zn:f 0
111 - i -\ = i)l =
oo n =1 " n =1

An alternate formulation of the approximation identity fetfollowing,
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Theorem 10: Every kernek with fK = 1,K > 0 is an approximate identity, i.e folim,, ., h, = 0 and
every f; € Ly, s.t.limp 0 Qc(t) =0

) 1 <& 1 &
s [ (F50) - (30

A definition regarding the notion of associated kerneL, with the kernel K that is necessary for the subsequent
proof is,

Definition 5: The function defined by

oo —ZCS_l
o) = (v [T Yk @ 0)
L) = (I'LE) (@ <0)

is the kernel associated with kerngl. The functionL is sometimes said to have a parametaince it figures in

the definition of L. When K is symmetric,L is symmetric.

Furthermore,
1 S
Jie1< 5 [ laPiE@)ds 73)
for all nonnegative integers For s = 0, we defineL = K. For K > 0, we have the equality
1 S
Jizi=5 [ laPiE@)ds (74)
Finally,
IS
/L = EK(a:)d:r
0 : sodd
= (75)
0 : seven, and the order ak is> s

Proof: [Proof of Theoreni D]
Let us start with the case thgt hass — 1 absolutely continuous derivatives. Then, by Taylor'sesexpansion
with remainder,
s—1 4+ y— u)g,

J oo Tty 1
fla+u) = Hlw) = 3 0@ + [ ((s—l)! i ()

=
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so that, for class kernelskK,

<Zn: file +y) — Z fi(:v)> K, (y)dy (recall that| K =1)
1

_ 1 S nf s« L, (76)
n -

where (L), is the kernel associated with};,, and L is the kernel associated with. Therefore, by Young’s

JG5e) ()l
[
<l <_ ) [ @

Since f;'s have (s — 1) absolutely continuous derivative$,|fi(s)| < oo, and further if [ |fl.(s)| <M < o0, Vi

inequality [30],

1 n
D VLT
n =1

(©

£

(uniformly bounded) the inequality i _(I77) simplifies to
N5 =-(52)

/|L| < $/|x|S|K(:1:)|dx — Bx < o0 (79)

<hM / IL| (78)

Since,

for K being an order s kernel, inequality in equatifn] (78) becomes

f|(55e) - ()

< hi MBg (80)
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Taking limit n — oo on either sides, we get

<% Zﬁ) * Ky, — (% Zfi)
i=1 i=1

This can be extended to the genefgs using the universal derivative defined earlier. As a ratam

0 < lim

n—oo

< lim hiMBg =0 (81)
n— oo

D; (fi) = 111}11130111’/ ’(fi * ¢h)(5)‘ (82)

where,¢ is a mollifier.
Mollifiers are class 0 kernels, nonnegative and zero outside1]. They also have infinitely many continuous

derivatives and is called mollifier because of its exceptional smoothing properties. An exarapbh mollifier is
K(z) = Ce a7 ) <1 (83)

For a classs kernel, K, and a family of density function§f; };cn with associated universal derivatives that are

uniformly bounded, i.e.D; (f;) < B¢ < o0, Vi € N, it can then be shown that,

/‘( Zfz)*Kh _<%Zfz>‘ < %Z/Ui*Khn_le
i=1 =1
< Lompi [ 1
<

1 n
—Z@&/w
n “
=1
- @&/w| (84)

Taking limits on both sides we get,

. 1 & 1 &
e (18] (18-

=1
[
Proof: [Proof of Theoreni_1I0]
0) = hita) [ Katdt = [ f@mnor, i (86)
Therefore,
(o)t i ]
Zfz z—t) ——Zfl )7 | Kn(®)] 7 dt (87)
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where% + % =1, (z} =0if p= 1). Applying Holder’s inequality with exponenjsandp’, and then raising both

sides to thep™ power and integrating with respect to x, we obtain

/( Zfz*Kh) ——Zfl

Zfzx—t——Zfz Kot |dt1 [/m |dtr’dx

=||K|?’/[/\ Zm—t ——Zfz
S [%; / |fz-<x—t>—fi<x>|p|Kh<t>|dt] dr 89

Changing the order of integration in the last expressionidwis justified since the integrand is nonnegative), we

S|/}

®)] dt] dx

obtain
[ (% Zf> S YA [ AT AR SPOr
=1 =1 =1
< K [ iao] 2 (89)
Ford > 0,
I = / | K ()| Q(t)dt = / +/ = Aps+ Bhs (90)
[t|<d [t|>5

Since, we havél(t) — 0 as|t| — 0, for n > 0, we can choosé so small that2(t) < » if |t| < J. Then
Avs < [ |Ka@)lde <l >0 (1)
[t|<d

Also, © is a bounded function by Minkowski’s inequality [note tHER| - < sup,cy llwilloo < sup;en (211 fillp)",

which for p = 1, becomes|€||« < 2], so thatB;, s is less than a constant multiple S‘t|>6 | K1, (¢)| dt, which

tends to zero withh. This proves thaf;, — 0 ash — 0 and the theorem follows. [ |
Another lemma necessary for the proof of Leminha 1 is the fahgw

Lemma 4:(A Multinomial distribution inequality)

Let Ny,---, Ny be a multinomial random vector with parametet.,--- ,px. Then
k
N’ 7”62
P =gl e | <2k 92
Proof
By Scheffe’s theorem,
k
N; N(A
> 1= —pi| =2sup L—P(A)‘ (93)
n A n

=1
where,A = {all 2* possible sets of integers from--- , k} and N(A) is the cardinality ofA. By Bonferroni's

inequality and Hoeffding’s inequality,

€
P -
<sup - 5

A

N(A) —P(A)‘ > > < 9kge—2n(5)” (94)
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The expected value of™(z) is denoted by,

() = B (@) = Z/ x(2

Proof: [Proof of Lemmd[l]

y) fily)dy (95)

Let g5 be defined as if{95). By Theorem 1, it is enough to show fhet*(z) — gi(x)|dz — 0 exponentially.

Let i, be the empirical probability measure faf;, Xo,--- , X,, and note that
n 1 T —y
o) =g [ 5 (55 wntan) (96)
(97)
For givene > 0, find finite constants\/, L, N, a1, - - - ,ax and disjoint finite rectangled,--- , Ay in R? such
that the function N
2) =Y aila, () (98)
=1

satisfies:] K*| < M, K* = 0 outside[—L, L|¢, and [ |K (z) — K*(z)|dz < . Defineg; and f** asg, and f"
with K* instead ofKK. Then

[15@ = gu@ldo < [177@) = @ldo+ [ 177@) - gi@lds + [ lgia) - gn(@lda
o (252) (25 s
[ e () 2 (7)o

+ [157@) - i@l da

<2e+/|f"* (2) dx

by a double change of integral. But,if is the probability measure fof,

J157 @ - gi@lar <3 jed | WE/A By =gz [ )| e

N
1 1
S d E a”L|/ ﬁ

Zuj(:zr — hA;) — pn(z — hA;) | dx (99)
j=1

Lemmal1 follows if we can show that for all finite rectanglesf R?

dxz — 0 exponentially as, — oo

Zuj(:v — hA;) — pn(z — hA;)
j=1

1< (|1
w2/
= j=

Choose and, and lete > 0 be arbitrary. Consider the partition & into setsB that are d-fold products of

intervals of the form[ =Lk lh) wherei is and integer, andV is a new constant to be chosen later. Call the
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partitionII. Let

d
. 2
A= 1_[1171,:171—1-aZ mimaizﬁ
1=

and
d 1
= |:| |:,':CZ :CZ + a; — ‘N)

Define
Co=|z—hA— |J B|Caz+h(A-A")=C;
Bell
BCz—hA

Clearly, for anyn

w o< [ 3 |—Zu7 (B)lda

Bell
BCxz—hA

+/ (%;Mj""ﬂn) (C3)

/’%Zﬂj(»@ — hA) — pin(z — hA)
J=1

(100)

The last term in[(100) equals

2A(R(A — A*)) = 2hINA —AY) (101)

— <H ai — H (ai - %)) (102)

=1

where\ is the Lebesgue measure. Now, puttihg {102), {100) Bnd (8$5ther, we get

[157@ - @l < 2¢+ [ 17 (@) - gi o)

<2€+Z|az|hd/ Z |_ZMJ |d:1:—|—Z|aZ|hdhd (A; — A;*)

BCz hA
1 & N2
<24+ — a; n / dr + a; iy 5Y A; — A
X ; |ai BZGH le (B B) BCa_nA, ; | |hd ( )
N2
ot LSl LS (B) - B0 + it B, — A7)
i=1 Bell  j=1 i=1
N 1 n N
<ot (ZmiM(Ai)) SRS (B) — (B + 23 i AA; — A7)
i=1 Bell — j=1 i=1

(103)

The third term on the right hand side can be made smaller ¢Hanchoosing/N large enough 4! — A;, Vi as

N — o0). The coefficient of the first term on the right hand side is étmg |K*| < 1+ €. Thus, we have shown
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that for everye > 0, we can findNV large enough such that

Jir@ —a@iee < s 0503 1LY w5) s

Bell ' j=1
< 56+Z|—Zﬂa 1in(B)| (104)
Bell '~ j=1

We are almost in a position to use the multinomial inequaligre it not for the fact that the partitidi is infinite.
Thus, it is necessary to "cut-off” the tails of the distrilaut. Consider a finite partitiorll,., consisting of sets of

IT that has a non-empty intersection withr, ] wherer > 0 is to be picked later. Lefl* be I, | J[—r,7]%". The

(% + 2>d = 0(n)

To take care of the tails we argue as follows: Testand for the tail set, i.e., the complement[ef-, r]¢. then

cardinality ofII,. is at most

n

SRS - mm| < S ) - )|+ 231+ )

Bell j 1 BeTIl, g 1 7j=1
< S S B) ()] + 20 S T |3 (1) — )
Bell, |~ j=1 j=1 j=1
1 n

Z ZNJ fn( ﬁ Z T)

Bell, .« j=1

< > |- Z p5(B) = pin(B)| + 2sup i (T) (105)
Bell, - i€l

Now, 2 sup;c 1t;(T') can be made smaller thanby choice ofr. This gives,

[157@ - g@ide < 6ot 3 Zug in(B) (106)

B«
wherer depends or, T, and N depends or, K.

By Lemma 1, for§ > 6¢ andp € (0, 1),

P</|f”_gh|>5> < (Z ZMJ nB)>5—66)
B«
< 22+(2+ 27;LN)d67§n(5765)2 (107)
< e 0 0> (60, K, T, ) (108)

This concludes that the proof5- 4 for nonnegatives. Note that the inequality can be forced for allh with

16 + 44+
n> ;T (109)
424(2r(C, K)N)?

po?

nh? >nd (C,p,6,K,d) = (110)
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if we pick

4009

For the symbol-by-symbol casé,= 1 and [110) becomes

16 + 494+1
S ;52 (111)
16r(C, K)N
nh? > no (C, p, 6, K) = “27(’52) (112)
[ |
APPENDIX I

PROOF OFTHEOREMI[Z

Definition 6 (Prohorov metric):For any two lawsP and Q on the set[a,b] C R, the Prohorov metricp is
defined as

p(P,Q) :=inf{e > 0: PA(B) < P(B®) +¢, B € Bl*!}

whereB® = {Z : |x — &| < e,z € B}.

Proof: [Proof of Theoreni 2] LetP,, andQ,, denote the laws associated with the distribution functidns
and £,.. From [11, Theorem 11.7.15 (P, @n) — 0 = B (P, Q,) then by definition of the3-metric, we have

=0 Vfllar <1 (113)

n—00

By a mere scaling, the above statement is also true for a nmifobounded Lipschitz class of functionsj[(}’b] =
{f:fllBL < M, f :[a,b] — R} for someM < oo. It is also true that

lim ‘/f(:v,y)d(Pn —Qu)|=0 Vvyandfe SletxR (114)

n—oo

whereS][\‘}’b]X]R ={f:[a,0] xR =R, | f(y) | BL< M Yy} for someM < oo and
\f(z,y) — f(z9)]

| f(y) l:= sup o] (115)
1) lloo:= sup f(y, ) (116)
I f @) =l f(W) Il + | F(®) lloo (117)
Hence, for a channel with conditional densiti€$y |, }.c[a,b) € S][\’}’b]XR, we have
Vf”szn —/fmdﬁxn -0 YyeR (118)
and by dominated convergence theorem,
J|[ #rvstre = [ fsai|as 0 (119)

and henced ([an ®@Cly, {an ® C}Y) —0.
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Hence, the mapping of input empirical distributions to autgensities induced by the channel,

Fyn(y) = [Fan ©Cly = / fy1edFen () (120)

is continuous with respect to the metric on the input distributions and the total variationtriceon the output
densities. We also have the fact tf{a&(**, 3) is a compact [11, Theorem 11.5.4 , Corollary 11.5.5 ] mefpiace.
Since, we have a continuous 1-1 (bijection) mapping betwkercompact metric space of input distributions with
the 3 metric, (F1+*l, 3), and the space of output densities, with the total variatietric, ([F(** @ C] , d),we can
apply the continuous mapping theorem [30] to get continirityhe inverse mapping too. This gives the desired
result that asi([F,» ® Cl , [Fxn ®C}Y) — 0, we haveg (P,,Q,) — 0 and p (P,,Q,) — 0. Finally using the
fact [11], A < p, A (FIFI) 0. n

APPENDIX IV
PROOF OFLEMMA [2]
Proof:
Considerf € Cy([a,b]), whereC, denotes the set of all continuous bounded functighs[a, b] — R. For any

F e Flat and P2 that is constructed using (81)

‘ [rir@ [P

= /f(dF(:z:)—PA(da:))
N
= | [ 1aF@ - 3 f@)P @)
N-1 a4y - N
< X [ G + e @)dr@ - 3 fa)P @)
=0 Y @i =1
N—-1 N
= (f(ai) +wr(A) P (a;) = > f(ai)P (a)
=0 i=1
N
= (@)Y Pa)
= wi(A) (121)

wherewy (A) = max,c(q |f(y +A) — f(y)] and N is the number of quantization levels as defined previously.

Hence,
iiLnO]PAf—Pf] = |lim / f (dF(z) — P2(dx)) (122)
= Aiinowf(A) (123)
= 0, VfeCab]) (124)

This implies weak convergence &~ = P. Hence, the statement of the theorem follows from the Phoretric

that metrizes weak convergence. ]
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APPENDIXV

PROOF OFTHEOREME]

Using the definition of the Lipschitz norm of the loss funatid\,, and the channel continuity functiofa, we
bound the deviation of the expected value of the loss funatioder two marginal densities induced at the output
of the memoryless channel by the corresponding empiricdtidutions of the underlying clean signal at the input
of the memoryless channel.

Lemma 5:For any F, I € Fl*, measurabley : R — [a,b] and a bounded Lipschitz loss function with

Ejyy, Alu,g(Y) < o0, Va,
|ErgacA(Uo, g(Y)) — Epg o AUo, g(Y))|
< (I A A+ | Z 2+ =) | A L) Z |z +Awa) 8 (P, P)  (125)

where P and P are the laws associated with and F', 8 (P, P) is the 8 metric between the corresponding laws.

Similarly, we bound the deviation of the expected loss fiamctunder the marginal density induced by any
empirical distribution at the input of the memoryless chalninom that of the expected loss under the marginal
density induced by the corresponding probability masstfanqunder the mapping discussed in secfion 1ll-C), in
the following Lemma

Lemma 6:For anyA > 0, F € Fl* with the associated la#, P» € F2, measurablg : R — [a,b] and a

continuous bounded loss function withy,, , A(u, g(Y)) < oo, ¥V u,

|EpagcA(Uo,9(Y)) = EracA(Uo, 9(Y))| < §almax + A(A) (1+&a)

where A(A) is the global modulus of continuity of the loss functidnas defined in equatio](4) argh is as
defined in [(38).

The proofs for Lemmals]5 arid 6 are discussed in the followintiasg AppendiXV]

Lemma 7:For everyn > 1, z™ € [a,b]", measurablg : R — [a, )], ande > 0,

pr<

Proof: By linearity of expectation: 37" | EA(z;, g(Y;)) = Er,.ocA(U, g(Y)). Thus, the expression inside

% >~ A g(¥) — Br,scA(U.g(Y)

> e) < 2exp(—G(€, Apax)n) (126)

the absolute value brackets in_(126) is a sum of zero mearomandriables, bounded in magnitude By, ...
Furthermore A(z;, g(Y;)) and A(z;, g(Y;)) are independent whenever# j. This allows the use of Hoeffding
inequality [8] as in [5] leading td(126). [ |

In preparation of the proof of Theordm 4, we need also thefiollg two Lemmas
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Lemma 8:d(f2, [Fm ® C}Y) —0as.
Proof: By definition,

0 < d(fy, [Fan €| ) < (3, [Fun ©C)y ),
Taking limit n — oo in the inequality of [12I7), we get
0< lim d(f2, {an @C]Y) < lim d(f}[Fer ©Cly) = 0 as.

n—oo

where the second part of the inequality in_(1127) follows frotreoren{]L.

[
Lemma 9:d([F,» ®Cly , {an ® CL/) —0a.s.
Proof:
0 < d([Fen & Cly , [Fon @C| ) S d((Fan @Cly o 3) + d(f3, [ B 9€) )
We have already seef([F,» ®Cly , f3#) — a.s and by Lemmas,
d(fy, |:Fwn ®C}Y) —0 a.s.
Whence,
d([Far ®Cly [Fx ® c] )= oas.
|

We are now ready for the proof of Theoréih 4, Proof: [Proof of Theoreni 4] We fixa > 1, 2" € [a, b]",

Eps.apynoc MU 9(Y)) = Er,ecA(U, g(Y))’ <
\E%A yr1ee MU 90) = Bp iygac AU g(Y))’ +
Bty oAU, 90)) = Erae MU g(V))| - (127)

Hence,
Pr < sup EP&,A[Yn]®CA(U, 9g(Y)) — Ep,.ecA(U, g(Y))’ > €+ 0Amax + EaAmax+
g:R—[a,b] ="

NA)Y(1 +€8)) < Pr(|Bp ynoch U 9(Y)) = BrouseAU,g(Y)| > €) + (128)

Pr (‘Eﬁzn[yn@CA(U, 90) = Epsapy e AU, g(Y))‘ > 6Amax + EaAmax + A(A) (1 + gA)) (129)
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Now,

Pr(|Epniy e MU9(V) = Erseh(Ug(Y))] > €) <

Pr (1 ANz +Amax 12 2+ = a) | AL E |z +Amax) B (Per, Pon) > ) (130)
< Pr (1A e+ | 2 11z +0 = 0) | A2l E [l +Amax) d (Fon @€, Fon 0€) > )
< e—(l—P)"T72

for all nh,, > no(C, p, 0, K) (131)

where( is the family of channel densitie§fy |, }. The inequality in[(130) is due to Lemnia 5, while the first
inequality in [231) is by application of Theordmh 2 and theosetinequality is due to Lemnid 9 and Theorlem 1.
Finally, application of Lemm&l6 td (1P9) yields

Pr ( sup ’Ep;s,nA[Yn]@CA(U,g(Y)) — Epn2cAU, g(Y))| > €+ dAmax + EaAmax—+

g:R—[a,b]
MAY(1+€a)) < e 2" foralln > no(C, p, 6, K) (132)
Combining [Z3R) with LemmA]7 gives
1 n
< ﬁ Z xlv g Eﬁ‘;’nA(gcA(Ua g(Y)) > 2€ + 20 Amax + gAAmax + /\(A)(l + 5A)>

ny2
< 27 Gl hman NncIn o =(1=P)5= * for all nh, > no(C, p, 8, K) (133)

By the union bound[{I33) guarantees that for any class
<max
geyg

Consequently,

— Z A ,Tz, g P;SnA@CA(U (](Y)) > 26 + 26Amax + CAAmax

2
+AA)(1+€x)) <G] |:26_G(6+5Amax;Amax)n + e—(l—p)"g} (134)

Pr <'LX71,6,A (xn7 Y") _ Iengln EPS A®CA(U, g(Y))' > 2€ + 20 A max + CaMmax
geYs,a z™

FAA)(1+£€a)) <| Zsz,gom PEAYN(Y0) = Epsp oAU go [P, “[Y”H<Y>>|

> 2€ + 26 Amax + CalAmax + A(A)(1 +€a))

3 A, g(¥0) — Bpsp e AU g(Y)

< Pr < max
i=1

IS ZHN

> 2¢ + 25Amax + CAAmax

n~2
+ AMA)(1+€a)) < |Gs,a [2€_G(E+5A”‘“’A“‘“)n + e‘“"”?} (135)

where the first equality follows from the definition &f:%2 and the fact that for any € F; a,

min EpgcA(U, 9(Y)) = EpgcA(U, gopt[P)(Y))

g€Gs,a
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The first inequality follows by the fact tha’;*[Y™] € Fs o and thereforgy,,. [P [Y"]] € Gs. and finally the
last inequality follows from[{134). It also follows, frorh 32), that

P

Combining [I3b) and {136) gives

min Epsag.A(U,g(Y)) — min EFM®CA(U,G(Y))} >

9€Gs,A » 9€Gs,a

nw2

€+ 0Amax + Ealmax + A(A)(1 +£)) < e—(1=P) "3 (136)

Pr QLX”@A (xn7 Y") _ glgin Epzn®CA(U, g(Y))‘ > 3e+ 30Amax + 2€AAmax+
gcys,a

ny2 ne?
2A(A)(1 +€a)) < |Gsal [26‘6:(6*5"“‘“’“"“)" +e 1= | fem (-5 (137)

A

On the other hand, Iettin@f;@ denote the element ifi; A closest (under the Prohorov metric of the corresponding

measures) td .,

Do(z™) — min Ean®cA(U=9(Y))’
IS ZHN
= min  Er .ecAU, gopt[F1(Y)) — min Ep,,ecAU,g(Y)) (138)
Fe]_-lla,b] ISSTN
< min  Egzsa AU, gopt[F](Y)) — min Er,,ecAU,g(Y))| +
FeFlot Fon @ 9€Gs,a "
Amax5 + gAAmax + )\(A)(l + gA) (139)
= | min, s e A gl PIY)) = min EpeA(T, gm)] "
Amax5 + gAAmax + )\(A)(l + gA) (140)
— | i B ocA U0 ~ v BrseA@.a(v)| +
Amax5 + gAAmax + )\(A)(l + gA) (141)
< 2 (Amaxd + Eahmax + A(A) (1 +€a)) (142)

where [13B) and{142) follow from Lemnid 6, arid (140) followsnfi the fact that the achiever of the minimum
in the first term of [139) is;> which, by definition, is a member 0f s, a. Finally, combining [(I36) with[(142)

gives

Pr(|Lgnsa(z™,Y™) = Do(x™)| > 3€ + 50 Amax + 4aAmax + 4X(A)(1 +€a))
< |g6A| e*G(eJrJAmax,Amax)n + 67(17P)nT‘72 + ef(lfp)n—g2 (143)

for all nh,, > no (C,p,0,K)
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From the definition 0Gs A, it is clear that|Gs a| < [+ + 1}A. Hence,

Pr(|Lgnsa(z™,Y™) — Do(z™)| > 3€ + 50 Amax + 4€a Amax + 4A(A)(1 +€A))
A
S |:1 + %:| |:e_G(€+6AmaX7Amax)" + e_(l_P)nT‘yz + e_(l_P)ng (144)

for all nh,, > no (C, p, 0, K)

APPENDIX VI

PrROOF OFLEMMAS[B AND [6

We need the following proposition for the proof of Lemfida 5
Proposition 1: A(x) = [ A (x,9(y)) fy|(y)dy is a bounded Lipschitz function for any measuraple R —
[a, b].

Proof: Let A = |z — /],
A@) = AG) = [ A(e9) Frisy — [ A6 90) fyia )y
< [ A6 9w + A @2 fralo)dy [ (A 9w oWy
< [ (A6 9000) + A (3.2) (Friw) +2al)) dy — [ (A 90) fyiar(0)dy
< AA D)+ A + A (A7) €a
Also,
Alw) = AG) = [ A(e90) Fris)y — [ A6 90) fyia )y
> [ 9w) - M@0 fyalo)dy [ (A 9w) oWy
> [ 690 = A8,0) (i)~ 2a)) dy — [ (A 9) friv)dy
> =A(A,2) = Amaxéa + A (A, 7)€
> A (A,2) — A — A(A,2) €a
Hence,|A(z) — A(@)] < A (A) + Amaxéa + A(A).

The assumption of Lipschitz continuity (condition, C6) betchannel guarantedsna_,o {a = 0. With this and

the fact thaflima_,0 A (A) = 0, we have
lim [A(x) — A(2")]| =0

|z—a!|<a
A—0
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Moreover,

A(x) — A2’
[Ale = sup  sup |A(z) = A')| ,(x )
0<A<(b—a) | #/T:A |z — 2’

A (A) + Amang + A (A) gA

IN

sup

0<A<(b—a) A
< Al HAmax [E @ —a) [ AL E L (145)
Hence,
[Allsr = (Al +1 Al
< H A ||L +Amax || = HL +(b_ a) H A ”LH E ||L +Amax (146)
Proof: [Proof of Lemmd[b]
|ErecA(Uo,9(Y)) — FEpgeA(Uo,g(

= ’/dF (/Axg ) fyie(y dy)
- [ar@) ([ At st )|

- ‘ / dF (z)A(z) — / dF (z)A(z)

’/A(x)d (F - 13') (x)

| Allse B (P.P) (147)

| Z 11t +Amax) 8 (P, P)

IN

< (MA Iz +Amax [ 22+ —a) [ Al

where, [1417) follows from the fact that(x) is a bounded Lipschitz function as shown in Proposifibn Ind¢e
asf3 (P, P) — 0 we have| EracA(Us, g(Y)) = EpgoA(Uo, g(Y))| = 0.

Proof: [Proof of Lemmd 6]

|EpagcA(Uo, g(Y)) — ErgcA(Uo, g(Y))|

= NziA:)/aal (/A (', 9(v) fyix=uw ) Z P2 (a;) (/ ai,g(y))fyx_ai(y)dy> (148)
= Z /dy (/ fyix=w @)dF (W)A (u ) NZ(A: P2 (a; (/ ai,g(y))fnx_ai(y)dy)
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Equality in [I48) is due to application of Fubini's theoreHence,

|EpagcA(Uo; 9(Y)) = ErgcA(Uo, g(Y))|

N(A)
< Z / dy ( / Frix e (W)AF () (A (s, <>>+A<A>>>— > P < / A(ai,g<y>>fY|X_ai<y>dy)

N(A)
oS / dy (A (s, (/ Fo (W) AF )) ZP%»(/ A g(0) oo (1)
(149)
N(A) a;
<|x [ (8 @109 + 7)) (Frixma ) +0) (/ | dF(u’>>—
N(A)

Z P*(a;) (/A (i 9(Y) fy|x=a; (Y )dy>

N(A)
< A(ai, 90)) Frixea, @)y + | €@)A (ai, 9(3)) dy + MA) | Fyix—a; (y)d
_(/ )[/ oo )y + [ WA (@i 9) dy +A) [ Frixa o)y
N(A)
+XA) [ e(y)dy — PA(a; A (a4, Ty x=a, (v)d (150)
( )/ (y)dy ; ( )(/ (@i, 9(¥)) fy|x=a; (¥) y)”
NQA) [ ra,
<X ( / dF(u’>> [ [ s 90) frx-a,
+ [ e (@9 dy+ ND) [ Fyixma )y +XB) [ o)y
N(A)
-y P (f A(ai,g<y>>fY|X_ai<y>dy)]} (151
N(A) a
- Z(/ dF(u’>> J RN L RN
N(A)
= | X (e - Fla) [/ (A (a1, 9(0) -+ AD) + D)
< / Z ¥) PA(w)dy + (\(A) + A(A)a)
< e+ (MA) + AA)ES)
= EANmax +FA(A) (1+E€A)
Hence,

Aiglo |EpagcA(Uo,9(Y)) = ErgcoA(Us, g(Y))| =0 (152)
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APPENDIX VII
PROOF OFTHEOREMI[G
In preparation of Theoref 6 we start by presenting the prédfeonmal3 and Theorem L1  Proof: [Proof
of Lemma[3]

n—k
1
Dy (2™) = mlnE 5k Z A Xo, (Y_k))
g " i=k+1
1 n—k i+k
N mm/n—2k > Mg () T frixze (wdu (153)
g i=k+1 l=i—k
i+k
= mmn_zk Z /A 2,9 (TR) T frix=e (u)dy (154)
i=k+1 l=i—k
2%k+1 F%] 1
- mln Z/ A (Z(2h41) k415 (155)
2k+1 L= 0
_ ] 3(2k+1)+i+2k
9 (ngllzii;i;”k)) H Jy | x=a,(y1)dyr
=5 (2k+1)+4
2k+1 " §§+{ 11
min Z/ n—2k A(Ij(2k+1)+k+17 (156)
g 2k—|—1 2kf1 = 0
§(2k+1)+i+2k
j(2k i+2k
9 (ngkﬁgifg )) H Jy1x =2, (y1)dyr
1=5(2k+1)+i
2k+1 ne=2h o1 (2k4+1) k144
2 A (z; 157
= 2k+1zg1/ JZ:% (s, (157)
§(2k+1)+i+2k
[(2k+1) 42k
9i (yﬁ%j;l;ii )) H fy 1 x =2, (y1)dyr
I=7(2k+1)+i
| 2k
= a1 2 Delem 158
1 2 D) (158)

[ |
Propositiorill, Lemmds 5 afidl 6 are extendible to th&iorder equivalents with the proofs carrying over directly
from the symbol-by-symbol case. We hence merely state thenas for thek™-order case and proofs are left out

in this discussion.

Proposition 2: A(z) = [A (z,g (v*,)) Hf}k fy|z: (yi)dy" . is a bounded Lipschitz function for any measur-

ableg : [a, b))%+ — R.
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Lemma 10:For anyF, F € Fletlk measurablg : R+ — [4,b] and a bounded Lipschitz loss function with
By A, g(YF)) < o0, Vu,

|ErscA(Uo, 9(Y™)) = EpgcAUo, g(YS))]
S (AL FAmax 1 ENF B —a) | ALl E (|} +Amax) B (P, 15)

where P and P are the laws associated wifii and £’ and 3 is the usual3-metric

| = |/% is the k" order Lipschitz norm of the channel.

2k+1
If= sup =2 (159)
0<A<(b—a) A

(1]

and{,a is as defined in[(38).

Lemma 11:For anyA > 0, F € Fl*k with the associated measuPe P~-F € FAF, measurablg : R2*+1 —

[a,b] and a continuous bounded loss function with,  A(u, g(Y*,)) < o0, V u,

|Epargo(Uo, g(Y5)) = EracA(Uo, g(YE))| < €8 Amax + A(A) (1+ €21

These are then used to bound the deviation of the cumulaisgeihcurred by the proposed denoiser for each of
the 2k + 1 subsequences from the minimum possibfeorder sliding window loss for that subsequence. We now,

state thek"-order equivalent of Theoref 4 for each subsequence.

Theorem 11:Forallm > 1,k >1,¢ >0, p€ (0,1), § >0, A > 0, andz™ € [a, b]k+1)m

Pr (|L gms.an (2™, Y™) — Dip(2™)] > 3€ + 56 Amax + 463 Apnax + 4N(A) (1 + )
S |Q§A| e—G(6+5Amax7AmaX)m + e_(l_p)mT‘h% + e_(l_p)mT’yg (160)

for all mhk > my (C,p, 6, K)

where,
€

TN e 21 40— ) [ AT E [ A
andG, G} , are as defined in Theorelm 6.
Proof: The proof of this theorem carries over directly from the grobTheoreni4 using Propositidd 2, Lemmas
10,11 andT.
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Proof: [Proof of Theoreni 6]

LXn,g,A’k(.an, Yn) — Dk (In) =

1 2k+1 1 2k+1
LXn,(;,AYk(ZCn,Yn) — 2]€——|—1 ; Dk(ilfnl) + Qk——i-l ; Dk(Inl) - Dk('rn) (161)
From LemmdB, we have
1 2k+1
L)”(nygyA,k(.Tn,Yn) — Dk(xn) S L)”(nygyA,k(.Tn,Yn) - 2]{} T 1 ; Dk(xnl)
1 2k+1 1 2k+1
= 2k——|—1 ; LXni,é,A,k(l' l,Y 7’) - 2I€—|— 1 ; Dk((E 1')
1 2k+1
S oy O [gnas @™, Y™) = Die™)] (162)

=1
Hence,

Pr(Lgnsan(a™Y"™) = Dp(a™) > 3€ + 50 Amax + 463 Amax + 4A(A) (1 +£X1Y))

2k+1
1 o .
S Pr <2k 1 ; |L)~(ni,5,A,k(,T 7',Y ") - Dk(l‘ )| > 3e + 55Amax + 4§Z]€+1Amax + 4A(A)(1 n gik‘i’l))

<Y Pr(|Lgnasan(@™,Y™) = Dp(a™)] > 3¢+ 56Amax + 463 Amax + 4M(A) (14 €21))

(ozt) (iR g 2k
< (2k + 1)|GE | | e Clerhmahnn) it 4 o~ (7P ke | o (170 2wk

This is true by applying Theorem111 to tBé + 1 subsequences of independent supersymbols with at @gﬁ(
supersymbols in each of them. Also, the cardinality of teo$all possible propose2lk + 1-length sliding window
denoisers is bounded by the cardinality of the set of all ipbssjuantizedk™-order probability mass functions,

SO A A2k+1
Pt e, |Gial < (3 +1] :

APPENDIX VIII

PROOF OFTHEOREMI[8|

The following claim is necessary for the proof of Theorgm 8.

Claim 1:
lim min EA (Xo,9 (Y5,)) =D (Fx,C)

k—oco g
The claim results from the following lemma.

Lemma 12: « Fork,l >0, EU (FXolYik) is decreasing in botk and!.
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« For any two unboundedly increasing sequences of positeegéns{k,}, {l.},

lim BU (Fy, iy ) = U (Fxypy=, ) (163)

n—oo
Equipped with Lemm&2, the proof for Claim 1 is very similarthat of Claim 2 in [36] but we, nevertheless,

present here for completeness.

A. Proof of Lemm&_12

Proof:
A direct consequence of the definition of the Bayes envel@pe is a concave function. Specifically, for two

distribution functionsF’ and G defined on[a, b], and«a € [0, 1],

U(aF+(1-a)G) = ixgi{lb] /6[ \ Az, 2)d (aF + (1 — a)G) ()

~ o min / oy @ RF @)+ (1 @A D67

> « min / A(z, 2)dF (z) +
#€la,b] Jye(a,b]

(1 - @) min /me[a ) Az, 2)dG(x)

Z€[a,b]

= ol (F)+ (1 - U (G)

where the first equality follows from the fact that the magpif — F f, F f = [ fdF, for a bona fide distribution
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function, is linear. Next, to show thatl/ ([F ®C]X|Y1k) decreases witl, observe that

BU( [F&C |y :/ U(IF & Clyyisr ) APy

Y2
Y_k Yi41
S/L u / (IF @ Clayyt, iy ) APy, | APy,
Yk Yi+1

2 Fytrx—adFx (a) . o
N /ylk Yi+1 / fyl+1 Yipa Y2, Y,
/ U / / Fyii x—adFx (a) - .
B Y, vyl vyl
Yo yi1 le+1|YL le R h (164)
me'X adFX( @)
B /l u / / dlerl dFYik
Yok Yit+1
le+1|X dFX( )
:/ u / (/ dyip1| dFy:
vy, Y1 vl

fyik\x:adFX( a)
yL “ /a < Tyt )

—k

I
/ UIF & Clyy: dFy,
Yy

Yk
= B ([F&Clyyr )

where, the first inequality follows from the fact thtis a concave functional mapping. The definitior| Bf® C]X‘Y

is bona fide from the assumption that the family of conditlom@asures(, is absolutely continuous. Finally,

application of Fubini’'s theorem permits the change of oaféntegration to achieve the final inequality. The fact that

EU ([F ® C]XIYEJ) decreases witk is established similarly, concluding the proof of the fiteti. For the second

item, similar to the proof of Lemma 4 in [36], by the martingabnvergence theorem, we haﬁ%’\Yﬁ’zn — Fx|yee,

., implyingF’ Xyt A Fx|y=_. Using the convergence of random measures [20, Theorem6]16vé have
FXIYiT,;n f 4 Fxye_f,Vf € C}, the class of continuous positive valued functions with paot support. Here, the
notationF' f = [ fdF for any measurabl¢ and bona fide probability distribution functiof, In sectior TV, we have
imposed the condition of continuity of the loss functidn,and since the input alphabet space is restricted to a closed
compact intervala, b], we satisfy the conditionA € C}.. Hence, we havef’ Xyl A(,2) A Fxjye A(-, %),

v, &. Since A (-, %) : [a,b] X [a,b] — RT is a continuous mapping, ift, mingc a,b]fA(a:,:i:)dF(:z:) is also
a continuous mapping. Using the fact thitis a bounded mapping and the continuous mapping theorem [12]
U (Fypyn ) SU (Fxy=, ) andBU (Fy ) = BU (Fxjy=)-

kn
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B. Proof of Clainl

Proof: [Proof of Claim[1]

1 .
D(Fxn,C) = min PLyn (XY =050 min | BA (X, X ()
i=1"" @

= —Z min F[A(X;,2)|Y" =y"]dFyn
Rn Z€[a,b]

i=1 7 R"

= %ZEU (Fx,jyney) ZEU( olZp ) (165)

i=1
where the last equality follows by stationarity. Since byrmea[12,Ei/ ( Xo V= ) > EU (FXO‘chm), it follows
from (1638) thatD (Fx~,C) > EU (FXUIYS?,O) for all n and, thereforeD (Fx,C) > EU (FXO‘chm). On the other
hand, for anyk, 0 < k < n, Lemma12 and:(ES) yield the upper bound

D (Fx,C) < % 2%kU (Fx,) + Z Eu( oy )1 (166)
L i=k+1
B n—k

< % 2kU (Fx,)+ Y EU (FXMY,C,C)] (167)
L i=k+1

- %:%u (Fx,) + (n — 2k) EU (FXMYfk)} (168)

Considering the limit as — oo of both ends of the above chain yiellig Fx,C) < EU (FXo\Yfk)- Letting now
k — oo and invoking Lemma&-2 implie® (Fx,C) < EU (FXoIYS?,o)-

[
C. Proof of Theorerhl8
Proof: By definition of D(Fx,C) clearly
hnIggf ELgn (X™Y™) >D(Fx,C)
On the other hand, froni_(45), for arky
EDy(X") = EminEp gcA (X, g(Y5,))
g x
< minB | By oeA(X.g(Yh)]
= min EA(X, g(Y",)) (169)

g
where, the right sideX*, is emitted from the (unique) double-sided extension of theree Fx. Using the result
from equation[(169), we get
limsup EDy, (X™) <D (Fx,C) (170)

n—oo
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implying, by Theoreni]7 and bounded convergence, that

limsup ELg (X", Y") <D (Fx,C) (171)

n—oo v
and proving[(6B). To prové (64) assume stationary erg&did/e have established the continuity®f-gcA (Up, g(Y))
w.r.t F € Flobl in Lemmal® and it is easily extendible toin, ErgcA (Up, g(Y)). By the ergodic theorem and
continuity of min, ErgcA (Ug, g(Y)) in F € Flo-bl it follows from the representation if_(45) that

Dy (X) = lim Dy (X™) = min FA (Xo,9 (Y5)) a.s. (172)

n—oo

and by Clain{1,
D(X)=D(Fx,C) a.s. (173)

Thus, the fact thatimsup,,_, ., Dk, (x), V x € [a,b]* (recall proof of Corollary 1), combined with Theordmh 7,
implies
limsupLg, (X", Y")<D(Fx,C) a.s. (174)

n—r oo

On the other hand, by Fatou’s lemma and definitioDdfF'y, C)

E |limsupLgn (X", Y™)| >limsup EL . (X", Y")>D(Fx,C) (175)
n—oo univ n—oo univ
The combination of[(174) and (175) completes the proofa) (64 [ |
APPENDIX IX

COMPARISON TO THE DENOISER IN5]

Referring to Fig[B, each output alphabet is uniformly girmt to the same number of level®], as the input
(for Y € R, the end-intervals are greater than quantization step).di¥e label the set of quantization intervals at
the output as»® = {O4,---,0x} and let the quantization step size ke Corresponding to the channel output,
Y, let Z™ be the corresponding quantized version. Also,Aedlenote thel/ -level finite alphabet set at the input.

As a result of the quantization, we propose mapping/iteorder kernel density estimate at the outpﬁ(t;k,
to the corresponding probability mass functi@{;n, with mass at the quantized output alphabets in the follgwin

manner,
A]zen [y"] (Uﬁk) = / ;JC(yﬁk)dyik (176)
yik602k+l

where,v*, is the correspondingk + 1-tuple of the quantized levels. The channel conditionalsit&s also get

correspondingly mapped to af x M channel matrix that is formed using,

(i, j) = / Frioms(y)dy (177)
Y:Qa(y)=J

where@,(-) denotes a uniform quantizer with a quantization step aize
We compareQ”. [y"] (v*,) to Pk (v ), the k-th order distribution of the quantized output symbolsngsihe

notation in [5]. -
(vh,) = TEB ] (178)

pk
n — 2k

n
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The density estimatef”>*, we consider is the cubic histogram estimate. The histogrstimate is defined by

1 - 1[Y1€An]]

n = A(Any)

v y) = y € Apj,y € R¥FH (179)

where, P, = {A,;,j =1,2,---},n > 1 is a sequence of partitions ant},;'s are Borel sets with finite nonzero

Lebesgue measure. The sequence of partitions is rich ersugghthat the class of Borel setS({") is equal to
e < U Pm> (180)
n=1 m=n

where o is the usual notation of the-algebra generated by a class of sets. In particular, thé dubtogram

estimate is constructed when we consider sgis of the form,]‘[fﬁ1 [aikih, a;(k; + 1)h), k;'s are integersh

is a smoothing factor as for the kernel density estimaté #¥8)®Bnda;'s are positive constants sd;k;h € [a, b],

Vh, k;. The following result similar to that in Theorel 1, fof, defined in equatior{25), holds for histogram

density estimates.

Theorem 12:Assume that the sequence of partitidPs satisfies[(180). Consider

1) J, — 0 in probability asn — oo, for all sequences™

2) J, — 0 almost surely as — oo, for all sequences™

3) J. — 0 exponentially as: — oo, for all sequences”

4) For all A € B with 0 < AM(A) < oo, and alle > 0 there existsny such that for alln > ng, we can find
A, € o (Py) with A (AAA,,) < € and

sup limsup A U Ap; m cC|l=0 (181)

M >0all sets C of finite Lebesgue measure— oo

It is then true that 4= 3 = 2 = 1.

For the proof of this theorem, refer to [7] with the added dtiad of tightness imposed on the family of measures
associated with the channé,

The condition 4) in Theoref 12 translateslio,, .. h = 0, lim,,_,. nh% = co. It can be shown as in [7] that
they are necessary sufficient conditions for that specified))iin Theoreni_I2. By choosing the smoothing factor,
h to be a decreasing sequence of numbers that are all integetohs of the quantization step siae such that
nh® — oo is also simultaneously satisfied, we get the mapping in éougi78) to reduce to that in equatidn (178)

for the subsequences described in Sediibn V. This is becaeissplit the sequence™ into 2k + 1 subsequences
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whose2k + 1-length super symbols are independent so that we can ap@gréh_I2. Now,

Q) = [ RO, (182)
yk €02+
n—2k—i—1
B 1 f—2k+1 =11 {ij((zz:r;)l:H%eAnil}
- n 2k 1 (183)
yikeo%ﬂ[ 2k+1 -| i=0 /\(Aml)
1 g ]i}
= 7[71_%_1»_111‘[2 ok (184)
2kT1

If we mapped the finite input-continuous output chandelo II, the mapping in equatiof (¥8) would then reduce
to,

k
)*.. =arg min Qb (v*0) = > ] Wluyovy) P (uhy) (185)

PeFAk
v uk €A+ j=—k

where, F4* denote the space of all possidé-order distributions or. If we lift the constraints of the minimizer
being a bona fide element g%, we get the following candidate for the minimizer [n_(185)

k
Q];nl [Ulik} = ﬁ ZI‘ I:Zni,'l}lik:l H H_l (UJ,UJ) (186)

[W] vk j=—k
which is exactly the same a8, [2™] (u’ik) using equation (18) in [5], also given below.

k

1 , _

Ph [ur,] = FEEZEET] E r [z, 0k, ] H I (v, uy) (187)
2k+1 ok j=—k

Now, using the construction of the discrete denoiser in gopd50), for Q,»;, we get
gopt[Qm”i] (ylik) = arggélﬁA(vj)T[anl & C]U|y’jk

k
= argmin | A(a,2)- > I Fviomu; (W) Qani (UF, =uky) | ¢ (188)

acA uk €At yg=a |j=—k
which is exactly the same ag,[P] (yﬁk) in equation (16) in [5]. Hence, the proposed denoiser witidgram
density estimate of the output symbols and quantizatioagyiss the same denoising rule as that of [5] applied to

the 2k + 1 subsequences of the output sequeYite
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RMSE = 11.1782 RMSE = 7.842

Fig. 5. Row 1- left: Original image, right: Noisy image, = 20; Denoised Images using, Row 2- lek: = 1 right: K = 2; Row 3- left:
k = 4, right: £ = 6; Row 4- left: the scheme in [9], right: the scheme in [26]
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Fig. 6. Comparison of RMSE of the denoised image for variaustext lengths k

RMSEnoise = 38-802

——— PDF of clean data(histogram)
PDF of clean data (KDE)

PDF of noisy data (histogram)|]
PDF of noisy data (KDE)
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RMSE = 11.2839

Fig. 7. Row 1- left: Original image, right: Noisy image; Désed images using Row 2- left: symbol-symbol scheme, rigitmparison of
Distribution estimates for the symbol-by-symbol denoiser



Fig. 8.

Row 1- left: Original image, right: Noisy image; Désed images using Row 2- left: proposed scheme, right: BISBAG26]
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