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Abstract

We consider the problem of reconstructing a discrete-time signal (sequence) with continuous-valued components

corrupted by a known memoryless channel. When performance is measured using a per-symbol loss function satisfying

mild regularity conditions, we develop a sequence of denoisers that, although independent of the distribution of

the underlying ‘clean’ sequence, is universally optimal inthe limit of large sequence length. This sequence of

denoisers is universal in the sense of performing as well as any sliding window denoising scheme which may be

optimized for the underlying clean signal. Our results are initially developed in a “semi-stochastic” setting, where the

noiseless signal is an unknown individual sequence, and theonly source of randomness is due to the channel noise.

It is subsequently shown that in the fully stochastic setting, where the noiseless sequence is a stationary stochastic

process, our schemes universally attain optimum performance. The proposed schemes draw from nonparametric

density estimation techniques and are practically implementable. We demonstrate efficacy of the proposed schemes

in denoising gray-scale images in the conventional additive white Gaussian noise setting, with additional promising

results for less conventional noise distributions.

Index Terms

Universal Denoising, kernel density estimation, Quantization, Sliding Window Denoiser, Denoisability, Memory-

less Channels, semi-stochastic setting, discrete denoising.

I. I NTRODUCTION

Consider the problem of estimating a clean discrete-time signal (sequence){Xt}t∈T, Xt ∈ [a, b] ⊂ R, based on

its noisy observations{Zt}t∈T, Zt ∈ R, where{Zt} is the output of a corruption mechanism, a memoryless channel.

This problem finds applications in areas ranging from engineering, cryptography and statistics, to bioinformatics

and beyond. There is significant literature on particular instantiations of this problem, most notably for the case

where signal and noise components are real-valued and the noise is additive, most commonly Gaussian (cf. [9]
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and references therein). Solutions to this problem in [9] are based on wavelet-based soft thresholding and have

various asymptotic optimality properties under a minimax criterion. The scope of wavelet-based thresholding in

[9] has been extended beyond the additive white Gaussian case in [13], [1] where optimality is again established

in an asymptotic minimax sense. The soft-thresholding scheme proposed in [1] is among the few denoisers found

in the literature [13], [21] that are designed for the case ofa non-Gaussian corruption mechanism. Even in this

case, restrictions to additive noise and symmetry assumptions on the noise distribution are made in order to provide

asymptotic performance guarantees. For the case of a randomvectorY = X + Z, whereX is independent ofZ

(with known distribution). The Minimum Mean Squared Estimate (MMSE) of X is well-known to be given by

X̂ = ψ(Y ) = E{X |Y }. It was shown in [27] that, forZ ∼ N (µ,Σ), ψ(·) satisfiesψ(Y ) =
(Y −µ)−▽y ln fY (Y )

fY
,

wherefY (y) is the marginal density ofY , which can be learned from the noisy samplesY n = {Y1, · · · , Yn} of

Y . Using techniques for nonparametric density estimation in[7], an estimate offY (y), f̂Y (y), can be computed,

the (appropriate) gradient of which leads to the following estimate:

ψ̂(Y ) =
(Y − µ)− ▽y ln f̂Y (Y )

f̂Y
(1)

The authors in [27] also discuss expressions forψ̂(Y ) for a certain class of non-Gaussian noise distributions with the

corruption mechanism continuing to be additive. This leaves room for universal denoising schemes for continuous

valued data for a general class of noise distributions wherethe corruption mechanism is also arbitrary. Compression

based approaches pioneered in (cf., e. g., [25] and [10]), asdiscussed in [36], are provably sub-optimal and

suffer from non-practicality of implementation of optimallossy compression schemes. The wavelet-based Bayesian

estimation approach in [26], has demonstrated significant improvement in image denoising. However, despite much

recent progress, the problem of universal denoising for discrete-time continuous-amplitude data is still a largely

open problem of both theoretical and practical value. The problem is particularly relevant in new emerging areas as

microarray imaging [35], array-based comparative genomichybridization (array-CGH) [19] and medical imaging

[34], [17], [22], where parametric noise models that are currently used often fail to capture the true nature of the

noise.

Recently, universal denoising for discrete signals and channels was considered in [36]. The results of [36], and

the denoising scheme DUDE proposed therein, although attractive theoretically, are restricted in their practicality

to problems with small alphabets. This is a result of

• computational issues involved with collecting higher-order joint distributions from the noisy data.

• mapping an estimated channel output distribution to an estimated channel input distribution.

• count statistics being too sparse to be reliable for even moderately large alphabet sizes.

This leaves open challenges in the application of DUDE to problems like gray-scale image denoising. More recently,

a modified DUDE, using ideas from lossless compression, was presented in [24]. As discussed in that work, in spite

of circumventing some of the computational issues mentioned above, the approach leaves room for improvement

in the denoising performance. The problem was further extended to the discrete-valued input and general output

alphabet setting in [5]. This approach proposes quantization of the output alphabet space and proceeds on an a



3

similar line to that in [36], showing that there is no essential loss of optimality in quantizing the channel output

before denoising (insofar as learning the statistics of theunderlying data is concerned). In spite of its theoretical

elegance, this approach faces similar issues as the scheme of [36], limiting its scope of applications to small channel

input alphabets. The authors of [5], while conjecturing theneed for mild restrictions on the channel, suggest an

extension of the proposed scheme to the case where both the input and output alphabet space is continuous-valued

and general. The present work proposes an extension of the two-stage DUDE-like approach in [36], [5] to the case

of denoising for general alphabets. A natural extension would have been to quantize both the input and the output

space and apply a similar count-statistic based two-pass approach. The vast literature on nonparametric density

estimation (cf. [7] and references therein), however, points to the opportunity of extracting more reliable statistics

from the observed data, that would lead to better denoising (as measured under a specified loss function). We

do, however, maintain the sliding window approach of [5], [36] and show asymptotic universal optimality of our

schemes with increasing context lengths in the limit of large sequence lengths.

Recent developments in universal denoising in the particular context of images have also been reported in [4].

Their approach is based on local smoothing methods that makeassumptions on the underlying structure of the data

which are more relevant in image denoising due to the inherent redundancy of natural images. The consistency

results showed the convergence of the denoising rule to the conditional expected value of the clean symbol given

the noisy neighborhood sans the particular noisy symbol in question. There is potential to improve this result by

incorporating the information from the noisy pixel that is being denoised too, an approach at the heart of the

denoisers we present below. We establish the universal optimality of the suggested denoisers in a generality that

applies to arbitrarily distributed noiseless signals, arbitrary memoryless channels, and arbitrary loss functions (with

some benign regularity conditions).

The remainder of the paper is organized as follows. In section II, we discuss the problem setup and notations.

This is followed by a description of the technical results that are key to the construction of the denoisers in section

III. In section IV, we establish universality of a family of denoisers that we develop for the semi-stochastic setting,

in which the clean data is an individual sequence and providebounds on the difference between the performance

of this proposed family of denoisers and that of the best ‘symbol-by-symbol’ denoiser chosen by a genie with full

knowledge of the distribution (or probability law) of the clean data. Section V details an extension of this proposed

family of denoisers to a genie that can select the best sliding window scheme, of any order, with knowledge of the

underlying clean data. Section VI discusses the implication of the performance guarantees in the semi-stochastic

setting to the fully stochastic setting where the clean datais generated by a stationary stochastic process, rather

than an individual sequence. A slightly modified version of the proposed denoiser is shown to reduce to the scheme

of [5] when the underlying clean data have finite alphabet size. The proposed family of denoisers can, hence, be

seen as a natural extension of those in [5] to the current setting of denoising continuous valued symbols corrupted

by a continuous memoryless channel where the clean data components may take values in a continuum. In section

VII, we present some preliminary experimental results of applying the proposed schemes to denoising of gray-

scale images. We conclude in section VIII with a summary of some propositions for future research directions.
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Throughout this paper, we maintain the flow by stating the Theorems and Lemmas corresponding to the optimality

results in the main body of the paper relegating most of the proofs to the appendices.

II. PROBLEM SETTING AND NOTATIONS

Let x = (x1, x2, · · · ) be an individual (deterministic) noise-free source signal1 with components taking values in

[a, b] ⊂ R andY = (Y1, Y2, · · · ), Yi ∈ R be the corresponding noisy observations, also referred to as the ‘output of

the channel’ (corruption source). This setting, where boththe underlying clean sequence and the noisy sequence are

continuous valued, is the continuous-amplitude analog of the semi-stochastic setting discussed in [5]. The channel

is specified by a family of distribution functionsC = {FY |x}x∈[a,b], whereFY |x denotes the distribution of the

channel output symbol when the input symbol isx. Also, we denote the probability measure onR corresponding

to FY |x by µx. We make the following assumptions about the channel,

C1. A memoryless channel, which is to say that the componentsof Y are independent withYi ∼ FY |xi
.

C2. The family of measures,{µx}x∈[a,b], associated with the channel,C, is uniformly tight in the sense

sup
x∈[a,b]

µx([−T, T ]
c)→ 0 as T →∞.

This condition will be needed to guarantee that one can consistently track the evolution of the marginal

density of the noisy symbols at the output of the memoryless channel, regardless of the underlyingx, using

nonparametric Kernel density estimation techniques.

C3. The distribution functionsFY |x are absolutely continuous for allx ∈ [a, b] w.r.t the Lebesgue measure and

{fY |x} denotes the corresponding densities. This assumption is not crucial for the validity of our approach

but is made for concreteness in the construction of our schemes and the development of their performance

guarantees.

C4. The conditional densities of the channel form a set of linearly independent functions. This is equivalent to

the “invertibility” condition of [36] which ensures that, to any distribution on the input to the channel there

corresponds a unique channel output.

C5. The mapping, w.r.t a metric that will be detailed in section III, from the space of channel input distributions

to the corresponding channel output distributions is continuous. The precise analytical expression describing

this condition is discussed in Appendix I.

C6. The expected loss, for reasonably well-behaved loss functions (conditions L1-L2 listed subsequently in this

section), induced by two output distributions that are close (under the metric discussed in section III) is

continuous. Again, the analytical expression describing this condition is in the Appendix I.

The above, are rather benign conditions obeyed by most channels arising in practice, an example of this being

the most commonly addressed channel, viz., the Additive White Gaussian Noise Channel (AWGN). It is easy to

verify that even the multiplicative (non-additive) Gaussian channel with a finite variance and mean satisfies these

1throughout the paper we will be using the terms ‘signal’ and ‘sequence’ interchangeably
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requirements. In this case, the channel input (underlying clean signal) affects the variance of the channel. The fact

that the underlying clean signal takes only bounded values implies that the tightness condition, C2, is satisfied. In

fact, any additive noise channel with distribution functions that are absolutely continuous and the corresponding

densities (of finite mean and variance) satisfying conditions C4-7 (C7 discussed in Appendix I) will satisfy the

above requirements.

An n-block denoiser is a measurable mapping takingRn into [a, b]n. We assume a loss functionΛ : [a, b]2 →

[0,∞) and denote the normalized cumulative loss of ann-block denoiserX̂n, when the underlying sequence isxn

and the observed sequence isyn, by

L
X̂n(x

n, yn) =
1

n

n∑

i=1

Λ(xi, X̂
n(yn)[i]) (2)

whereX̂n(yn)[i] denotes thei-th component ofX̂n(yn). In addition to the constraints on the channel, we impose

some conditions on the permissible loss functions,Λ. We assume the loss function,Λ,

L1. to be bounded,i.e.,Λmax <∞ whereΛmax = supx,x̂∈[a,b]Λ(x, x̂)

L2. to be a bounded Lipschitz function. More formally, we require the Lipschitz norm,‖Λ‖L <∞. The Lipschitz

norm of the loss function, is defined as

‖ Λ ‖L= sup
0<∆<(b−a)

λ (∆)

∆
(3)

where,

λ(∆, x) = sup
y∈[a,b]

sup
x′:|x−x′|<∆

|Λ(x, y)− Λ(x′, y)| (4)

and

λ (∆) = sup
x∈[a,b]

λ (∆, x) (5)

In words, this condition necessitates continuity of the mapping that takes the estimates of the underlying

symbol to the corresponding loss incurred. We require that estimates of the underlying clean symbol that are

close together have corresponding loss values that are alsoclose to each other.

It can be easily verified that the commonly used loss functions ofL2, L1 norms satisfy the aforementioned condition.

Let F [a,b] denote the set of all probability distribution functions with support contained in the interval[a, b]. For

F ∈ F [a,b], we let

U(F ) = min
x̂∈[a,b]

∫

x∈[a,b]

Λ(x, x̂)dF (x) (6)

denote its ‘Bayes envelope’ (our assumptions on the loss function will imply existence of the minimum). In other

words, U(F ) denotes the minimum achievable expected loss when guessingthe value ofX ∼ F . Define the

symbol-by-symbol minimum loss ofxn by

D0(x
n) = min

g
E

[

1

n

n∑

i=1

Λ(xi, g(Yi))

]

(7)
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where the minimum is over all measurable mapsg : R → [a, b]. D0 (x
n) denotes the minimum expected loss in

denoising the sequencexn, using a time-invariant symbol-by-symbol rule. This can beattained by a “genie” with

access to the clean sequencexn. D0(x
n), which is the expected per-symbol loss of the optimal symbol-by-symbol

rule for the individual sequencexn, will be our benchmark for assessing the performance of the universal symbol-

by-symbol denoiser that we construct in the next section. The same benchmark was used also in [5]. This is slightly

different than the benchmark used in [36], which corresponded to a genie that can choose the best symbol-by-symbol

rule with knowledge not only of the individual sequencexn, but also of the noisy sequence realizationY n. The

latter is irrelevant for our current setting where each of the components ofY n will take on a different value, with

probability one. Forxn ∈ [a, b]n, define

Fxn(x) =
|{1 ≤ i ≤ n : xi ≤ x}|

n
, (8)

i.e., the CDF associated with the empirical distribution ofxn. Note thatD0(x
n) can be expressed as

D0(x
n) = min

g

∫

[a,b]

ExΛ(x, g(Y ))dFXn(x) (9)

whereEx denotes expectation when the underlying clean symbol isx, the expectation being over the channel noise

ExΛ(x, g(Y )) =

∫

Λ(x, g(y))fY |x(y)dy (10)

For F ∈ F [a,b], let F ⊗ C andEF⊗C denote, respectively, probability and expectation when the channel input

X ∼ F andY is the channel output. So that,

EF⊗CΛ(X, g(Y )) =

∫

[a,b]

ExΛ(x, g(Y ))dF (x)

=

∫

[a,b]

[∫

R

Λ(x, g(y))fY |x(y)dy

]

dF (x) (11)

Letting [F ⊗ C]X|y denote the conditional distribution ofX givenY = y underF ⊗ C, we have

min
g
EF⊗CΛ(X, g(Y )) = EF⊗CU

(
[F ⊗ C]X|Y

)
(12)

with U denoting the Bayes envelope as defined above. Lettinggopt [F ] denote the achiever of the minimum in (12),

we note that is given by the Bayes response to[F ⊗ C]X|y, namely,

gopt[F ](y) = arg min
x̂∈[a,b]

∫

[a,b]

Λ(x, x̂)d[F ⊗ C]X|y(x)

= arg min
x̂∈[a,b]

∫

[a,b]

Λ(x, x̂)fY |x(y)dF (x) (13)

In Lemma 12, we will establish the concavity ofU(F ), and minimizing this bounded (by our assumption of bounded

Λ) concave function over a closed compact interval,[a, b], guarantees the existence of the minimizer,gopt. Note

that from (9), (10) and (11) we have

D0(x
n) = min

g
EFxn⊗CΛ(X, g(Y )) (14)

whereFxn was defined in (8) and the minimum is attained bygopt [Fxn ]. Thus, only a “genie” with access to the

empirical distribution of the noiseless sequence could employ gopt[Fxn ].
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III. C ONSTRUCTION OFUNIVERSAL ‘SYMBOL -BY-SYMBOL’ D ENOISER ANDPRELIMINARIES

Fxn and, hence,gopt[Fxn ] are not known to an observer of the noisy sequence. The first step towards constructing

an estimate ofgopt[Fxn ] is to estimate the input empirical distribution from the observable noisy sequence,Y n,

and knowledge of the channel,C. We approach this problem by first estimating a function thattracks the evolution

of the ‘average’ density function according to which the noisy symbols are distributed. For an input sequence

xn, given the memoryless nature of the channel, the output symbols will be independent with respective distribu-

tions,{FY |x1
, · · · , FY |xn

} and have the corresponding density functions,{fY |x1
, · · · , fY |xn

}. The function we are

interested in estimating is

fn
Y (y) =

1

n

n∑

i=1

fY |xi
(y) (15)

which can be thought of as the marginal density,fn
Y , of the noisy symbols in the semi-stochastic setting wherexn

is the unknown deterministic sequence. The estimation of this function is done by exploiting the vast literature on

density estimation techniques [7], [6], the details of which are discussed in Subsection III-A below. Once we have

an estimatefn
Y = fn

Y [Y
n] for this function, we use it to estimate the input empirical distribution by

F̂xn [Y n] = arg min
F∈F

[a,b]
n

d







fn
Y ,

∫

fY |xdF (x)

︸ ︷︷ ︸

[F⊗C]Y








(16)

whereF [a,b]
n ⊆ F [a,b] denotes the set of empirical distributions induced byn-tuples with[a, b]-valued components

and [F ⊗ C]Y denotes the marginal density induced at the output of the channel by an input distributionF . That

is, every member,F (x), of F [a,b]
n is of the form

F (x) =
1

n

n∑

i=1

1(x≤xi) (17)

for somen-tuple,xn = (x1, x2, · · · , xn), with [a, b]-valued components. The norm,d, in (16) is defined as

d (f, g) =

∫

|f(y)− g(y)| dy (18)

The channel,C, induces a set of ‘feasible’ densities of the output noisy symbol corresponding to the family of

empirical distributions of the underlying clean sequence at the input of the channel. The density estimate,fn
Y , which

is constructed only from the noisy sequence,Y n, is oblivious to the set of achievable marginal densities and hence

could lie outside this set. It is thus natural to estimate theunobservedFxn by the member ofF [a,b]
n leading to a

channel output distribution closest to the estimated one,fn
Y . This is exactly the estimate in (16). The uniqueness

of the minimizer in (16) follows from the fact that the objective function being minimized is a norm-function and

hence convex, coupled with the linear independence assumption of the channel, C4. The assumption, C4, implies

a one-to-one correspondence between channel input and channel output distributions (i.e., “invertibility” of the

channel). Additionally, the search for the minimizer is conducted on a convex set of distribution functions,F [a,b]
n ,

resulting in uniquely achieving the minimizer or in other words, the candidate input empirical distribution estimate.
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A two-stage quantization of both, the support of the underlying clean symbol,[a, b], and the levels of the

estimate of its empirical distribution function,̂Fxn , is carried out to give the corresponding quantized probability

mass function that has mass points only at the quantized symbols.

Q1. The quantization of the interval[a, b] is depicted in Fig. 1 below. For a given quantization step size, ∆, the

Fig. 1. Quantization of the support of a distribution function, F ∈ F [a,b]

quantized symbols,ai in the interval[a, b] are constructed in the following manner.

For ∆ > 0, N(∆) = (b−a)
∆ , if m = ⌊ b−a

∆ ⌋, consider a family of vectors,

F∆ = {P∆ : P∆ =
(
P (a0), P (a1), · · · , P (aN(∆))

)
}

A∆ = {ai = a+ i∆, i = 0, · · · , N(∆)}

s.t.
N(∆)
∑

i=1

P (ai) = 1

else, define the family of vectors asF∆ = {P∆: P∆ =
(
P (a0), P (a1), · · · , P (aN(∆)−1), P (aN(∆))

)
},

A∆ = {ai = a+ i∆, i = 0, · · · , N(∆)− 1}, aN(∆) = b,
∑N(∆)

i=1 P (ai) = 1.

As indicated in Fig. 1, the probability mass function,P∆, that we propose is constructed by allocating the

mass of the distribution function,F , in any quantization interval (of length∆) to the higher end point in that

interval. More precisely,

P∆(ai) = F (ai)− F (ai−1) (19)

whereai’s as defined above and note that

P∆ (B) =
∑

ai∈B

P (ai)

with anyB ∈ B[a,b], B[a,b] is the Borel sigma-algebra generated by open sets in[a, b].
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Applying this quantization of the support of the underlyingclean symbol to the estimate,̂Fxn , we construct

now, the corresponding probability mass function,P̂∆
xn

P̂∆
xn(ai) = F̂xn(ai)− F̂xn(ai−1) (20)

where,ai ∈ A∆.

Q2. The quantization of the valueŝPxn is carried out using a uniform quantizer,Qδ

P̂ δ,∆
xn = Qδ(P̂

∆
xn) (21)

where,δ denotes the quantization step-size on the interval[0, 1].

This is primarily motivated by tractability of the proof of the asymptotic optimality results. But, it can also be

argued that any practical implementation of this proposed denoiser only has a finite precision representation of the

underlying clean symbol and the distribution function values itself. Analysis of the asymptotic optimality results

also lends itself nicely to viewing the distribution of the underlying clean symbol,̂Fxn , as the asymptotic limit

attained by its quantized, finite precision representation, P̂ δ,∆
xn . This is formalized in section III-C where we discuss

the precise convergence notion ofP̂∆
xn to the un-quantized probability measure.

The minimizer of the Bayes envelope in (13) is then constructed from the quantized probability mass function,

P δ,∆
xn ,asgopt

[

P δ,∆
xn

]

, wheregopt for the quantized clean symbol is,

gopt[P ](y) = arg min
x̂∈A∆

∑

a∈A∆

Λ (a, x̂) · fY |x=a(y) · P (X = a) (22)

A∆ is finite alphabet approximation of[a, b] corresponding to the quantization step size of∆. Note that we have

extended the definition ofgopt to accommodate the case whenP is not a valid probability, i.e.,̂P δ,∆
xn (it does not

sum up to 1). Equipped witĥP δ,∆
xn , the candidate for then-block symbol-by-symbol denoiser is now given by

X̃n,δ,∆[yn](i) = gopt

[

P̂ δ,∆
xn [yn]

]

(yi), 1 ≤ i ≤ n (23)

where,gopt is given in (22). We now proceed to discuss in detail the construction and consistency results of the

estimate,fn
Y , F̂xn and its quantized version,̂P δ,∆

xn .

A. Density Estimation for independent and non identically distributed random variables

We now obtain an estimatorfn
Y , for the function in (15) which depends onxn and therefore unknown to

the denoiser. Given the memoryless nature of the channel, the sequence of output symbols,Y1, Y2, · · · , Yn are

independent random variables taking values inR, having conditional densities,fY |x1
, fY |x2

, · · · , fY |xn
respectively.

A density estimate is a sequencef1, f2, · · · , fn, where for eachn, fn
Y (y) = fn(y;Y1, · · · , Yn) is a real-valued

Borel measurable function of its arguments, and for fixedn, fn is a density estimate onR. The kernel density

estimateis given by

fn
Y (y) =

1

nhd

n∑

i=1

K

(
y − Yi
h

)

(24)
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whereh = hn is a sequence of positive numbers andK is a Borel measurable function satisfyingK ≥ 0,
∫
K = 1.

TheL1 distance,Jn, is defined as

Jn =

∫
∣
∣
∣
∣
∣
fn
Y (y)−

1

n

n∑

i=0

fY |xi
(y)

∣
∣
∣
∣
∣
dy (25)

The choice ofL1 distance as elaborated by the authors in [7] is motivated by its invariance under monotone

transformations of the coordinate axes and the fact that it is always well-defined. Before proceeding to discuss

convergence results forJn, we present definitions of certain types of kernel functions, K, that are the backbone to

kernel density estimation techniques, [6].

Definition 1: The class of kernels,K s.t. ∀K ∈ K, we have
∫

K = 1

andK is symmetric about0 are calledclass 0 kernels.

Definition 2: A class skernel is a class 0 kernel for which
∫

|x|s|K(x)|dx <∞

and
∫

xiK(x)dx = 0

for all i = 1, · · · , s− 1. Most class 0 kernels are in fact class 2 kernels, the only additional condition being that
∫
|x|2K(x) <∞. However, nonnegative class 0 kernels cannot possibly of classs ≥ 3.

Theorem 1:Let K be a nonnegative Borel measurable function onR with
∫
K = 1 of classs = 2. Let fn

Y be

the kernel estimate in (24) andJn, the corresponding error as defined in (25). Consider

1) Jn → 0 in probability asn→∞, for some sequencex = (x1, x2, · · · )

2) Jn → 0 in probability asn→∞, for all sequencesx = (x1, x2, · · · )

3) Jn → 0 almost surely asn→∞, for all sequencesx = (x1, x2, · · · )

4) For all ǫ > 0, there existr, n0 > 0 such thatP (Jn ≥ ǫ) ≤ e−rn, n ≥ n0, for all sequencesx.

5) limn→∞ h = 0, limn→∞ nh =∞

Then, 5⇒ 4⇒ 3⇒ 2⇒ 1.

The following lemma is key to the proof of Theorem 1.
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Lemma 1: For any family of channel probability density functions,

{fY |x}x∈[a,b] onR, satisfying assumptions C1-C7, and any non-negative, integrable functionK, with
∫
K(x)dx = 1,

condition 4) in Theorem 1holds whenever

lim
n→∞

hn = 0 and lim
n→∞

nhd =∞ (26)

Proof: [Proof of Theorem 1]

The implication that 5⇒ 4 is proved in Lemma 1. Since clearly, 4⇒ 3⇒ 2 ⇒ 1, the proof of Theorem 1 is

complete.

B. Channel Inversion

The mapping in (16) projects the kernel density estimate of1
n

∑n
i=1 fY |xi

(y) to an estimate of the empirical

distribution,Fxn . This projection is such that it best approximates (in theL1 sense), the kernel density estimate

with a member in the set of achievable channel output distributions. From the construction offn
Y in (24), it is

clear thatfn
Y is a bona fide density onR. Additionally, from the construction of̂Fxn in (16), we see that for every

F ∈ F
[a,b]
n , [F ⊗ C]Y is also a valid density inR. Finally, from the definition of the norm,d, in (18), it is true that

for fn
Y and [F ⊗ C]Y being bona fide densities onR, 0 ≤ d (fn

Y , [F ⊗ C]Y ) ≤ 2, ∀, n. These facts, together with

the convexity ofF [a,b]
n show that the estimator in (16) is well defined. With the Levy metric defined as:

Definition 3 (Levy metric):The Levy distanceλ (F,G) between any two distributionsF andG is defined as

λ (F,G) = inf{ε > 0 : F (x− ε)− ε ≤ G(x) ≤ F (x+ ε) + ε for all x}

we have:

Theorem 2:For the estimator,̂Fxn defined in equation (16) we haveλ
(

Fxn , F̂xn

)

→ 0 a.s. for allx ∈ [a, b]∞

The proof of Theorem 2 is discussed in detail in the Appendix III.

C. Distribution-independent Approximation of the Estimate of the Input empirical distribution

In this section, we discuss the convergence notion ofP̂∆
xn to the law corresponding to the un-quantized distribution

function F̂xn .

Definition 4 (β metric): For any two lawsP andQ on S, f : S → R let
∫
fd (P −Q) :=

∫
fdP −

∫
fdQ, for

bounded
∫
fdP and

∫
fdQ, the Prohorov metric is defined as

β (P,Q) = sup

{∣
∣
∣
∣

∫

fd (P −Q)

∣
∣
∣
∣
:‖ f ‖BL≤ 1

}

where

‖ f ‖BL=‖ f ‖L + ‖ f ‖∞ (27)
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and

‖ f ‖L=:= sup
x 6=y

|f(x)− f(y)|

|x− y|
, ‖ f ‖∞= sup

x
|f(x)| (28)

Equipped with this definition, we now state the following theorem,

Theorem 3:

lim
∆→∞

β
(

P̂xn , P̂∆
xn

)

= 0 (29)

where,P̂xn denotes the law associated with the distribution functionF̂xn .

Proof: Follows directly from Lemma 2.

Lemma 2:For anyF ∈ F [a,b],

lim
∆→0

β
(
P, P∆

)
= 0 (30)

whereP is the law associated with distribution functions in the family F [a,b]. Particularly, theF and P∆ that

satisfies (30) is defined by,

P∆(ai) = F (ai)− F (ai−1) (31)

whereai ∈ A∆ andA∆ is the finite alphabet approximation of[a, b] discussed earlier.

In words, any empirical distribution of the underlying clean sequence is approximated arbitrarily well with a PMF

on the quantized set of points when the quantization is fine enough.

Next we discuss the mechanics of the construction of the denoiser, which has the density estimation and the

channel inversion steps as its core.

D. Implementation of the symbol-by-symbol denoiser

The implementation of the denoiser in the previous section involves a discretization of the density estimation

and the channel inversion steps. The discretized version ofthe kernel density estimate,fn
Y (y), in (24) is evaluated

at a set of discrete points,{y1, · · · , yN} . This gives anN -dimensional vector of the distribution function,pnY (y).

The “channel inversion” in (16) is also discretized using the estimate,pnY (y).

1) Fast kernel density estimation:The Kernel density estimation in (24) for a given kernel function,K, although

simple in construction, is faced with a significant computational burden for a brute-force computation ofO(Nn)

corresponding ton data points andN points {y1, · · · , yN} at which pnY (y) is evaluated. The computational

complexity can be greatly reduced by using FFT based methods[31]. Recently, there has been extensive work on

the use of fast gauss transform-based techniques [16] for reduction of computational complexity. These techniques

reduce the complexity fromO(Nn) toO(N+n). The cardinal factor in nonparametric density estimation procedures

is the choice of theoptimal bandwidth,h, in (24). There has been some recent work in [14] on using dual-tree

methods to derive fast methods for optimal bandwidth choicethat continues to maintain the complexity of this step

at O(N + n). ForN = O(n), this reduces toO(n).
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2) Channel inversion using linear programming techniques:In solving the channel inversion problem in (16),

we are looking for a vector in the probability simplex,F∆ = {P :
∑N(∆)

i=1 P (ai) , ai ∈ A∆}, for our candidate

distribution function,P̂ δ,∆
xn . The discretized version of (16) is given by,

P̂ δ,∆
xn = arg min

p∈F∆

N∑

i=1

∣
∣
∣
∣
∣
∣

pnY (yi)−

N(∆)
∑

j=1

fY |x=xj
(yi)Qδ (p (xj))

∣
∣
∣
∣
∣
∣

(32)

The objective function, being anL1-norm, is clearly a convex function (of the input distribution, p(·)) and the

candidate minimizer also resides in the convex subspace, viz., the probability simplexF∆. This can be easily

solved using well-studied linear programming algorithms in the broader area of convex optimization techniques.

The particular reformulation of the problem solved is of theform

P̂ δ,∆
xn = arg min

p∈F∆

N∑

i=1

εi

s.t. pnY (yi)−

N(∆)
∑

j=1

fY |x=xj
(yi)Qδ (p(xj)) ≤ εi

N(∆)
∑

j=1

fY |x=xj
(yi)Qδ (p(xj))− p

n
Y (yi) ≤ εi ∀i ∈ {1, · · · , N} (33)

The computational complexity of solving this problem usingthe popular interior point methods [2] isO((N +

N(∆))3) = O
(
(N + 1

∆ )3
)
= O((N +logn)3). This again, forN = O(n), reduces toO

(

(n+ logn)3
)

= O(n3).

The two-pronged quantization discussed in the previous section can be naturally built into the optimization

problem in (32) by searching in

Fδ,∆ =
{
Qδ(P ) : P ∈ F

∆
}

(34)

the set ofN (∆)-tuples with components in [0,1] that are integer multiplesof 1
δ

with point masses on the setA∆.

The formulation would then be

P̂ δ,∆
xn = arg min

p∈Fδ,∆

N∑

i=1

εi

s.t. pnY (yi)−

N(∆)
∑

j=1

fY |x=xj
(yi)p(xj) ≤ εi

N(∆)
∑

j=1

fY |x=xj
(yi)p(xj)− p

n
Y (yi) ≤ εi ∀i ∈ {1, · · · , N}

This channel inversion is at the heart of the denoiser in (22)and its simple formulation makes the scheme particularly

elegant and practically implementable. The estimate of theempirical distribution in (32) is then plugged into (22)

to finally give an estimate of the underlying clean symbol according to (23). The denoiser is described as Algorithm

1 below.

IV. PERFORMANCE GUARANTEES FOR THESYMBOL BY SYMBOL DENOISER

The main result of this section is Theorem 5 below, which establishes the universal asymptotic optimality of

our proposed symbol-by-symbol denoiser in (23) with respect to the class of symbol-by-symbol schemes. The
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input : Noisy sequenceyn, channelC

output: Denoised sequence,x̂n

FIRST PASS1

Density estimation step2

input : Noisy sequence,yn

output: Density estimate,fn
Y

Determine the optimal bandwidth from any one of the techniques discussed in [31], e.g., cross-validation3

Use techniques discussed in [14] forfast evaluation of (24)4

Channel inversion step5

input : fn
Y , Quantization resolutions,δ,∆

output: P̂ δ,∆
xn

Construct an LP (Linear Program) as in (33) and uselinprog (in MATLAB) or any complex program6

solver to solve it. Alternatively, use log-barrier methodsdiscussed in [3] to solve for the estimate,F̂xn

Use the quantization mapping in (20) to mapF̂xn to P̂∆
xn7

Then use a uniform quantizer with resolutionδ to get P̂ δ,∆
xn ← Qδ

(

P̂∆
xn

)

8

SECOND PASS9

input : Noisy sequence,yn, channelC, estimate of input distribution̂P δ,∆
xn

output: Denoised Sequence,x̂n

Use equation (22), (23) to denoise at every location,i10

for i← 1 to n do11

x̂i ← gopt[P̂
δ,∆
xn ](yi)12

end13

Algorithm 1: Symbol-by-symbol denoiser in Section III

predominant technical result leading to Theorem 5 is Theorem 4. We continue to restrict ourselves to the semi-

stochastic setting where the underlying clean sequence is an unknown, but deterministic, sequencex. The benchmark

performance for the clean sequence is the minimum possible symbol-by-symbol loss,D0 (x
n), defined in Section II.

Theorem 5 shows that our proposed denoiser,gopt

[

P̂ δ,∆
xn

]

, asymptotically (as the number of observations increases)

achieves that benchmark performance. This is achieved by bounding the deviation of the cumulative loss incurred

by gopt

[

P̂ δ,∆
xn

]

from the minimum possible symbol-by-symbol loss in Theorem4 for any block length,n. Hence

we show that,gopt

[

P̂ δ,∆
xn

]

performs essentially as well as the best possible symbol-by-symbol denoiser,D0 (x
n).

In preparation for Theorem 4 letFδ,∆, defined in (34), denote the set of probabilities with components in [0,1]

that are integer multiples ofδ (defined under Q2. in section III). Note that̂P δ,∆
xn ∈ Fδ,∆, whereP̂ δ,∆

xn was defined

in (21). Also, letGδ,∆ = {gopt[P ]}P∈Fδ,∆ denote the set of all possible denoisers that can be constructed from the
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members of the setFδ,∆ using (22). DefineG(ǫ, B) = 2ǫ2

B2 ,

αn (ε, δ,∆, ρ, γ) =

[
1

δ
+ 1

]∆ [

2e−G(ǫ+δΛmax,Λmax)n + e−(1−ρ)nγ2

2

]

+ e−(1−ρ)nγ2

2 (35)

ν (ε, δ,∆,Λ, C) = 3ǫ+ 5δΛmax + 4ξ∆Λmax + 4λ(∆)(1 + ξ∆) (36)

1−
ρ(ǫ, δ)

2
=

(

1−
6ǫ

δ

)2

(37)

where

ξ∆ = sup
x∈[a,b]

sup
x̂∈[a,b]

|x−x̂|≤∆

∫
∣
∣fY |x(y)− fY |x̂(y)

∣
∣ dy (38)

andλ(∆) is the moduli of continuity defined in (5). The Lipschitz norm, ‖ Ξ ‖L of ξ∆ is given by

‖ Ξ ‖L= sup
0<∆<(b−a)

ξ∆
∆

(39)

D0 (x
n) is the symbol-by-symbol minimum loss ofxn defined in (7).

Theorem 4:For all ǫ > 0, δ > 0, ρ = ρ(ǫ, δ), ∆ > 0 andxn ∈ [a, b]n let,

γ =
ǫ

(‖ Λ ‖L +Λmax ‖ Ξ ‖L +(b− a) ‖ Λ ‖L‖ Ξ ‖L +Λmax)

then, we have

Pr (|LX̃n,δ,∆(x
n, Y n)−D0(x

n)| > ν (ε, δ,∆,Λ, C)) ≤ αn (ε, δ,∆, ρ, γ) ∀ n s.t. nhn > n0 (C, ρ, δ,K) (40)

where,‖ Ξ ‖L is defined in (39) and the form ofn0 in (112). Note that the tightness condition on the probability

measures associated with the family of the conditional densities of the channel,C, guarantees thatn0 (C, ρ, δ,K) <

∞, ∀ρ ∈ (0, 1). Theorem 4 formalizes the fact that the probability of deviation of the cumulative symbol-by-symbol

loss,LX̃n,δ,∆(xn, Y n) from the minimum possible loss,D0(x
n) is exponentially small with the block lengthn.

Intuition behind the proof of Theorem 4

The benchmark for assessing the performance of the proposeddenoiser is the minimum possible symbol-by-

symbol cumulative loss,D0 (x
n). It has been shown in (14), that this is the minimum over all measurable mappings,

g : R→ [a, b], of the expected loss under the marginal density induced by the true distribution of the underlying clean

sequence. This has been further shown in (12) to be equal to the expected value of the Bayes envelope under the true

conditional empirical distribution of the underlying clean signal given the noisy observation. This true conditional

empirical distribution of the underlying clean signal is the quantity that is unknown to us. However, if we have an

estimate of this conditional empirical distribution that is in some sense “close” to the true conditional empirical

distribution and asymptotically is essentially “it”, we are on the right track. Since this is derived as a function of the

marginal empirical distribution of the underlying clean signal, all that is needed is, “closeness” of the estimate of

the marginal distribution of the underlying clean signal tothe true marginal empirical distribution. The almost sure
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convergence of the marginal density at the output of the memoryless channel gives us, through the mapping in (16),

an estimate of the input empirical distribution that weaklyconverges, as shown in Theorem 2, to the true empirical

distribution of the underlying clean signal. This then subsequently lends itself to the convergence of the expected

loss under the corresponding induced densities at the output of the memoryless channel. From (12) and (14), the

fact that we have well-behaved (satisfying conditions C1-C7) channel conditional densities,{fY |x}x∈[a,b], and loss

function,Λ (satisfying conditions L1-L2), we can bound the deviation of the expected value ofU
(

[F ⊗ C]X|Y

)

under the two corresponding induced densities.

The goal, eventually, is to bound the deviation of the cumulative loss,LX̃n,δ,∆ , incurred by the proposed denoiser

in (23) fromD0 (x
n) as a function of the block length,n. This is done by using Lemmas 5, 6 which formalize the

deviation bounds of the expected loss under densities induced by weakly converging distributions. Finally, Lemma

7 is used to bound the deviation of the empirical expected loss from the true expected loss. These Lemmas are

analogous (in spirit) to the corresponding ones, i.e., Lemmas 1, 2, 3 (for context length,k = 0) in the discrete-input,

general valued output setting in [5]. There are, however, subtle differences in the bounds and the requirements on

the channel, loss functions (C1-7, L1-2) that make it possible in this continuous valued setting. The combination

of these results is used to bound the deviation ofLX̃n,δ,∆ from D0 (x
n) in the proof of Theorem 4. Take now,

δ = δn,∆ = ∆n such thatδn ↓ 0,∆n ↓ 0 for all ǫ > 0 and
∞∑

n=1

αn (ε, δn,∆n, ρ, γ) <∞ (41)

For example,δn,∆n = 1
log n

would satisfy the above requirements of summability and growth for anyε > 0. With

the growth rates that satisfy the summability condition in (41) for αn (ε, δn,∆n, ρ, γ) let,

X̂n
ssuniv= X̃n,δn,∆n (42)

where the subscript ‘ssuniv’ stands for symbol-by-symbol universal denoiser. A direct consequence of Theorem 4

and the Borel-Cantelli lemma gives us the following main theorem that establishes universal asymptotic optimality

of our proposed symbol-by-symbol denoiser for any unknown individual underlying clean sequence,x .

Theorem 5:For all x ∈ R∞,

lim
n→∞

[

L
X̂n

ssuniv
(xn, Y n)−D0(x

n)
]

= 0 a.s. (43)

V. CONSTRUCTION OF THEUNIVERSAL DENOISER AND ITS PERFORMANCE GUARANTEES

In this section, we propose an extension of the symbol-by-symbol denoiser discussed in previous sections to a

2k+1-length sliding window denoising scheme, one that competeswith sliding window schemes. The performance

guarantees made in the symbol-by-symbol case also hold in the proposed extension. The first result of this section

is presented in Theorem 6, which assess the performance of our proposed scheme by showing that it does well
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relative to that of the best sliding window scheme of order2k+1, as would be chosen by a “genie” that knows the

underlying clean sequencexn. The main result of this section is Theorem 7, which establishes the strong universality

of our proposed sliding window denoiser, showing that it does essentially as well as any sliding window scheme, of

any order, as the length of the data increases, regardless ofwhat the underlying clean sequence may be. Theorem 7

will be shown to be a direct consequence of Theorem 6, analogously as Theorem 5 of the previous section followed

from Theorem 4.

A. Extension to competition with2k + 1-order sliding window denoisers

The scheme we propose is pictorially depicted in Fig. 2 below. The necessity for independence of the symbols in

k = 2

2k + 1 subsequences of supersymbols (each of length, 2k + 1)

k

Fig. 2. Schematic representation of the2k + 1-length sliding window denoiser

the density estimation procedure discussed in section III-A coupled with the memoryless nature of the channel is

the motivation for partitioning the problem into subsequences that are processed similarly, but separately. A2k+1-

tuple super-symbol is formed by jumping a length of2k + 1 to achieve the independence condition between the
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successive super-symbols. Note that there are2k + 1 such subsequences and each subsequence,i (counting in the

order of symbols in the sequence), consists of⌈n−2k−i−1
2k+1 ⌉, 2k+1-tuple super symbols. We label the subsequences

asxni , for 1 ≤ i ≤ 2k + 1. For a fixedn, each subsequencexni has the following super symbols,

xni =

{

x2k+i
i , x4k+1+i

2k+1+i, · · · , x
(⌈n−2k−1−i

2k+1 ⌉−1)(2k+1)+i+2k

(⌈n−2k−1−i
2k+1 ⌉−1)(2k+1)+i

}

This facilitates the extension of the ideas from the symbolsof the symbol-by-symbol denoiser to the super-symbol

of the 2k + 1 sliding window denoiser. Some definitions are in order before we set to investigate the optimality

results of the scheme. As in the symbol-by-symbol scheme, let fn,k
Y denote thekth order density estimate of the

noisy sequence of symbols and is computed exactly as in (24) excepty, Yi ∈ R
2k+1. DenoteF [a,b],k to be the set

of all probability distribution functions with support contained in the hypercube[a, b]2k+1. Let Dk(x
n) denote the

kth-order sliding window minimum loss and is defined as

Dk(x
n) = min

g
E

[

1

n− 2k

n−k∑

i=k+1

Λ(xi, g(Y
i+k
i−k ))

]

(44)

Note the similar definition of symbol-by-symbol denoisability in (7). As before,Dk(x
n) can be expressed as

Dk(x
n) = min

g
EFk

xn⊗CΛ(X, g(Y
k
−k)) (45)

whereF k
xn is thekth order empirical distribution of the source. Define further the sliding window denoisability of

the individual sequencex = (x1, x2, x3, · · · ) by

D (x) = lim
k→∞

lim sup
n→∞

Dk(x
n) (46)

where the limit exists by monotonicity. In words,D(x) is the loss of a genie who knows the underlying clean

sequence and can choose to denoise with the best sliding window scheme, of arbitrary order. Extending the definition

of kth-order minimum loss to a subsequence,xni as

Dk(x
ni ) = min

g
EFk

xni
⊗CΛ(X, g(Y

k
−k)) (47)

The mapping to the correspondingkth order input empirical distribution is given by

F̂ k
xn [Y n] = arg min

F∈F
[a,b]k

n

d










fn,k
Y ,

∫ k∏

i=−k

fY |xi
dF (xk−k)

︸ ︷︷ ︸

[F⊗C]kY










(48)

whereF [a,b],k
n ⊆ F [a,b],k denotes the set ofkth order (1 ≤ k ≤ ⌊n2 ⌋) empirical distributions induced byn-tuples

with [a, b]2k+1-valued components.̂P δ,∆,k
xn denotes thek-th order estimate of the input empirical distribution of the

source analogously defined as in the symbol-by-symbol case.The 2k + 1-length sliding window denoiser for each

of the subsequences,i, is given by

X̃ni,δ,∆,k[yn](j) = gopt

[

P̂ δ,∆,k
xni [yni ]

] (

yj+k
j−k

)

, j ∈

{

k + i, 3k + 1 + i, · · · ⌈
n− 2k − i− 1

2k + 1
⌉

}

(49)
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where thekth order equivalent of the denoiser in (22) is given by

gopt[P ]
(
yk−k

)
= argmin

x̂∈A
Λ(·, x̂)T [P ⊗ C]U|yk

−k

= argmin
x̂∈A

∑

â∈A

Λ (a, x̂) ·







∑

uk
−k

∈A2k+1:u0=a

[
k∏

i=−k

fY |x=ui
(yi)P

(
Uk
−k = uk−k

)

]





(50)

Let, Fk
δ,∆ denote the set of2k + 1- dimensional vectors with components in [0,1] that are integers multiples ofδ.

Note that,P̂ δ,∆
xni [z

ni ] ∈ Fk
δ,∆ for all zn. Finally, let Gkδ,∆ = {gopt[P ]}P∈Fk

δ,∆
and

X̃n,δ,∆,k = {X̃ni,δ,∆,k}1≤i≤2k+1 (51)

be our candidate for then-block 2k + 1-length sliding window denoiser. It is the sequence of2k + 1 denoisers

that operate individually on each of the subsequences. The cumulative loss incurred by this sequence of denoisers

is defined as

LX̃n,δ,∆,k =
1

2k + 1

2k+1∑

i=1

LX̃ni,δ,∆,k (52)

where,LX̃ni,δ,∆,k is the cumulative loss incurred by the proposed denoiser forthe ith- subsequence. The following

Lemma illustrates a rather intuitive fact, the average minimumkth order sliding window loss incurred by operating

on each of the subsequences is at most the minimumkth order sliding window loss for the entire sequence.

Lemma 3:For all n ≥ 1, k ≤ ⌊n2 ⌋,
1

2k + 2
Dk(x

ni ) ≤ Dk(x
n) (53)

B. Performance guarantees

In this section we present Theorem 7, wherein we demonstratethat, provided certain growth constraints on the

context lengthk, quantization step sizesδ, ∆ and width of the kernel density estimateh are satisfied, the cumulative

loss,LX̃n,δ,∆,k , incurred by the proposed denoiser asymptotically approaches the sliding window denoisability. The

growth constraints are specified at the end of this section. They are dictated by an exponential bound on the deviation

between the cumulative loss,LX̃n,δ,k,∆ andDk which we now develop.

Let

αn (ǫ, k, δ,∆, ρ, γ) =

[
1

δ
+ 1

]∆2k+1

· [A (k, ǫ+ δΛmax,Λmax) exp (−(n+ 1)G (k, ǫ+ δΛmax,Λmax))+

A

(

k,
√

1− ρ,
2

γ

)

exp

(

−(n+ 1)G

(

k,
√

1− ρ,
2

γ

))]

+ e−(1−ρ)
(n−2k)γ2

2(2k+1)
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where,

A (k, ǫ, B) = (2k + 1) exp

(
2ǫ2

B2

)

(54)

G (k, ǫ, B) =
2ǫ2

(2k + 1)B2
(55)

and

ν (ε, δ,∆,Λ, C, k) = 3ǫ+ 5δΛmax + 4ξ2k+1
∆ Λmax + 4λ(∆)

(
1 + ξ2k+1

∆

)
(56)

We now state the analogue of Theorem 4 in the present setting,which bounds the deviation of the cumulative

loss incurred by the proposed2k + 1-length sliding window denoiser from the minimum possibleDk (x
n). Note

that here,x ∈ [a, b]2k+1 andY ∈ [a, b]2k+1 ( 2k + 1-tuple super-symbols) is the continuous valued output of the

memoryless channel.

Theorem 6:For all n ≥ 1, ǫ > 0, δ > 0, ρ = ρ(ǫ, δ) defined in (37),∆ > 0, 1 ≤ k ≤ ⌊n2 ⌋ andxn ∈ [a, b]n

Pr (LX̃n,δ,∆,k(x
n, Y n)−Dk(x

n) > ν (ε, δ,∆,Λ, C, k)) ≤ αn (ǫ, k, δ,∆, ρ, γk) ∀ n s.t nhkn > nk (C, ρ, δ,K)

(57)

where,

γk =
ǫ

(
‖ Λ ‖L +Λmax ‖ Ξ ‖kL +(b− a) ‖ Λ ‖L‖ Ξ ‖kL +Λmax

) (58)

‖Ξ‖kL (the kth order equivalent of‖Ξ‖L in (39)) andnk (C, ρ, δ,K) are defined in (159) and (110) respectively.

Take now,k = kn, δ = δn and∆ = ∆n such thatkn →∞, δn ↓ 0, ∆n ↓ 0,
∞∑

n=1

αn (ǫ, kn, δn,∆n, ρ, γkn
) <∞

andnk (C, ρ, δ,K) <∞. With growth rates that satisfy these conditions let,

X̂n
univ = X̃n,δn,∆n,kn (59)

For example, it can be verified that unbounded increasingkn = log (log(n)), hn = 1
log(n) , δnkn → 0,

(

δn,∆n = 1
log(n)

)

satisfies the requirements for a family,C, that hasδ2kn+1
∆n

→ 0 and loss functions that haveλ (∆n) δ
2kn+1
∆n

→ 0.

Particularly for additive Gaussian noise channels of finitevariance, squared and absolute loss functions with the

aforementioned growth rates ofkn, ∆n, δn satisfy the conditions ofλ (∆n) δ
2kn+1
∆n

→ 0 andδ2kn+1
∆n

→ 0.

We now have the following result as a direct consequence of Theorem 6 and the Borel-Cantelli Lemma.

Theorem 7:For all x ∈ [a, b]∞

lim
n→∞

[

L
X̂n

univ
(xn, Y n)−Dkn

(xn)
]

= 0 a.s. (60)

In fact, we can go a step further and show that thelim sup of the cumulative loss incurred by the proposed denoiser

is bounded by the sliding window denoisability. Specifically,
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Corollary 1: For all x ∈ [a, b]∞

lim sup
n→∞

[

L
X̂n

univ
(xn, Y n)−D(x)

]

≤ 0 a.s. (61)

which is a corollary of Theorem 7, proved similarly as corollary 1 in [5].

C. Computation complexity of the proposed denoiser

Let us summarize the computational complexity of the proposed denoisers: the “symbol-by-symbol” and thekth

order extensions. For the symbol by-symbol denoiser, we have already covered the analysis in Sections III-D.1,

III-D.2. For Xn
univ defined in (59), we have:

a) Symbol-by-symbol scheme:

1) Fast Kernel Density Estimation,O(n)

Using the techniques of fast kernel density estimation in [29], [28], [23], [14] it was shown that the complexity

can be reduced fromO(n2) to O(n).

2) Channel Inversion,O
(
n3
)

The polynomial complexity of the simplex approach in linearprogramming problems is discussed in detail

in [2].

b) kth order sliding window scheme:

1) Fast Kernel Density Estimation,O (n)

As before, the complexity of the denoiser continues to be linear in the length of the data,n and the context

length,k, i.e.,O (nkγ) γ > 0 [14].

2) Channel Inversion,O
(
n6k
)

From the fact that the dimensionality of the contexts is length 2k, the channel inversion now increases in

complexity exponentially and is given byO
(
n6k
)
. Thus, our schemes are practical for small values ofk, but

become unrealistic to implement ask grows.

This lead to our follow up work in [33] that uses quantized contexts in conjunction with the (low complexity)

symbol-by-symbol denoiser that asymptotically (with increasing levels of quantization of the contexts) achieves

the performance of the sequence of denoisers proposed here.

VI. U NIVERSALITY IN THE STOCHASTIC SETTING

Our results also imply optimality for the stochastic setting when the source (clean signal) is a stationary stochastic

process with distributionFX. For the pair(FX, C), define the denoisability,D(FX, C), as

D(FX, C) = lim
n→∞

min
X̂n

EL
X̂n (Xn, Y n) , (62)

where the expectation is assumingXn are the firstn symbols emitted by a source with distributionFX andY n is,

as before, then-tuple of output noisy symbols from the channelC that corruptsXn. This is achieved by a “genie”
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that has access to the true distribution,FX, of the underlying clean signal,X. It has been shown in [36], [5] that

the limit in (62) exists and hence the denoisability,D(FX, C), is well-defined for every stationaryFX.

We now state the main result for the stochastic setting wherein we establish that for any stationary underlying

clean sequenceX ∼ FX, the expected cumulative loss incurred by our proposed scheme asymptotically achieves

the denoisability,D (FX, C).

Theorem 8:For all stationaryX

lim
n→∞

EL
X̂n

univ
(Xn, Y n) = D (FX, C) (63)

If X is also ergodic then

lim sup
n→∞

L
X̂n

univ
(Xn, Y n) = D (FX, C) a.s. (64)

Given the results established for the semi-stochastic setting, the proof is analogous to that of Theorem 3 in [5]

except for some subtle differences in our setting due to the continuous input and output alphabets. We, however, do

provide the proof of the above statement for completeness and for accommodating these differences in Appendix

VIII.

We conclude this section by comparing the proposed sequenceof denoisers to the DUDE-like schemes in [5]

for the case of finite input (or underlying clean data) and continuous valued output (noisy data) . By a minor

modification, the proposed denoiser collapses to that in [5]when, as in the setting onf [5], the channel input

alphabet is finite. This is illustrated by comparing the firstpass of the DUDE-like denoiser with a modified version

of the proposed scheme through the schematic representation in Fig. 3. The theoretical details of the equivalence

of the modification shown in Fig. 3 below to the denoiser in [5]are elaborated in Appendix IX.

VII. E XPERIMENTAL RESULTS

In this section, we discuss experimental results of applying the proposed scheme to denoising 256-level gray scale

images. We demonstrate efficacy of the scheme with results ofits application to cases of additive and multiplicative

Gaussian noise. In addition, we consider a highly nonlinear, non-conventional noise distribution: a locally varying

Rayleigh noise whose variance is a function of the gray levelof the underlying clean image. The first pass of the

denoiser is performed using a Fast Kernel Density Estimation approach proposed in [15] and a channel inversion

procedure. This channel inversion is performed using a convex optimization linear programming technique that maps

the outputkth-order density estimate to the corresponding inputkth-order input empirical distribution in accordance

with (48). The experimental results presented in this section have been obtained by implementing the scheme

of the previous sections, with no heuristic modifications that are likely to boost the performance. The practical

implementation aspects are discussed in greater detail anddepth in [32], [33].

The first example we consider is, denoising of the boats imagethat is corrupted by an additive white noise

channel (AWGN) with,σ = 20. The loss function,Λ, to be minimized in this case is the squared error between the

true clean image and our denoised estimate. The denoiser in this case is a mapping fromR → A = {0, · · · 255}
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Fig. 3. Modification to our proposed scheme that is equivalent to that in [5]

and reduces to that in (50). Results of the proposed denoising scheme are shown in the Fig. 5 below with context

length,k, ranging from 1 to 6. The context (fork > 1) around any location,i, in the block of noisy data are 2D

neighborhoods. The 2D contexts for various values ofk are shown in Fig. 4 below. As is evident from both, the

reported Root Mean Squared Error (RMSE) figures and the perceptual quality, we are able to achieve improved

denoising performance with increasing context lengths. Finally, we compare the results of the proposed scheme

to that achieved by wavelet-based thresholding scheme [9] and Bayesian Least Squares Gaussian Scaled Mixture

(BLS-GSM) denoiser in [26]. Increasing context lengths,k, translates to accruing increasingkth-order statistics

from the finite block length data. This is the classic trade-off between increasing context lengths and reliability of

the associated higher order statistics is seen in Fig. 6 where we see only marginal gains in the RMSE between,

k = 4 and k = 6. The results for the AWGN case are primarily aimed at demonstrating the practicality of the

proposed scheme fully acknowledging the performance lead of schemes like the BLS-GSM that are particularly

catered to the problem of denoising in the case of AWGN channels. The benefits of the proposed approach are in

fact highlighted in unconventional cases like nonlinear noise channels which will be discussed next.

Another example of the application of the proposed scheme isin denoising an image corrupted with an uncon-
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Fig. 4. 2D Contexts for context length,k

ventional distribution as discussed earlier in this section. More specifically, we simulate the noisy image by using

a gray-level dependent Rayleigh distribution (with probability density function,f(x) = x
b2
e

−x2

2b2 ) whose variance

parameter,B, is chosen as a function of clean image’s gray level at that location. In this particular example, we

generate a matrix of 256x256 Rayleigh distributed random variables whose parametersB are chosen according to

the following rule,B(i, j) = I(i, j)∗35/256, whereI(i, j) is the true value of the clean image at location(i, j). We

will discuss the denoising performance only in the symbol-by-symbol case in this setting in favor of succinctness

to convey the point of efficacy of the proposed scheme. More detailed results and discussions on this problem

setting can be found in [32]. We compare, in Fig. 7, the empirical distribution estimate,̂Fxn , of the underlying

clean image with the histogram generated from access to the “true” clean image. We also compare these results to

the smoothed histogram estimate of the true clean image thatwas produced using the Kernel Density estimation

approach in [15]. From a visual inspection of the figure, it isevident that we are able to reasonably recover the true

marginal empirical distribution of the underlying clean image and correspondingly the estimate of the true image.

Finally, we present the results of denoising the boats imagethat is corrupted by a multiplicative Gaussian noise

with a distribution,N (1, 0.2) in Fig. 8. The noise in this case literally multiplies this case literally multiplies the

original clean image to corrupt it and as such, the effects are relatively more catastrophic. We compare, qualitatively,

the results from the proposed denoiser with that of [26] to validate its efficacy.

VIII. C ONCLUSION AND FUTURE DIRECTIONS

We have presented a family of schemes for denoising continuous amplitude signals that is universally optimal. A

salient feature of our setting and results is the wide generality of channels and loss functions for which they apply.

The techniques presented in this paper draw from the “DUDE framework” in [36]. A weighted ‘context aggregation’

was suggested in [36] as an approach to enhance the performance of the DUDE in the first pass of the statistics



25

collection. The proposed technique provides a natural context aggregation mechanism whereby neighboring contexts

in addition to the observed are weighted by the kernel in the density estimation step. The denoiser proposed in

[5] was shown to be asymptotically universal and extended the domain of applicability of DUDE-like schemes to

cases where the noise is continuous valued. This approach, even though elegant theoretically, suffers from some of

the same issues as the DUDE in terms of sparseness of statistics for large alphabet sizes. Our technique addresses

this problem for the problem setting considered in [5] by natural context aggregation induced by the kernel density

estimation. In the setting where the underlying clean signal is discrete-valued, taking values in a finite alphabet

space, a slight modification of our scheme has been shown to reduce to the scheme in [5]. We also simultaneously

provide a framework to address the case of continuous valuedalphabets, where there is need to learn distribution

functions instead of individual mass points as in the discrete-valued case. Finally, the proposed scheme is practical

and tractable in its computational requirements as demonstrated by the experimental results.

The experimental results in this paper seem promising enough to motivate further exploration of practical aspects

of the proposed scheme. This is an interesting future direction that is currently under investigation. Additional

directions of research include studying the applicabilityof recursive density estimation techniques discussed in [18]

in designing recursive denoisers as an alternative to the scheme presented in this paper. This would be particularly

useful in multidimensional data applications like denoising noise corrupted video. It could also be of theoretical

interest to understand the implications of a recursive structure to the denoiser and its associated optimality results.

APPENDIX I

CONDITIONS ON THE CHANNEL

In addition to conditions C1-C4 in section II, the followingconditions on the channel (noise distribution) round

up the necessary assumptions for the performance guarantees made in this work.

C5. The channel satisfies the uniform Lipschitz continuity condition,

sup
y∈R

‖fY |x(y)‖BL <∞ (65)

where

‖fY |x(y)‖BL = ‖fY |x(y)‖L + ‖fY |x(y)‖∞ (66)

‖fY |x(y)‖L = sup
x 6=z

x,z∈[a,b]

∣
∣fY |x(y)− fY |z(y)

∣
∣

|x− z|
<∞, ∀y ∈ R (67)

‖fY |x(y)‖∞ = sup
x∈[a,b]

fY |x(y) (68)

C6. The conditional densities, additionally, satisfy the following Lipschitz continuity condition,

‖ Ξ ‖L= sup
0<∆<(b−a)

ξ∆
∆

<∞ (69)

where,ξ∆ is defined in (38).

C7a. The family of conditional densities,C, have uniformly bounded second order universal derivatives, i.e.,∃ aBC

s.t. 0 < BC < ∞ andD∗
2

(
fY |x

)
< BC , ∀x ∈ [a, b], where the second order universal derivative is defined as
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(refer [6] for further details)

D∗
2

(
fY |x

)
= lim inf

h↓0

∫ ∣
∣
∣

(
fY |x ∗ φh

)(2)
∣
∣
∣ dy (70)

φh(x) = 1
h
φ
(
x
h

)
, φ ∈ C∞, C∞ is a set of functions that have infinitely many continuous derivatives with

compact support andf (s) denotes thes-th derivative off . This is a mild technical condition that enables

the proof of the convergence of marginal density estimates at the output of the memoryless channel to the

true marginal density. Note that we are not imposing the differentiability of the conditional densities of the

channel themselves. We are, instead, proposing a milder constraint that the smoothed version of the channel

conditional densities is “differentiable enough”. This condition is trivially satisfied if we have a family of

conditional densities that have a uniformly absolutely continuous derivative.

C7b. An alternative to the previous condition on the family of conditional densities of the channel is,lim|t|→0 ΩC(t) =

0, where

ΩC(t) = sup
x∈[a,b]

ωx(t) (71)

and

ωx(t) =

∫
∣
∣fY |x(y − t)− fY |x(y)

∣
∣ dy (72)

From the fact [37] that, for anyf ∈ L1(R), the corresponding,L1-modulus of continuity,

ω(t) =

∫

|f(x− t)− f(x)| dx→ 0, as|t| → 0

and

‖ω‖∞ ≤ 2‖f‖1 <∞

it follows that the globalL1-modulus of continuity,ΩC(t), is well-defined for allt and families of conditional

densities,C. In other words, this condition demands uniform convergence of theL1-moduli of continuity of

the individual members comprising the family of conditional densities.

APPENDIX II

PROOF OFLEMMA 1

A theorem necessary for the proof of Lemma 1 is as follows

Theorem 9: Every kernelK with
∫
K = 1,K ≥ 0 is an approximate identity, i.e forlimn→∞ hn = 0 and every

fi ∈ L1, s.t.D∗
2 (fi) <∞ are uniformly bounded we have

lim
n→∞

∫
∣
∣
∣
∣
∣

(

1

n

n∑

i=1

fi

)

∗Khn
−

(

1

n

n∑

i=1

fi

)∣
∣
∣
∣
∣
= 0

An alternate formulation of the approximation identity is the following,
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Theorem 10: Every kernelK with
∫
K = 1,K ≥ 0 is an approximate identity, i.e forlimn→∞ hn = 0 and

everyfi ∈ L1, s.t. lim|t|→0 ΩC(t) = 0

lim
n→∞

∫
∣
∣
∣
∣
∣

(

1

n

n∑

i=1

fi

)

∗Khn
−

(

1

n

n∑

i=1

fi

)∣
∣
∣
∣
∣
= 0

A definition regarding the notion of anassociated kernel,L, with the kernel,K that is necessary for the subsequent

proof is,

Definition 5: The functionL defined by

L(x) = (−1)s
∫ ∞

x

(y − x)s−1

(s− 1)!
K(y)dy (x > 0)

L(−x) = (−1)sL(x) (x < 0)

is the kernel associated with kernelK. The functionL is sometimes said to have a parameters since it figures in

the definition ofL. WhenK is symmetric,L is symmetric.

Furthermore,

∫

|L| ≤
1

s!

∫

|x|s|K(x)|dx (73)

for all nonnegative integerss. For s = 0, we defineL = K. ForK ≥ 0, we have the equality

∫

|L| =
1

s!

∫

|x|s|K(x)|dx (74)

Finally,

∫

L =

∫
xs

s!
K(x)dx

=







0 : s odd

0 : s even, and the order ofK is> s
(75)

Proof: [Proof of Theorem 9]

Let us start with the case thatfi hass− 1 absolutely continuous derivatives. Then, by Taylor’s series expansion

with remainder,

fi(x+ y)− fi(x) =
s−1∑

j=1

yj

j!
f
(j)
i (x) +

∫ x+y

x

(x+ y − u)s−1

(s− 1)!
f
(s)
i (u)du
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so that, for classs kernelsK,
(

1

n

n∑

i=1

fi

)

∗Khn
−

(

1

n

n∑

i=1

fi

)

=
1

n

∫
(

n∑

i=1

fi(x+ y)−
n∑

i=1

fi(x)

)

Khn
(y)dy (recall that

∫

K = 1)

=
1

n

n∑

i=1





s−1∑

j=1

0 +

∫ ∫ x+y

x

(x+ y − u)s−1

(s− 1)!
f
(s)
i (u)du Khn

(y)dy





=
1

n

n∑

i=1

[∫ ∞

x

f
(s)
i (u)

∫ ∞

u−x

(x+ y − u)s−1

(s− 1)!
Khn

(y)dy du

−

∫ x

−∞

f
(s)
i (u)

∫ u−x

−∞

(x+ y − u)s−1

(s− 1)!
Khn

(y)dy du

]

=
1

n

n∑

i=1

[∫ ∞

x

f
(s)
i (u)(−1)s(L)hn

(u− x)du

−

∫ x

−∞

f
(s)
i (u)(−1)(−1)s(−1)s(L)hn

(x− u)du

]

=
1

n

n∑

i=1

[∫ ∞

−∞

f
(s)
i (u) (L)hn

(x− u)du

]

=
1

n

n∑

i=1

hsf
(s)
i ∗ Lhn

(76)

where (L)hn
is the kernel associated withKhn

andL is the kernel associated withK. Therefore, by Young’s

inequality [30],
∫
∣
∣
∣
∣
∣

(

1

n

n∑

i=1

fi

)

∗Khn
−

(

1

n

n∑

i=1

fi

)∣
∣
∣
∣
∣
=

∫
∣
∣
∣
∣
∣

1

n

n∑

i=1

hn
sf

(s)
i ∗ Lhn

∣
∣
∣
∣
∣

≤
hsn
n

∫
∣
∣
∣
∣
∣

n∑

i=1

f
(s)
i

∣
∣
∣
∣
∣

∫

|L|

≤
hsn
n

(
n∑

i=1

∫ ∣
∣
∣f

(s)
i

∣
∣
∣

)
∫

|L| (77)

Sincefi’s have(s − 1) absolutely continuous derivatives,
∫
|f

(s)
i | < ∞, and further if

∫
|f

(s)
i | < M < ∞, ∀i

(uniformly bounded) the inequality in (77) simplifies to
∫
∣
∣
∣
∣
∣

(

1

n

n∑

i=1

fi

)

∗Khn
−

(

1

n

n∑

i=1

fi

)∣
∣
∣
∣
∣
≤ hsnM

∫

|L| (78)

Since,
∫

|L| ≤
1

s!

∫

|x|s|K(x)|dx = BK <∞ (79)

for K being an order s kernel, inequality in equation (78) becomes
∫
∣
∣
∣
∣
∣

(

1

n

n∑

i=1

fi

)

∗Khn
−

(

1

n

n∑

i=1

fi

)∣
∣
∣
∣
∣
≤ hsnMBK (80)
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Taking limit n→∞ on either sides, we get

0 ≤ lim
n→∞

∫
∣
∣
∣
∣
∣

(

1

n

n∑

i=1

fi

)

∗Khn
−

(

1

n

n∑

i=1

fi

)∣
∣
∣
∣
∣
≤ lim

n→∞
hsnMBK = 0 (81)

This can be extended to the generalfi’s using the universal derivative defined earlier. As a reminder,

D∗
s (fi) , lim inf

h↓0

∫ ∣
∣
∣(fi ∗ φh)

(s)
∣
∣
∣ (82)

where,φ is a mollifier.

Mollifiers are class 0 kernels, nonnegative and zero outside[−1, 1]. They also have infinitely many continuous

derivatives and is called amollifier because of its exceptional smoothing properties. An example of a mollifier is

K(x) = Ce
− 1

1−x2 , |x| ≤ 1 (83)

For a classs kernel,K, and a family of density functions{fi}i∈N with associated universal derivatives that are

uniformly bounded, i.e.,D∗
2 (fi) < BC <∞, ∀i ∈ N, it can then be shown that,

∫
∣
∣
∣
∣
∣

(

1

n

n∑

i=1

fi

)

∗Khn
−

(

1

n

n∑

i=1

fi

)∣
∣
∣
∣
∣
≤

1

n

n∑

i=1

∫

|fi ∗Khn
− fi|

≤
1

n

n∑

i=1

hsnD
∗
s (fi)

∫

|L|

≤
1

n

n∑

i=1

hsnBC

∫

|L|

= hsnBC

∫

|L| (84)

Taking limits on both sides we get,

lim
n→∞

∫
∣
∣
∣
∣
∣

(

1

n

n∑

i=1

fi

)

∗Khn
−

(

1

n

n∑

i=1

fi

)∣
∣
∣
∣
∣
= 0 (85)

Proof: [Proof of Theorem 10]

fi(x) = fi(x)

∫

Kh(t)dt =

∫

fi(x)Kh(t)dt, ∀i (86)

Therefore,
∣
∣
∣
∣
∣

(

1

n

n∑

i=1

fi ∗Kh

)

(x) −
1

n

n∑

i=1

fi(x)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∫
[

1

n

n∑

i=1

fi(x − t)−
1

n

n∑

i=1

fi(x)

]

Kh(t)dt

∣
∣
∣
∣
∣

≤

∫
∣
∣
∣
∣
∣

1

n

n∑

i=1

fi(x− t)−
1

n

n∑

i=1

fi(x)

∣
∣
∣
∣
∣
|Kh(t)|

1
p |Kh(t)|

1
p′ dt (87)
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where 1
p
+ 1

p′ = 1,
(

1
p′ = 0 if p = 1

)

. Applying Holder’s inequality with exponentsp andp′, and then raising both

sides to thepth power and integrating with respect to x, we obtain
∫
∣
∣
∣
∣
∣

(

1

n

n∑

i=1

fi ∗Kh

)

(x)−
1

n

n∑

i=1

fi(x)

∣
∣
∣
∣
∣

p

dx

≤

∫
[
∫
∣
∣
∣
∣
∣

1

n

n∑

i=1

fi(x− t)−
1

n

n∑

i=1

fi(x)

∣
∣
∣
∣
∣

p

|Kh(t)| dt

] [∫

|Kh(t)| dt

] p

p′

dx

= ‖K‖
p

p′

1

∫
[
∫
∣
∣
∣
∣
∣

1

n

n∑

i=1

fi(x− t)−
1

n

n∑

i=1

fi(x)

∣
∣
∣
∣
∣

p

|Kh(t)| dt

]

dx

≤ ‖K‖
p

p′

1

∫
[

1

n

n∑

i=1

∫

|fi(x− t)− fi(x)|
p |Kh(t)| dt

]

dx (88)

Changing the order of integration in the last expression (which is justified since the integrand is nonnegative), we

obtain

‖

(

1

n

n∑

i=1

fi

)

∗Kh −
1

n

n∑

i=1

fi‖
p
p ≤ ‖K‖

p

p′

1

∫

|Kh(t)|
1

n

n∑

i=1

ωi(t)dt

≤ ‖K‖
p

p′

1

∫

|Kh(t)|Ω(t)dt (89)

For δ > 0,

Ih =

∫

|Kh(t)|Ω(t)dt =

∫

|t|<δ

+

∫

|t|≥δ

= Ah,δ +Bh,δ (90)

Since, we haveΩ(t)→ 0 as |t| → 0, for η > 0, we can chooseδ so small thatΩ(t) < η if |t| < δ. Then

Ah,δ ≤ η

∫

|t|<δ

|Kh(t)| dt ≤ η‖K‖1, ∀h > 0 (91)

Also, Ω is a bounded function by Minkowski’s inequality [note that‖Ω‖∞ ≤ supi∈N ‖ωi‖∞ ≤ supi∈N (2‖fi‖p)
p,

which for p = 1, becomes‖Ω‖∞ ≤ 2], so thatBh,δ is less than a constant multiple of
∫

|t|≥δ
|Kh(t)| dt, which

tends to zero withh. This proves thatIh → 0 ash→ 0 and the theorem follows.

Another lemma necessary for the proof of Lemma 1 is the following.

Lemma 4: (A Multinomial distribution inequality)

Let N1, · · · , Nk be a multinomial random vector with parametersn, p1, · · · , pk. Then

P

(
k∑

i=1

∣
∣
∣
∣

Ni

n
− pi

∣
∣
∣
∣
≥ ǫ

)

≤ 2k+1e
−nǫ2

2 (92)

Proof

By Scheffe’s theorem,
k∑

i=1

∣
∣
∣
∣

Ni

n
− pi

∣
∣
∣
∣
= 2 sup

A

∣
∣
∣
∣

N(A)

n
− P (A)

∣
∣
∣
∣

(93)

where,A = {all 2k possible sets of integers from1, · · · , k} andN(A) is the cardinality ofA. By Bonferroni’s

inequality and Hoeffding’s inequality,

P

(

sup
A

∣
∣
∣
∣

N(A)

n
− P (A)

∣
∣
∣
∣
≥
ǫ

2

)

≤ 2k2e−2n( ǫ
2 )

2

(94)
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The expected value offn(x) is denoted by,

gh(x) = E(fn(x)) =
1

nhd

n∑

i=1

∫

K

(
x− y

h

)

fi(y)dy (95)

Proof: [Proof of Lemma 1]

Let gh be defined as in (95). By Theorem 1, it is enough to show that
∫
|fn(x)− gh(x)|dx→ 0 exponentially.

Let µn be the empirical probability measure forX1, X2, · · · , Xn and note that

fn(x) =
1

hd

∫

K

(
x− y

h

)

µn(dy) (96)

(97)

For givenǫ > 0, find finite constantsM,L,N, a1, · · · , aN and disjoint finite rectanglesA1, · · · , AN in Rd such

that the function

K∗(x) =
N∑

i=1

aiIAi
(x) (98)

satisfies:|K∗| ≤M,K∗ = 0 outside[−L,L]d, and
∫
|K(x)−K∗(x)|dx < ǫ. Defineg∗h andfn∗ asgh andfn

with K∗ instead ofK. Then
∫

|fn(x)− gh(x)|dx ≤

∫

|fn(x)− fn∗(x)|dx +

∫

|fn∗(x) − g∗h(x)|dx +

∫

|g∗h(x)− gh(x)|dx

≤

∫
1

hd

∫ ∣
∣
∣
∣
K∗

(
x− y

h

)

−K

(
x− y

h

)∣
∣
∣
∣
µn(dy)dx

+

∫
1

nhd

n∑

i=1

∫ ∣
∣
∣
∣
K∗

(
x− y

h

)

−K

(
x− y

h

)∣
∣
∣
∣
fi(y)dydx

+

∫

|fn∗(x)− g∗h(x)| dx

≤ 2ǫ+

∫

|fn∗(x)− g∗h(x)| dx

by a double change of integral. But, ifµ is the probability measure forf ,

∫

|fn∗(x)− g∗h(x)| dx ≤
N∑

i=1

|ai|

∫
∣
∣
∣
∣
∣
∣

1

nhd

n∑

j=1

∫

x−hAi

fj(y)dy −
1

hd

∫

x−hAi

µn(dy)

∣
∣
∣
∣
∣
∣

dx

≤
1

hd

N∑

i=1

|ai|

∫
∣
∣
∣
∣
∣
∣

1

n

n∑

j=1

µj(x − hAi)− µn(x − hAi)

∣
∣
∣
∣
∣
∣

dx (99)

Lemma 1 follows if we can show that for all finite rectanglesA of Rd

1

hd

N∑

i=1

∫
∣
∣
∣
∣
∣
∣

1

n

n∑

j=1

µj(x− hAi)− µn(x− hAi)

∣
∣
∣
∣
∣
∣

dx→ 0 exponentially asn→∞

Choose anA, and letǫ > 0 be arbitrary. Consider the partition ofRd into setsB that are d-fold products of

intervals of the form
[
(i−1)h

N
, ih
N

)

, wherei is and integer, andN is a new constant to be chosen later. Call the
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partitionΠ. Let

A =

d∏

i=1

[xi, xi + ai) ,min
i
ai ≥

2

N

and

A
∗ =

d∏

i=1

[

xi +
1

N
, xi + ai −

1

N

)

Define

Cx =




x− hA−

⋃

B∈Π

B⊆x−hA

B




 ⊆ x+ h(A− A

∗) = C∗
x

Clearly, for anyn

∫
∣
∣
∣
∣
∣
∣

1

n

n∑

j=1

µj(x− hA)− µn(x− hA)

∣
∣
∣
∣
∣
∣

dx ≤

∫
∑

B∈Π

B⊆x−hA

|
1

n

n∑

j=1

µj(B)− µn(B)|dx

+

∫



1

n

n∑

j=1

µj + µn



 (C∗
x)

(100)

The last term in (100) equals

2λ(h(A− A
∗)) = 2hdλ(A− A

∗) (101)

= 2hd

(
d∏

i=1

ai −
d∏

i=1

(

ai −
2

N

))

(102)

whereλ is the Lebesgue measure. Now, putting (102), (100) and (99) together, we get
∫

|fn(x) − gh(x)|dx ≤ 2ǫ+

∫

|fn∗(x) − g∗h(x)|

≤ 2ǫ+

N∑

i=1

|ai|
1

hd

∫
∑

B∈Π

B⊆x−hAi

|
1

n

n∑

j=1

µj(B)− µn(B)|dx+

N∑

i=1

|ai|
2

hd
hdλ(Ai −Ai

∗)

≤ 2ǫ+
1

hd

N∑

i=1

|ai|
∑

B∈Π

∣
∣
∣
∣
∣
∣

1

n

n∑

j=1

µj(B)− µn(B)

∣
∣
∣
∣
∣
∣

∫

B⊆x−hAi

dx+

N∑

i=1

|ai|
2

hd
hdλ(Ai −Ai

∗)

≤ 2ǫ+
1

hd

N∑

i=1

|ai|
∑

B∈Π

|
1

n

n∑

j=1

µj(B)− µn(B)|hdλ(Ai) +
N∑

i=1

|ai|
2

hd
hdλ(Ai −A

∗
i )

≤ 2ǫ+

(
N∑

i=1

|ai|λ(Ai)

)
∑

B∈Π

|
1

n

n∑

j=1

µj(B)− µn(B)|+ 2

N∑

i=1

|ai|λ(Ai −A
∗
i ))

(103)

The third term on the right hand side can be made smaller thanǫ by choosingN large enough (A∗
i → Ai, ∀i as

N →∞). The coefficient of the first term on the right hand side is equal to
∫
|K∗| ≤ 1+ ǫ. Thus, we have shown
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that for everyǫ > 0, we can findN large enough such that
∫

|fn(x)− gh(x)|dx ≤ 3ǫ+ (1 + ǫ)
∑

B∈Π

|
1

n

n∑

j=1

µj(B)− µn(B)|

≤ 5ǫ+
∑

B∈Π

|
1

n

n∑

j=1

µj(B)− µn(B)| (104)

We are almost in a position to use the multinomial inequalitywere it not for the fact that the partitionΠ is infinite.

Thus, it is necessary to ”cut-off” the tails of the distribution. Consider a finite partition,Πr, consisting of sets of

Π that has a non-empty intersection with[−r, r]d wherer > 0 is to be picked later. LetΠ∗
r beΠr

⋃
[−r, r]d

c

. The

cardinality ofΠr is at most
(
2rN

h
+ 2

)d

= O(n)

To take care of the tails we argue as follows: letT stand for the tail set, i.e., the complement of[−r, r]d. then

∑

B∈Π

∣
∣
∣
∣
∣
∣

1

n

n∑

j=1

µj(B)− µn(B)

∣
∣
∣
∣
∣
∣

≤
∑

B∈Πr

∣
∣
∣
∣
∣
∣

1

n

n∑

j=1

µj(B)− µn(B)

∣
∣
∣
∣
∣
∣

+
1

n

n∑

j=1

µj(T ) + µn(T )

≤
∑

B∈Πr

∣
∣
∣
∣
∣
∣

1

n

n∑

j=1

µj(B)− µn(B)

∣
∣
∣
∣
∣
∣

+ 2
1

n

n∑

j=1

µj(T ) +

∣
∣
∣
∣
∣
∣

1

n

n∑

j=1

µj(T )− µn(T )

∣
∣
∣
∣
∣
∣

≤
∑

B∈Πr∗

∣
∣
∣
∣
∣
∣

1

n

n∑

j=1

µj(B) − µn(B)

∣
∣
∣
∣
∣
∣

+ 2
1

n

n∑

j=1

µj(T )

≤
∑

B∈Πr∗

∣
∣
∣
∣
∣
∣

1

n

n∑

j=1

µj(B)− µn(B)

∣
∣
∣
∣
∣
∣

+ 2 sup
i∈I

µi(T ) (105)

Now, 2 supi∈I µi(T ) can be made smaller thanǫ by choice ofr. This gives,

∫

|fn(x)− gh(x)|dx ≤ 6ǫ+
∑

Bπr∗

∣
∣
∣
∣
∣
∣

1

n

n∑

j=1

µj(B)− µn(B)

∣
∣
∣
∣
∣
∣

(106)

wherer depends onǫ,Υ, andN depends onǫ,K.

By Lemma 1, forδ > 6ǫ andρ ∈ (0, 1),

P

(∫

|fn − gh| > δ

)

≤ P




∑

Bπr∗

∣
∣
∣
∣
∣
∣

1

n

n∑

j=1

µj(B)− µn(B)

∣
∣
∣
∣
∣
∣

> δ − 6ǫ





≤ 22+(2+
2rN
h )

d

e−
1
2n(δ−6ǫ)2 (107)

≤ e−(1−ρ)nδ2

2 , n ≥ n0(ρ, δ,K,Υ, h) (108)

This concludes that the proof 5⇒ 4 for nonnegativeK. Note that the inequality can be forced for alln, h with

n >
16 + 4d+1

ρδ2
(109)

nhd > nd
0 (C, ρ, δ,K, d) =

42d(2r(C,K)N)d

ρδ2
(110)
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if we pick

ǫ =
δ

6

(

1−

√

1−
ρ

2

)

For the symbol-by-symbol case,d = 1 and (110) becomes

n >
16 + 4d+1

ρδ2
(111)

nhd > n0 (C, ρ, δ,K) =
16r(C,K)N

ρδ2
(112)

APPENDIX III

PROOF OFTHEOREM 2

Definition 6 (Prohorov metric):For any two lawsP andQ on the set[a, b] ⊂ R, the Prohorov metric,ρ is

defined as

ρ (P,Q) := inf{ε > 0 : P∆(B) ≤ P (Bε) + ε,B ∈ B[a,b]}

whereBε = {x̃ : |x− x̃| < ε, x ∈ B}.

Proof: [Proof of Theorem 2] LetPn andQn denote the laws associated with the distribution functions, Fxn

and F̂xn . From [11, Theorem 11.7.1],ρ (Pn, Qn)→ 0⇒ β (Pn, Qn) then by definition of theβ-metric, we have

lim
n→∞

∣
∣
∣
∣

∫

fd (Pn −Qn)

∣
∣
∣
∣
= 0 ∀‖f‖BL ≤ 1 (113)

By a mere scaling, the above statement is also true for a uniformly bounded Lipschitz class of functions,S [a,b]M =

{f : ‖f‖BL < M, f : [a, b]→ R} for someM <∞. It is also true that

lim
n→∞

∣
∣
∣
∣

∫

f(x, y)d (Pn −Qn)

∣
∣
∣
∣
= 0 ∀y andf ∈ S [a,b]×R (114)

whereS [a,b]×R

M := {f : [a, b]× R→ R, ‖ f(y) ‖BL< M ∀y} for someM <∞ and

‖ f(y) ‖L:= sup
x 6=z

|f(x, y)− f(z, y)|

|x− z|
(115)

‖ f(y) ‖∞:= sup
x
f(y, x) (116)

‖ f(y) ‖BL:=‖ f(y) ‖L + ‖ f(y) ‖∞ (117)

Hence, for a channel with conditional densities,{fY |x}x∈[a,b] ∈ S
[a,b]×R

M , we have
∣
∣
∣
∣

∫

fY |xdFxn −

∫

fY |xdF̂xn

∣
∣
∣
∣
→ 0 ∀y ∈ R (118)

and by dominated convergence theorem,
∫ ∣
∣
∣
∣

∫

fY |xdFxn −

∫

fY |xdF̂xn

∣
∣
∣
∣
dy → 0 (119)

and hence,d
(

[Fxn ⊗ C]Y ,
[

F̂xn ⊗ C
]

Y

)

→ 0.
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Hence, the mapping of input empirical distributions to output densities induced by the channel,

fY n(y) = [Fxn ⊗ C]Y =

∫

fY |xdFxn(x) (120)

is continuous with respect to theβ metric on the input distributions and the total variation metric on the output

densities. We also have the fact that
(
F [a,b], β

)
is a compact [11, Theorem 11.5.4 , Corollary 11.5.5 ] metric space.

Since, we have a continuous 1-1 (bijection) mapping betweenthe compact metric space of input distributions with

theβ metric,
(
F [a,b], β

)
, and the space of output densities, with the total variationmetric,

([
F [a,b] ⊗ C

]
, d
)
,we can

apply the continuous mapping theorem [30] to get continuityin the inverse mapping too. This gives the desired

result that asd([Fxn ⊗ C]Y ,
[

F̂xn ⊗ C
]

Y
) → 0, we haveβ (Pn, Qn) → 0 andρ (Pn, Qn) → 0. Finally using the

fact [11], λ ≤ ρ, λ
(

Fxn , F̂xn

)

→ 0.

APPENDIX IV

PROOF OFLEMMA 2

Proof:

Considerf ∈ Cb([a, b]), whereCb denotes the set of all continuous bounded functions,f : [a, b] → R. For any

F ∈ F [a,b] andP∆ that is constructed using (31)
∣
∣
∣
∣

∫

fdF (x) −

∫

fP∆(dx)

∣
∣
∣
∣

=

∣
∣
∣
∣

∫

f
(
dF (x)− P∆(dx)

)
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫

fdF (x) −
N∑

i=1

f(ai)P (ai)

∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣

N−1∑

i=0

∫ ai+1

ai

(f(ai) + ωf (∆)) dF (x) −
N∑

i=1

f(ai)P (ai)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

N−1∑

i=0

(f(ai) + ωf(∆))P (ai)−
N∑

i=1

f(ai)P (ai)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
ωf(∆)

N∑

i=1

P (ai)

∣
∣
∣
∣
∣

= ωf (∆) (121)

whereωf (∆) = maxy∈[a,b] |f(y +∆)− f(y)| andN is the number of quantization levels as defined previously.

Hence,

lim
∆→0

∣
∣P∆f − Pf

∣
∣ =

∣
∣
∣
∣
lim
∆→0

∫

f
(
dF (x) − P∆(dx)

)
∣
∣
∣
∣

(122)

= lim
∆→0

ωf (∆) (123)

= 0, ∀f ∈ Cb([a, b]) (124)

This implies weak convergence ofP∆ ⇒ P . Hence, the statement of the theorem follows from the Prohorov metric

that metrizes weak convergence.
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APPENDIX V

PROOF OFTHEOREM 4

Using the definition of the Lipschitz norm of the loss function, Λ, and the channel continuity function,ξ∆, we

bound the deviation of the expected value of the loss function under two marginal densities induced at the output

of the memoryless channel by the corresponding empirical distributions of the underlying clean signal at the input

of the memoryless channel.

Lemma 5:For any F, F̂ ∈ F [a,b], measurableg : R → [a, b] and a bounded Lipschitz loss function with

EfY |u
Λ(u, g(Y )) <∞, ∀u,

∣
∣EF⊗CΛ(U0, g(Y ))− E

F̂⊗CΛ(U0, g(Y ))
∣
∣

≤ (‖ Λ ‖L +Λmax ‖ Ξ ‖L +(b− a) ‖ Λ ‖L‖ Ξ ‖L +Λmax)β
(

P, P̂
)

(125)

whereP and P̂ are the laws associated withF and F̂ , β
(

P, P̂
)

is theβ metric between the corresponding laws.

Similarly, we bound the deviation of the expected loss function under the marginal density induced by any

empirical distribution at the input of the memoryless channel from that of the expected loss under the marginal

density induced by the corresponding probability mass function (under the mapping discussed in section III-C), in

the following Lemma

Lemma 6:For any∆ > 0, F ∈ F [a,b] with the associated lawP , P∆ ∈ F∆, measurableg : R → [a, b] and a

continuous bounded loss function withEfY |u
Λ(u, g(Y )) <∞, ∀ u ,

|EP∆⊗CΛ(U0, g(Y ))− EF⊗CΛ(U0, g(Y ))| ≤ ξ∆Λmax + λ(∆) (1 + ξ∆)

whereλ(∆) is the global modulus of continuity of the loss functionΛ as defined in equation (4) andξ∆ is as

defined in (38).

The proofs for Lemmas 5 and 6 are discussed in the following section, Appendix VI

Lemma 7:For everyn ≥ 1, xn ∈ [a, b]n, measurableg : R→ [a, b], andε > 0,

Pr

(∣
∣
∣
∣
∣

1

n

n∑

i=1

Λ(xi, g(Yi))− EFxn⊗CΛ(U, g(Y ))

∣
∣
∣
∣
∣
> ǫ

)

≤ 2 exp(−G(ǫ,Λmax)n) (126)

Proof: By linearity of expectation,1
n

∑n
i=1EΛ(xi, g(Yi)) = EFxn⊗CΛ(U, g(Y )). Thus, the expression inside

the absolute value brackets in (126) is a sum of zero mean random variables, bounded in magnitude byΛmax.

Furthermore,Λ(xi, g(Yi)) and Λ(xj , g(Yj)) are independent wheneveri 6= j. This allows the use of Hoeffding

inequality [8] as in [5] leading to (126).

In preparation of the proof of Theorem 4, we need also the following two Lemmas
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Lemma 8:d(fn
Y ,
[

F̂xn ⊗ C
]

Y
)→ 0 a.s.

Proof: By definition,

0 ≤ d(fn
Y ,
[

F̂x̂n ⊗ C
]

Y
) ≤ d(fn

Y , [Fxn ⊗ C]Y ), ∀n

Taking limit n→∞ in the inequality of (127), we get

0 ≤ lim
n→∞

d(fn
Y ,
[

F̂xn ⊗ C
]

Y
) ≤ lim

n→∞
d(fn

Y , [Fxn ⊗ C]Y ) = 0 a.s.

where the second part of the inequality in (127) follows fromTheorem 1.

Lemma 9:d([Fxn ⊗ C]Y ,
[

F̂xn ⊗ C
]

Y
)→ 0 a.s.

Proof:

0 ≤ d([Fxn ⊗ C]Y ,
[

F̂xn ⊗ C
]

Y
) ≤ d([Fxn ⊗ C]Y , f

n
Y ) + d(fn

Y ,
[

F̂xn ⊗ C
]

Y
)

We have already seend([Fxn ⊗ C]Y , f
n
Y )→ a.s and by Lemma 8,

d(fn
Y ,
[

F̂xn ⊗ C
]

Y
)→ 0 a.s.

Whence,

d([Fxn ⊗ C]Y ,
[

F̂xn ⊗ C
]

Y
)→ 0 a.s.

We are now ready for the proof of Theorem 4, Proof: [Proof of Theorem 4] We fixn ≥ 1, xn ∈ [a, b]n,

∣
∣
∣EP̂

δ,∆
xn [Y n]⊗CΛ(U, g(Y ))− EFxn⊗CΛ(U, g(Y ))

∣
∣
∣ ≤

∣
∣
∣EP̂

δ,∆
xn [Y n]⊗CΛ(U, g(Y ))− E

F̂xn [Y n]⊗CΛ(U, g(Y ))
∣
∣
∣+

∣
∣
∣EF̂xn [Y n]⊗CΛ(U, g(Y ))− EFxn⊗CΛ(U, g(Y ))

∣
∣
∣ (127)

Hence,

Pr

(

sup
g:R→[a,b]

∣
∣
∣EP̂

δ,∆
xn [Y n]⊗CΛ(U, g(Y ))− EFxn⊗CΛ(U, g(Y ))

∣
∣
∣ > ǫ+ δΛmax + ξ∆Λmax+

λ(∆)(1 + ξ∆)) ≤ Pr
(∣
∣
∣EF̂xn [Y n]⊗CΛ(U, g(Y ))− EFxn⊗CΛ(U, g(Y ))

∣
∣
∣ > ǫ

)

+ (128)

Pr
(∣
∣
∣EF̂ xn[Y n]⊗CΛ(U, g(Y ))− E

P̂
δ,∆
xn [Y n]⊗CΛ(U, g(Y ))

∣
∣
∣ > δΛmax + ξ∆Λmax + λ(∆)(1 + ξ∆)

)

(129)
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Now,

Pr
(∣
∣
∣EF̂ xn[Y n]⊗CΛ(U, g(Y ))− EFxn⊗CΛ(U, g(Y ))

∣
∣
∣ > ǫ

)

≤

Pr
(

(‖ Λ ‖L +Λmax ‖ Ξ ‖L +(b− a) ‖ Λ ‖L‖ Ξ ‖L +Λmax)β
(

Pxn , P̂xn

)

> ǫ
)

(130)

≤ Pr
(

(‖ Λ ‖L +Λmax ‖ Ξ ‖L +(b− a) ‖ Λ ‖L‖ Ξ ‖L +Λmax) d
(

Fxn ⊗ C, F̂xn ⊗ C
)

> ǫ
)

≤ e−(1−ρ)nγ2

2 ,

for all nhn > n0(C, ρ, δ,K) (131)

whereC is the family of channel densities{fY |x}. The inequality in (130) is due to Lemma 5, while the first

inequality in (131) is by application of Theorem 2 and the second inequality is due to Lemma 9 and Theorem 1.

Finally, application of Lemma 6 to (129) yields

Pr

(

sup
g:R→[a,b]

∣
∣
∣EP̂

δ,∆
xn [Y n]⊗CΛ(U, g(Y ))− EFxn⊗CΛ(U, g(Y ))

∣
∣
∣ > ǫ+ δΛmax + ξ∆Λmax+

λ(∆)(1 + ξ∆)) ≤ e
−(1−ρ)nγ2

2 , for all n > n0(C, ρ, δ,K) (132)

Combining (132) with Lemma 7 gives

Pr

(∣
∣
∣
∣
∣

1

n

n∑

i=1

Λ(xi, g(Yi))− EP̂
δ,∆
xn ⊗CΛ(U, g(Y ))

∣
∣
∣
∣
∣
> 2ǫ+ 2δΛmax + ξ∆Λmax + λ(∆)(1 + ξ∆)

)

≤ 2e−G(ǫ+δΛmax,Λmax)n + e−(1−ρ)nγ2

2 , for all nhn > n0(C, ρ, δ,K) (133)

By the union bound, (133) guarantees that for any classG

Pr

(

max
g∈G

∣
∣
∣
∣
∣

1

n

n∑

i=1

Λ(xi, g(Yi))− EP̂
δ,∆
xn ⊗CΛ(U,g(Y ))

∣
∣
∣
∣
∣
> 2ǫ+ 2δΛmax + C∆Λmax

+λ(∆)(1 + ξ∆)) ≤ |G|

[

2e−G(ǫ+δΛmax,Λmax)n + e−(1−ρ)nγ2

2

]

(134)

Consequently,

Pr

(∣
∣
∣
∣
LX̃n,δ,∆(x

n, Y n)− min
g∈Gδ,∆

E
P̂

δ,∆
xn ⊗CΛ(U, g(Y ))

∣
∣
∣
∣
> 2ǫ+ 2δΛmax + C∆Λmax

+λ(∆)(1 + ξ∆)) = Pr

(∣
∣
∣
∣
∣

1

n

n∑

i=1

Λ(xi, gopt[P̂
δ,∆
xn [Y n]](Yi)) − EP̂

δ,∆
xn ⊗CΛ(U, gopt[P̂

δ,∆
xn [Y n]](Y ))

∣
∣
∣
∣
∣

> 2ǫ+ 2δΛmax + C∆Λmax + λ(∆)(1 + ξ∆))

≤ Pr

(

max
g∈Gδ,∆

∣
∣
∣
∣
∣

1

n

n∑

i=1

Λ(xi, g(Yi))− EP̂
δ,∆
xn ⊗CΛ(U, g(Y ))

∣
∣
∣
∣
∣
> 2ǫ+ 2δΛmax + C∆Λmax

+ λ(∆)(1 + ξ∆)) ≤ |Gδ,∆|

[

2e−G(ǫ+δΛmax,Λmax)n + e−(1−ρ)nγ2

2

]

(135)

where the first equality follows from the definition of̃Xn,δ,∆ and the fact that for anyP ∈ Fδ,∆,

min
g∈Gδ,∆

EP⊗CΛ(U, g(Y )) = EP⊗CΛ(U, gopt[P ](Y ))
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The first inequality follows by the fact that̂P δ,∆
xn [Y n] ∈ Fδ,∆ and thereforegopt[P̂

δ,∆
xn [Y n]] ∈ Gδ,· and finally the

last inequality follows from (134). It also follows, from (132), that

Pr

(∣
∣
∣
∣
min

g∈Gδ,∆

E
P̂

δ,∆
xn ⊗CΛ(U, g(Y ))− min

g∈Gδ,∆

EFxn⊗CΛ(U,G(Y ))

∣
∣
∣
∣
>

ǫ+ δΛmax + ξ∆Λmax + λ(∆)(1 + ξ∆)) ≤ e
−(1−ρ)nγ2

2 (136)

Combining (135) and (136) gives

Pr

(∣
∣
∣
∣
LX̃n,δ,∆(x

n, Y n)− min
g∈Gδ,∆

EFxn⊗CΛ(U, g(Y ))

∣
∣
∣
∣
> 3ǫ+ 3δΛmax + 2ξ∆Λmax+

2λ(∆)(1 + ξ∆)) ≤ |Gδ,∆|

[

2e−G(ǫ+δΛmax,Λmax)n + e−(1−ρ)nγ2

2

]

+ e−(1−ρ)nγ2

2 (137)

On the other hand, lettinĝP δ,∆
xn denote the element inFδ,∆ closest (under the Prohorov metric of the corresponding

measures) toFxn ,
∣
∣
∣
∣
D0(x

n)− min
g∈Gδ,∆

EFxn⊗CΛ(U, g(Y ))

∣
∣
∣
∣

=

∣
∣
∣
∣
∣

min
F∈F

[a,b]
n

EFxn⊗CΛ(U, gopt[F ](Y ))− min
g∈Gδ,∆

EFxn⊗CΛ(U, g(Y ))

∣
∣
∣
∣
∣

(138)

≤

∣
∣
∣
∣
∣

min
F∈F

[a,b]
n

E
F̃

δ,∆
xn ⊗CΛ(U, gopt[F ](Y ))− min

g∈Gδ,∆

EFxn⊗CΛ(U, g(Y ))

∣
∣
∣
∣
∣
+

Λmaxδ + ξ∆Λmax + λ(∆)(1 + ξ∆) (139)

=

∣
∣
∣
∣
min

P∈Fδ,∆
E

P̂
δ,∆
xn ⊗CΛ(U, gopt[P ](Y ))− min

g∈Gδ,∆

EPxn⊗CΛ(U, g(Y ))

∣
∣
∣
∣
+

Λmaxδ + ξ∆Λmax + λ(∆)(1 + ξ∆) (140)

=

∣
∣
∣
∣
min

g∈Gδ,∆

E
F̃

δ,∆
xn ⊗CΛ(U, g(Y ))− min

g∈Gδ,∆

EFxn⊗CΛ(U, g(Y ))

∣
∣
∣
∣
+

Λmaxδ + ξ∆Λmax + λ(∆)(1 + ξ∆) (141)

≤ 2 (Λmaxδ + ξ∆Λmax + λ(∆)(1 + ξ∆)) (142)

where (139) and (142) follow from Lemma 6, and (140) follows from the fact that the achiever of the minimum

in the first term of (139) isF δ,∆
xn which, by definition, is a member ofFδ,∆. Finally, combining (136) with (142)

gives

Pr (|LX̃n,δ,∆(x
n, Y n)−D0(x

n)| > 3ǫ+ 5δΛmax + 4ξ∆Λmax + 4λ(∆)(1 + ξ∆))

≤ |Gδ,∆|

[

e−G(ǫ+δΛmax,Λmax)n + e−(1−ρ)nγ2

2

]

+ e−(1−ρ)nγ2

2 (143)

for all nhn > n0 (C, ρ, δ,K)
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From the definition ofGδ,∆, it is clear that|Gδ,∆| ≤
[
1
δ
+ 1
]∆

. Hence,

Pr (|LX̃n,δ,∆(x
n, Y n)−D0(x

n)| > 3ǫ+ 5δΛmax + 4ξ∆Λmax + 4λ(∆)(1 + ξ∆))

≤

[

1 +
1

δ

]∆ [

e−G(ǫ+δΛmax,Λmax)n + e−(1−ρ)nγ2

2

]

+ e−(1−ρ)nγ2

2 (144)

for all nhn > n0 (C, ρ, δ,K)

APPENDIX VI

PROOF OFLEMMAS 5 AND 6

We need the following proposition for the proof of Lemma 5

Proposition 1:A(x) =
∫
Λ (x, g(y)) fY |x(y)dy is a bounded Lipschitz function for any measurableg : R →

[a, b].

Proof: Let ∆ = |x− x′|,

A(x) −A(x′) =

∫

Λ (x, g(y)) fY |x(y)dy −

∫

Λ (x′, g(y)) fY |x′(y)dy

≤

∫

(Λ (x′, g(y)) + λ (∆, x)) fY |x(y)dy −

∫

(Λ (x′, g(y))) fY |x′(y)dy

≤

∫

(Λ (x′, g(y)) + λ (∆, x))
(
fY |x′(y) + ε∆(y)

)
dy −

∫

(Λ (x′, g(y))) fY |x′(y)dy

≤ λ (∆, x) + Λmaxξ∆ + λ (∆, x) ξ∆

Also,

A(x) −A(x′) =

∫

Λ (x, g(y)) fY |x(y)dy −

∫

Λ (x′, g(y)) fY |x′(y)dy

≥

∫

(Λ (x′, g(y))− λ (∆, x)) fY |x(y)dy −

∫

(Λ (x′, g(y))) fY |x′(y)dy

≥

∫

(Λ (x′, g(y))− λ (∆, x))
(
fY |x′(y)− ε∆(y)

)
dy −

∫

(Λ (x′, g(y))) fY |x′(y)dy

≥ −λ (∆, x)− Λmaxξ∆ + λ (∆, x) ξ∆

≥ −λ (∆, x)− Λmaxξ∆ − λ (∆, x) ξ∆

Hence,|A(x) −A(x′)| ≤ λ (∆) + Λmaxξ∆ + λ (∆).

The assumption of Lipschitz continuity (condition, C6) of the channel guaranteeslim∆→0 ξ∆ = 0. With this and

the fact thatlim∆→0 λ (∆) = 0, we have

lim
|x−x′|<∆

∆→0

|A(x)−A(x′)| = 0
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Moreover,

‖ A ‖L = sup
0<∆<(b−a)

sup
x 6=x′

|x−x′|=∆

|A(x) −A(x′)|

|x− x′|

≤ sup
0<∆<(b−a)

λ (∆) + Λmaxξ∆ + λ (∆) ξ∆
∆

≤ ‖ Λ ‖L +Λmax ‖ Ξ ‖L +(b− a) ‖ Λ ‖L‖ Ξ ‖L (145)

Hence,

‖ A ‖BL = ‖ A ‖L + ‖ A ‖∞

≤ ‖ Λ ‖L +Λmax ‖ Ξ ‖L +(b− a) ‖ Λ ‖L‖ Ξ ‖L +Λmax (146)

Proof: [Proof of Lemma 5]

|EF⊗CΛ(U0, g(Y )) − E
F̂⊗CΛ(U0, g(Y ))

∣
∣

=

∣
∣
∣
∣

∫

dF (x)

(∫

Λ (x, g(y)) fY |x(y)dy

)

−

∫

dF̂ (x)

(∫

Λ (x, g(y)) fY |x(y)dy

)∣
∣
∣
∣

=

∣
∣
∣
∣

∫

dF (x)A(x) −

∫

dF̂ (x)A(x)

∣
∣
∣
∣

=

∣
∣
∣
∣

∫

A(x)d
(

F − F̂
)

(x)

∣
∣
∣
∣

≤ ‖ A ‖BL β
(

P, P̂
)

(147)

≤ (‖ Λ ‖L +Λmax ‖ Ξ ‖L +(b− a) ‖ Λ ‖L‖ Ξ ‖L +Λmax)β
(

P, P̂
)

where, (147) follows from the fact thatA(x) is a bounded Lipschitz function as shown in Proposition 1. Hence,

asβ
(

P, P̂
)

→ 0 we have
∣
∣EF⊗CΛ(U0, g(Y ))− E

F̂⊗C
Λ(U0, g(Y ))

∣
∣→ 0.

Proof: [Proof of Lemma 6]

|EP∆⊗CΛ(U0, g(Y ))− EF⊗CΛ(U0, g(Y ))|

=

∣
∣
∣
∣
∣
∣

N(∆)
∑

i=1

∫ ai

ai−1

dF (u′)

(∫

Λ (u′, g(y)) fY |X=u′(y)dy

)

−

N(∆)
∑

i=1

P∆(ai)

(∫

Λ (ai, g(y)) fY |X=ai
(y)dy

)
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

N(∆)
∑

i=1

∫

dy

(
∫ ai

ai−1

fY |X=u′(y)dF (u′)Λ (u′, g(y))

)

−

N(∆)
∑

i=1

P∆(ai)

(∫

Λ (ai, g(y)) fY |X=ai
(y)dy

)
∣
∣
∣
∣
∣
∣

(148)
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Equality in (148) is due to application of Fubini’s theorem.Hence,

|EP∆⊗CΛ(U0, g(Y ))− EF⊗CΛ(U0, g(Y ))|

<

∣
∣
∣
∣
∣
∣

N(∆)
∑

i=1

∫

dy

(
∫ ai

ai−1

fY |X=u′(y)dF (u′) (Λ (ai, g(y)) + λ(∆))

)

−

N(∆)
∑

i=1

P∆(ai)

(∫

Λ (ai, g(y)) fY |X=ai
(y)dy

)
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

N(∆)
∑

i=1

∫

dy (Λ (ai, g(y)) + λ(∆))

(
∫ ai

ai−1

fY |X=u′(y)dF (u′)

)

−

N(∆)
∑

i=1

P∆(ai)

(∫

Λ (ai, g(y)) fY |X=ai
(y)dy

)
∣
∣
∣
∣
∣
∣

(149)

<

∣
∣
∣
∣
∣
∣

N(∆)
∑

i=1

∫

dy (Λ (ai, g(y)) + λ(∆))
(
fY |X=ai

(y) + ε(y)
)

(
∫ ai

ai−1

dF (u′)

)

−

N(∆)
∑

i=1

P∆(ai)

(∫

Λ (ui, g(y)) fY |X=ai
(y)dy

)
∣
∣
∣
∣
∣
∣

<

∣
∣
∣
∣
∣
∣

N(∆)
∑

i=1

(
∫ ai

ai−1

dF (u′)

)[∫

Λ (ai, g(y)) fY |X=ai
(y)dy +

∫

ε(y)Λ (ai, g(y)) dy + λ(∆)

∫

fY |X=ai
(y)dy

+ λ(∆)

∫

ε(y)dy −

N(∆)
∑

i=1

P∆(ai)

(∫

Λ (ai, g(y)) fY |X=ai
(y)dy

)




∣
∣
∣
∣
∣
∣

(150)

<

∣
∣
∣
∣
∣
∣

N(∆)
∑

i=1

(
∫ ai

ai−1

dF (u′)

)[∫

Λ (ai, g(y)) fY |X=ai
(y)dy

+

∫

ε(y)Λ (ai, g(y)) dy + λ(∆)

∫

fY |X=ai
(y)dy + λ(∆)

∫

ε(y)dy

−

N(∆)
∑

i=1

P∆(ai)

(∫

Λ (ai, g(y)) fY |X=ai
(y)dy

)




∣
∣
∣
∣
∣
∣

(151)

=

∣
∣
∣
∣
∣
∣

N(∆)
∑

i=1

(
∫ ai

ai−1

dF (u′)

)[∫

ε(y)Λ (ai, g(y)) dy + λ(∆) + λ(∆)ξ∆

]
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

N(∆)
∑

i=1

(F (ai)− F (ai−1))

[∫

ε(y)Λ (ai, g(y)) dy + λ(∆) + λ(∆)ξ∆

]
∣
∣
∣
∣
∣
∣

≤

∫ N(∆)
∑

i=1

ε(y)Λ (ai, g(y))P
∆(ui)dy + (λ(∆) + λ(∆)ξ∆)

≤ ξ∆Λmax + (λ(∆) + λ(∆)ξ∆)

= ξ∆Λmax + λ(∆) (1 + ξ∆)

Hence,

lim
∆→0

|EP∆⊗CΛ(U0, g(Y ))− EF⊗CΛ(U0, g(Y ))| = 0 (152)
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APPENDIX VII

PROOF OFTHEOREM 6

In preparation of Theorem 6 we start by presenting the proof of Lemma 3 and Theorem 11 Proof: [Proof

of Lemma 3]

Dk (x
n) = min

g
E

[

1

n− 2k

n−k∑

i=k+1

Λ
(
X0, g

(
Y k
−k

))

]

= min
g

∫
1

n− 2k

n−k∑

i=k+1

Λ
(
xi, g

(
yi+k
i−k

))
i+k∏

l=i−k

fY |X=xl
(yl)dyl (153)

= min
g

1

n− 2k

n−k∑

i=k+1

∫

Λ
(
xi, g

(
yi+k
i−k

))
i+k∏

l=i−k

fY |X=xl
(yl)dyl (154)

= min
g

1

2k + 1

2k+1∑

i=1

∫
1

n−2k
2k+1

⌈n−2k−i−1
2k+1 ⌉−1
∑

j=0

Λ
(
xj(2k+1)+k+1 , (155)

g
(

y
j(2k+1)+i+2k
j(2k+1)+i

)) j(2k+1)+i+2k
∏

l=j(2k+1)+i

fY |X=xl
(yl)dyl

≥ min
g

1

2k + 1

2k+1∑

i=1

∫
1

⌈n−2k
2k+1 ⌉

⌈n−2k−i−1
2k+1 ⌉−1
∑

j=0

Λ
(
xj(2k+1)+k+1 , (156)

g
(

y
j(2k+1)+i+2k
j(2k+1)+i

)) j(2k+1)+i+2k
∏

l=j(2k+1)+i

fY |X=xl
(yl)dyl

≥
1

2k + 1

2k+1∑

i=1

min
gi

∫
1

⌈n−2k
2k+1 ⌉

⌈n−2k−i−1
2k+1 ⌉(2k+1)+k+1+i

∑

j=0

Λ (xi, (157)

gi

(

y
j(2k+1)+i+2k
j(2k+1)+i

)) j(2k+1)+i+2k
∏

l=j(2k+1)+i

fY |X=xl
(yl)dyl

=
1

2k + 1

2k+1∑

i=1

Dk (x
ni) (158)

Proposition 1, Lemmas 5 and 6 are extendible to theirkth-order equivalents with the proofs carrying over directly

from the symbol-by-symbol case. We hence merely state the Lemmas for thekth-order case and proofs are left out

in this discussion.

Proposition 2:A(x) =
∫
Λ
(
x, g

(
yk−k

))∏k
i=−k fY |xi

(yi)dy
k
−k is a bounded Lipschitz function for any measur-

ableg : [a, b]2k+1 → R.
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Lemma 10:For anyF, F̂ ∈ F [a,b],k, measurableg : R2k+1 → [a, b] and a bounded Lipschitz loss function with

EfY |u
Λ(u, g(Y k

−k)) <∞, ∀u,

|EF⊗CΛ(U0, g(Y
k
−k))− E

F̂⊗C
Λ(U0, g(Y

k
−k))

∣
∣

≤
(
‖ Λ ‖L +Λmax ‖ Ξ ‖

k
L +(b− a) ‖ Λ ‖L‖ Ξ ‖

k
L +Λmax

)
β
(

P, P̂
)

whereP and P̂ are the laws associated withF and F̂ andβ is the usualβ-metric

‖ Ξ ‖kL is thekth order Lipschitz norm of the channel.

‖ Ξ ‖kL= sup
0<∆<(b−a)

ξ2k+1
∆

∆
(159)

andξ∆ is as defined in (38).

Lemma 11:For any∆ > 0, F ∈ F [a,b],k with the associated measureP , P∆,k ∈ F∆,k, measurableg : R2k+1 →

[a, b] and a continuous bounded loss function withEfY |u
Λ(u, g(Y k

−k)) <∞, ∀ u ,

∣
∣EP∆,k⊗CΛ(U0, g(Y

k
−k))− EF⊗CΛ(U0, g(Y

k
−k))

∣
∣ ≤ ξ2k+1

∆ Λmax + λ(∆)
(
1 + ξ2k+1

∆

)

These are then used to bound the deviation of the cumulative loss incurred by the proposed denoiser for each of

the 2k+ 1 subsequences from the minimum possiblekth-order sliding window loss for that subsequence. We now,

state thekth-order equivalent of Theorem 4 for each subsequence.

Theorem 11:For all m ≥ 1, k ≥ 1, ǫ > 0, ρ ∈ (0, 1), δ > 0, ∆ > 0, andxm ∈ [a, b](2k+1)m

Pr
(
|LX̃m,δ,∆,k(x

m, Y m)−Dk(x
m)| > 3ǫ+ 5δΛmax + 4ξ2k+1

∆ Λmax + 4λ(∆)(1 + ξ2k+1
∆ )

)

≤ |Gkδ,∆|

[

e−G(ǫ+δΛmax,Λmax)m + e−(1−ρ)
mγ2

k
2

]

+ e−(1−ρ)
mγ2

k
2 (160)

for all mhkm > mk (C, ρ, δ,K)

where,

γk =
ǫ

(
‖ Λ ‖L +Λmax ‖ Ξ ‖kL +(b− a) ‖ Λ ‖L‖ Ξ ‖kL +Λmax

)

andG, Gkδ,∆ are as defined in Theorem 6.

Proof: The proof of this theorem carries over directly from the proof of Theorem 4 using Proposition 2, Lemmas

10, 11 and 7.
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Proof: [Proof of Theorem 6]

LX̃n,δ,∆,k(x
n, Y n)−Dk(x

n) =

LX̃n,δ,∆,k(x
n, Y n)−

1

2k + 1

2k+1∑

i=1

Dk(x
ni) +

1

2k + 1

2k+1∑

i=1

Dk(x
ni )−Dk(x

n) (161)

From Lemma 3, we have

LX̃n,δ,∆,k(x
n, Y n)−Dk(x

n) ≤ LX̃n,δ,∆,k(x
n, Y n)−

1

2k + 1

2k+1∑

i=1

Dk(x
ni )

=
1

2k + 1

2k+1∑

i=1

LX̃ni,δ,∆,k(xni , Y ni)−
1

2k + 1

2k+1∑

i=1

Dk(x
ni)

≤
1

2k + 1

2k+1∑

i=1

[|LX̃ni,δ,∆,k(xni , Y ni)−Dk(x
ni )|] (162)

Hence,

Pr
(
LX̃n,δ,∆,k(x

n, Y n)−Dk(x
n) > 3ǫ+ 5δΛmax + 4ξ2k+1

∆ Λmax + 4λ(∆)
(
1 + ξ2k+1

∆

))

≤ Pr

(

1

2k + 1

2k+1∑

i=1

|LX̃ni,δ,∆,k(xni , Y ni)−Dk(x
ni)| > 3ǫ+ 5δΛmax + 4ξ2k+1

∆ Λmax + 4λ(∆)(1 + ξ2k+1
∆ )

)

≤
2k+1∑

i=1

Pr
(
|LX̃ni,δ,∆,k(xni , Y ni)−Dk(x

ni )| > 3ǫ+ 5δΛmax + 4ξ2k+1
∆ Λmax + 4λ(∆)

(
1 + ξ2k+1

∆

))

≤ (2k + 1)|Gkδ,∆|

[

e−G(ǫ+δΛmax,Λmax)
(n−2k)
2k+1 + e−(1−ρ)

(n−2k)γ2
k

2(2k+1)

]

+ e−(1−ρ)
(n−2k)γ2

k
2(2k+1)

This is true by applying Theorem 11 to the2k+ 1 subsequences of independent supersymbols with at mostn−2k
2k+1

supersymbols in each of them. Also, the cardinality of the set of all possible proposed2k+1-length sliding window

denoisers is bounded by the cardinality of the set of all possible quantizedkth-order probability mass functions,

P̂ δ,∆,k
xn , i.e., |Gkδ,∆| ≤

[
1
δ
+ 1
]∆2k+1

.

APPENDIX VIII

PROOF OFTHEOREM 8

The following claim is necessary for the proof of Theorem 8.

Claim 1:

lim
k→∞

min
g
EΛ

(
X0, g

(
Y k
−k

))
= D (FX, C)

The claim results from the following lemma.

Lemma 12: • For k, l ≥ 0, EU
(

FX0|Y l
−k

)

is decreasing in bothk and l.
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• For any two unboundedly increasing sequences of positive integers{kn}, {ln},

lim
n→∞

EU
(

F
X0|Y

ln
−kn

)

= EU
(

FX0|Y ∞
−∞

)

(163)

Equipped with Lemma 12, the proof for Claim 1 is very similar to that of Claim 2 in [36] but we, nevertheless,

present here for completeness.

A. Proof of Lemma 12

Proof:

A direct consequence of the definition of the Bayes envelopeU (·) is a concave function. Specifically, for two

distribution functionsF andG defined on[a, b], andα ∈ [0, 1],

U (αF + (1 − α)G) = min
x̂∈[a,b]

∫

x∈[a,b]

Λ(x, x̂)d (αF + (1− α)G) (x)

= α min
x̂∈[a,b]

∫

x∈[a,b]

[Λ(x, x̂)dF (x) + (1 − α)Λ(x, x̂)dG(x)]

≥ α min
x̂∈[a,b]

∫

x∈[a,b]

Λ(x, x̂)dF (x) +

(1− α) min
x̂∈[a,b]

∫

x∈[a,b]

Λ(x, x̂)dG(x)

= αU (F ) + (1− α)U (G)

where the first equality follows from the fact that the mapping,F 7→ Ff , Ff =
∫
fdF , for a bona fide distribution
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function, is linear. Next, to show thatEU
(

[F ⊗ C]X|Y l
−k

)

decreases withl, observe that

EU
(

[F ⊗ C ]
X|Y l+1

−k

)

=

∫

y
l+k+2
−k

U
(

[F ⊗ C]
X|Y l+1

−k

)

dF
Y

l+1
−k

=

∫

yl
−k

[
∫

yl+1

U
(

[F ⊗ C]X|Y l
−k

,Yl+1

)

dFYl+1|Y l
−k

]

dFY l
−k

≤

∫

yl
−k

U

[
∫

yl+1

(

[F ⊗ C]X|Y l
−k

,Yl+1

)

dFYl+1|Y l
−k

]

dFY l
−k

=

∫

yl
−k

U

[
∫

yl+1

(
∫ x

a

f
Y

l+1
−k

|X=α
dFX(α)

f
Y

l+1
−k

)

dFYl+1|Y l
−k

]

dFY l
−k

=

∫

yl
−k

U

[
∫

yl+1

(
∫ x

a

f
Y

l+1
−k

|X=α
dFX(α)

fYl+1|Y l
−k
fY l

−k

)

dFYl+1|Y l
−k

]

dFY l
−k

=

∫

yl
−k

U

[
∫

yl+1

(
∫ x

a

f
Y l+1
−k

|X=α
dFX(α)

fY l
−k

)

dyl+1

]

dFY l
−k

=

∫

yl
−k

U

[
∫ x

a

(
∫

yl+1

f
Y

l+1
−k

|X=α
dFX(α)

fY l
−k

)

dyl+1

]

dFY l
−k

=

∫

yl
−k

U

[
∫ x

a

(
fY l

−k
|X=αdFX(α)

fY l
−k

)]

dFY l
−k

=

∫

yl
−k

U [F ⊗ C]X|Y l
−k
dFY l

−k

= EU
(

[F ⊗ C]X|Y l
−k

)

(164)

where, the first inequality follows from the fact thatU is a concave functional mapping. The definition of[F ⊗ C]X|Y

is bona fide from the assumption that the family of conditional measures,C, is absolutely continuous. Finally,

application of Fubini’s theorem permits the change of orderof integration to achieve the final inequality. The fact that

EU
(

[F ⊗ C]
X|Y l+1

−k

)

decreases withk is established similarly, concluding the proof of the first item. For the second

item, similar to the proof of Lemma 4 in [36], by the martingale convergence theorem, we have,F
X|Y ln

−kn

→ FX|Y ∞
−∞

a.s., implyingF
X|Y ln

−kn

d
→ FX|Y ∞

−∞
. Using the convergence of random measures [20, Theorem 16.16], we have

F
X|Y ln

−kn

f
d
→ FX|Y ∞

−∞
f , ∀f ∈ C+

K , the class of continuous positive valued functions with compact support. Here, the

notationFf =
∫
fdF for any measurablef and bona fide probability distribution function,F . In section IV, we have

imposed the condition of continuity of the loss function,Λ, and since the input alphabet space is restricted to a closed

compact interval[a, b], we satisfy the condition,Λ ∈ C+
K . Hence, we have,F

X|Y ln
−kn

Λ (·, x̂)
d
→ FX|Y ∞

−∞
Λ (·, x̂),

∀, x̂. SinceΛ (·, x̂) : [a, b] × [a, b] → R
+ is a continuous mapping, in̂x, minx̂∈[a,b]

∫
Λ (x, x̂) dF (x) is also

a continuous mapping. Using the fact thatΛ is a bounded mapping and the continuous mapping theorem [12],

U
(

F
X|Y ln

−kn

)
d
→ U

(

FX|Y ∞
−∞

)

andEU
(

F
X|Y ln

−kn

)

→ EU
(

FX|Y ∞
−∞

)

.
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B. Proof of Claim 1

Proof: [Proof of Claim 1]

D (FXn , C) = min
X̂n∈Dn

EL
X̂n (Xn, Y n) =

1

n

n∑

i=1

min
X̂:Rn→[a,b]

EΛ
(

Xi, X̂ (Y n)
)

=
1

n

n∑

i=1

∫

Rn

min
x̂∈[a,b]

E [Λ (Xi, x̂) |Y
n = yn] dFY n

=
1

n

n∑

i=1

∫

Rn

U
(
FXi|Y n=yn

)
dFY n

=
1

n

n∑

i=1

EU
(
FXi|Y n=yn

)
=

1

n

n∑

i=1

EU
(

FX0|Z
n−i
1−i

)

(165)

where the last equality follows by stationarity. Since by Lemma 12,EU
(

FX0|Y
n−i
1−i

)

≥ EU
(

FX0|Y ∞
−∞

)

, it follows

from (165) thatD (FXn , C) ≥ EU
(

FX0|Y ∞
−∞

)

for all n and, therefore,D (FX, C) ≥ EU
(

FX0|Y ∞
−∞

)

. On the other

hand, for anyk, 0 ≤ k ≤ n, Lemma 12 and (165) yield the upper bound

D (FX, C) ≤
1

n

[

2kU (FX0) +

n−k∑

i=k+1

EU
(

FX0|Y
n−i
1−i

)
]

(166)

≤
1

n

[

2kU (FX0) +
n−k∑

i=k+1

EU
(

FX0|Y k
−k

)
]

(167)

=
1

n

[

2kU (FX0 ) + (n− 2k)EU
(

FX0|Y k
−k

)]

(168)

Considering the limit asn→∞ of both ends of the above chain yieldsD (FX, C) ≤ EU
(

FX0|Y k
−k

)

. Letting now

k →∞ and invoking Lemma 12 impliesD (FX, C) ≤ EU
(

FX0|Y ∞
−∞

)

.

C. Proof of Theorem 8

Proof: By definition ofD(FX, C) clearly

lim inf
n→∞

ELX̃n
univ

(Xn, Y n) ≥ D (FX, C)

On the other hand, from (45), for anyk

EDk (X
n) = Emin

g
EFk

xn⊗CΛ
(
X, g(Y k

−k)
)

≤ min
g
E
[

EFk
xn⊗CΛ(X, g(Y

k
−k))

]

= min
g
EΛ(X, g(Y k

−k)) (169)

where, the right sideXk
−k is emitted from the (unique) double-sided extension of the sourceFX. Using the result

from equation (169), we get

lim sup
n→∞

EDkn
(Xn) ≤ D (FX, C) (170)
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implying, by Theorem 7 and bounded convergence, that

lim sup
n→∞

ELX̃univ
(Xn, Y n) ≤ D (FX, C) (171)

and proving (63). To prove (64) assume stationary ergodicX. We have established the continuity ofEF⊗CΛ (U0, g(Y ))

w.r.t F ∈ F [a,b] in Lemma 5 and it is easily extendible toming EF⊗CΛ (U0, g(Y )). By the ergodic theorem and

continuity ofming EF⊗CΛ (U0, g(Y )) in F ∈ F [a,b], it follows from the representation in (45) that

Dk (X) = lim
n→∞

Dk (X
n) = min

g
EΛ

(
X0, g

(
Y k
−k

))
a.s. (172)

and by Claim 1,

D(X) = D (FX, C) a.s. (173)

Thus, the fact thatlim supn→∞Dkn
(x), ∀ x ∈ [a, b]∞ (recall proof of Corollary 1), combined with Theorem 7,

implies

lim sup
n→∞

LX̃n
univ

(Xn, Y n) ≤ D (FX , C) a.s. (174)

On the other hand, by Fatou’s lemma and definition ofD (FX , C)

E

[

lim sup
n→∞

LX̃n
univ

(Xn, Y n)

]

≥ lim sup
n→∞

ELX̃n
univ

(Xn, Y n) ≥ D (FX , C) (175)

The combination of (174) and (175) completes the proof of (64)

APPENDIX IX

COMPARISON TO THE DENOISER IN[5]

Referring to Fig. 3, each output alphabet is uniformly quantized to the same number of levels,M , as the input

(for Y ∈ R, the end-intervals are greater than quantization step size). We label the set of quantization intervals at

the output asO = {O1, · · · , OM} and let the quantization step size beα. Corresponding to the channel output,

Y n, let Zn be the corresponding quantized version. Also, letA denote theM -level finite alphabet set at the input.

As a result of the quantization, we propose mapping thekth-order kernel density estimate at the output,fn,k
Y ,

to the corresponding probability mass function,Q̂k
zn , with mass at the quantized output alphabets in the following

manner,

Q̂k
zn [yn]

(
vk−k

)
=

∫

yk
−k

∈O2k+1

fn,k
Y (yk−k)dy

k
−k (176)

where,vk−k is the corresponding2k + 1-tuple of the quantized levels. The channel conditional densities also get

correspondingly mapped to anM ×M channel matrix that is formed using,

Π(i, j) =

∫

y:Qα(y)=j

fY |x=i(y)dy (177)

whereQα(·) denotes a uniform quantizer with a quantization step sizeα.

We compareQ̂k
zn [yn]

(
vk−k

)
to P̂ k

zn

(
vk−k

)
, the k-th order distribution of the quantized output symbols, using the

notation in [5].

P̂ k
zn

(
vk−k

)
=

r
[
zn, vk−k

]

n− 2k
(178)
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The density estimate,fn,k
Y , we consider is the cubic histogram estimate. The histogramestimate is defined by

fn,k
Y (y) =

1

n

n∑

i=1

1[Yi∈Anj]

λ (Anj)
, y ∈ Anj , y ∈ R

2k+1 (179)

where,Pn = {Anj , j = 1, 2, · · · }, n ≥ 1 is a sequence of partitions andAnj ’s are Borel sets with finite nonzero

Lebesgue measure. The sequence of partitions is rich enoughsuch that the class of Borel sets (B[a,b]) is equal to

∞⋂

n=1

σ

(
∞⋃

m=n

Pm

)

(180)

whereσ is the usual notation of theσ-algebra generated by a class of sets. In particular, the cubic histogram

estimate is constructed when we consider setsAnj of the form,
∏2k+1

i=1 [aikih, ai(ki + 1)h), ki’s are integers,h

is a smoothing factor as for the kernel density estimate in (179) andai’s are positive constants s.t.aikih ∈ [a, b],

∀h, ki. The following result similar to that in Theorem 1, forJn defined in equation (25), holds for histogram

density estimates.

Theorem 12:Assume that the sequence of partitionsPn satisfies (180). Consider

1) Jn → 0 in probability asn→∞, for all sequencesxn

2) Jn → 0 almost surely asn→∞, for all sequencesxn

3) Jn → 0 exponentially asn→∞, for all sequencesxn

4) For all A ∈ B with 0 < λ(A) < ∞, and all ε > 0 there existsn0 such that for alln ≥ n0, we can find

An ∈ σ (Pn) with λ (A∆An) < ε and

sup
M>0all sets C of finite Lebesgue measure

lim sup
n→∞

λ






⋃

j:λ(Anj
T

C)≤M
n

Anj

⋂

C




 = 0 (181)

It is then true that 4⇒ 3⇒ 2⇒ 1.

For the proof of this theorem, refer to [7] with the added condition of tightness imposed on the family of measures

associated with the channel,C.

The condition 4) in Theorem 12 translates tolimn→∞ h = 0, limn→∞ nhd =∞. It can be shown as in [7] that

they are necessary sufficient conditions for that specified in 4) in Theorem 12. By choosing the smoothing factor,

h to be a decreasing sequence of numbers that are all integers fractions of the quantization step sizeα, such that

nhd →∞ is also simultaneously satisfied, we get the mapping in equation (176) to reduce to that in equation (178)

for the subsequences described in Section V. This is becausewe split the sequencexn into 2k + 1 subsequences
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whose2k + 1-length super symbols are independent so that we can apply Theorem 12. Now,

Q̂k
zni

(
vk−k

)
=

∫

yk
−k

∈O2k+1

fni,k
Y (yk−k)dy

k
−k (182)

=

∫

yk
−k

∈O2k+1

1

⌈n−2k−i−1
2k+1 ⌉

⌈n−2k−i−1
2k+1 ⌉
∑

j=0

1h

Y
j(2k+1)+i+2k

j(2k+1)+i
∈Anil

i

λ(Anil)
(183)

=
1

⌈n−2k−i−1
2k+1 ⌉

r
[
zni , vk−k

]
(184)

If we mapped the finite input-continuous output channel,C, to Π, the mapping in equation (48) would then reduce

to,

Q̂k
xni = arg min

P∈FA,k

∑

vk
−k

∣
∣
∣
∣
∣
∣

Q̂k
zni

(
vk−k

)
−

∑

uk
−k

∈A2k+1

k∏

j=−k

Π(uj , vj)P
(
uk−k

)

∣
∣
∣
∣
∣
∣

(185)

where,FA,k denote the space of all possiblekth-order distributions onA. If we lift the constraints of the minimizer

being a bona fide element ofFA,k, we get the following candidate for the minimizer in (185)

Q̂k
xni

[
uk−k

]
=

1

⌈n−2k−i−1
2k+1 ⌉

∑

vk
−k

r
[
zni , vk−k

]
k∏

j=−k

Π−1 (vj , uj) (186)

which is exactly the same aŝPxni [zni ]
(
uk−k

)
using equation (18) in [5], also given below.

P̂ k
xni

[
uk−k

]
=

1

⌈n−2k−i−1
2k+1 ⌉

∑

vk
−k

r
[
zni, vk−k

]
k∏

j=−k

Π−1 (vj , uj) (187)

Now, using the construction of the discrete denoiser in equation (50), for Q̂xni , we get

gopt[Q̂xni ]
(
yk−k

)
= argmin

x̂∈A
Λ(·, x̂)T [Q̂xni ⊗ C]U|yk

−k

= argmin
x̂∈A

∑

â∈A

Λ (a, x̂) ·







∑

uk
−k

∈A2k+1:u0=a





k∏

j=−k

fY |x=uj
(yj)Q̂xni

(
Uk
−k = uk−k

)










(188)

which is exactly the same asgopt[P ]
(
yk−k

)
in equation (16) in [5]. Hence, the proposed denoiser with histogram

density estimate of the output symbols and quantization gives us the same denoising rule as that of [5] applied to

the 2k + 1 subsequences of the output sequenceY n.
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RMSE = 14.7354 RMSE = 13.0945

RMSE = 11.2899 RMSE = 11.2610

RMSE = 11.1782 RMSE = 7.842

Fig. 5. Row 1- left: Original image, right: Noisy image,σ = 20; Denoised Images using, Row 2- left:k = 1 right: k = 2; Row 3- left:

k = 4, right: k = 6; Row 4- left: the scheme in [9], right: the scheme in [26]
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Fig. 6. Comparison of RMSE of the denoised image for various context lengths,k
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Fig. 7. Row 1- left: Original image, right: Noisy image; Denoised images using Row 2- left: symbol-symbol scheme, right:Comparison of

Distribution estimates for the symbol-by-symbol denoiser
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Fig. 8. Row 1- left: Original image, right: Noisy image; Denoised images using Row 2- left: proposed scheme, right: BLS-GSM [26]


