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~ Abstract— Pseudocodewords ofj-ary LDPC codes are exam- finite-degree graph covers as described in [8]. Since these
ined and the weight of a pseudocodeword on thg-ary symmetric  pseudocodewords are the same as those occurring in the con-
channel is defined. The weight definition of a pseudocodeword text of linear programming (LP) decoding, the results ot

on the AWGN channel is also extended to two-dimensionaj-ary h licable t d d ds of LP d di
modulation such as¢-PAM and ¢-PSK. The tree-based lower ére are applicable to pseudocodewords o ecoding as

bounds on the minimum pseudocodeword weight are shown to Well. Section IV summarizes the paper and outlines some
also hold for g-ary LDPC codes on these channels. other techniques that are being investigated for boundieg t

pseudocodeword weight gfary LDPC codes.
. INTRODUCTION
Low density parity check (LDPC) codes have been shown Il. BINARY LDPC CODES

to achieve near-capacity performance over several contauni  Definition 2.1: The tree bound of a left (variable node)
tion channels. Typically, they are binary linear codes dbed regular bipartite LDPC constraint graph with gighs defined
by sparse, randomly, generated parity-check matrices3]in gs

and [4], the performance of non-binary LDPC codes, defined

over larger finite fields and over integer rings, is invegtga ) { (D = D2 1)%4 £ odd,
and compared with that of binary LDPC codes. For several Lhdta@d—D 4. tdd- DT +@-0TT, g een
applications such as coded-modulation, codes over higher a

phabets are more appropriate for system design. The pdgular Theorem 2.1: Le& be a bipartite LDPC constraint graph

of LDPC codes is due to their efficient and simple decodinal.ith smallest left (variable node) degreieand girth g. Then
Graph-based message passing iterative decoders have lf[ﬁen )
X

shown to achieve near-capacity performance with comple & minimum pseudocodeword weighk, is lower bounded

only linear in the length of the code. However, these iteeati y Wain > T(d, g).

decoders are sub-optimal and discrepancies betweenieerat - ’

and maximume-likelihood (ML) decoding performance of shorn the additive white Gaussian noise (AWGN) channel and the

to moderate block length binary LDPC codes has been &inary symmetric channel (BSC).

tributed to the presence of pseudocodewords of the LDPCThe proof of this result is presented in [6]. The tree bound

constraint graphs (or, Tanner graphs) [8]. Analogous tadlee was originally derived by Tanner in [10] to lower-bound the

of minimum Hamming distance].,;,, in ML-decoding, the minimum distance of the code. Since the set of pseudocode-

minimum pseudocodeword weighty,;,,, has been shown to words includes all codewords, we havg,i, < dmin-

be a leading predictor of performance in iterative decof®ig

Furthermore, it has been observed that pseudocodeworids wit

weight wmin < dmin are especially problematic for iterative Let H be a parity check matrix representing-ary LDPC

decoding [6]. In this paper, we define pseudocodeword weigltbdeC. Thus, H is sparse in the number of non-zero entries.

for g-ary LDPC codes when the channel is a AWGN chann&he corresponding LDPC constraint gra@hhat represents

or ag-ary symmetric channel and obtain lower bounds for thie an incidence graph of the parity check matrix as in theryina

minimum pseudocodeword weight. case. However, each edge®@fis now assigned a weight which
The following section shows a tree-based lower bound @the value of the corresponding non-zero entryin(In [3],

the minimum pseudocodeword weight of binary LDPC codef], LDPC codes ovet:F(q) are considered for transmission

In Section Ill, the pseudocodeword weight gfary LDPC over binary modulated channels, whereas in [4], LDPC codes

codes is defined for the AWGN and theary symmetric over integer rings are considered for higher-order moéarat

channels. Subsequently, the tree-based lower bound fanbinsignal sets.) For convenience, we consider the special case

LDPC codes is extended to theary setting. We note herewherein each of these edge weights are equal to one. This is

that we restrict our analysis to pseudocodewords arisioign fr the case when the parity check matrix has only zeros and ones.

1)
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Furthermore, whenever the LDPC graphs have edge weights
of unity for all the edges, we refer to such a graph as a binary
LDPC constraint graph representingiary LDPC codeC.

A. Bound on minimum distance

We first show that if the LDPC graph correspondingHo
is d-left (variable-node) regular, then the same tree bound of
TheorenTZMl holds. That is,

Lemma 3.1: IfG is a d-left regular bipartite LDPC con-
straint graph with unity edge weights, girtf) and represents
a g-ary LDPC codeC. Then the minimum distance of tiary
LDPC codeC is lower bounded as

dmin 2 T(d7 g)

Fig. 1. A g-ary symmetric channel.

Proof: The proof is essentially the same as in the binary

case. Enumerate the graph as a tree starting at an arbitrary ,
variable node. Furthermore, assume that a codeword inOafr G To define a pseudocodeword forgaary LDPC code,

contains the root node in its support. The root variable no & will restrict the discussion to LDPC constraint graphet th

(at layer L, of the tree) connects téd constraint nodes in the Wi\:zsedgﬁavrvye'ggg é) fclér:gr:iwtog?aglrll;hfr:;te(rjgsrse;p:r;ther
next layer (layerL,) of the tree. These constraint nodes arI(_aDPC codes. A finite cover of a graph is defined in a natural

each connected to some sets of variable nodes in layeind in 181 wherein all ed i the finit Iso h

so on. Since the graph has gigththe nodes enumerated up gy asin [.] wherein afl edges in the finrte cover also have
| 7 . g an edge weight of unity. For the rest of this section,debe
ayer L,_» when is odd (respectivelyL.s when$ is even)

are all distinct. Since the root node belongs to a codewofd LDPC constraint graph of grary LDPC codeC of blO.Ck
. o . __lehgthn, and let the weights on every edge @Gf be unity.
sayc, it assumes a non-zero valuedn Since the constraints ' .
- : .~ We define a pseudocodewaFtof G as an x ¢ matrix of the
must be satisfied at the nodes in layar, at least one node in

Layer L, for each constraint node ih; must assume a non-form

zero value irc. (This is true under the assumption that an edge fo.0 fo1 fo2 o fog-1

weight times a (non-zero) value, assigned to the correspgnd f1.0 fi1 fiz oo fig—1

variable node, is non-zero in the code alphabet.) F= : : : : ,
Under the above assumption, there are at ldagariable : : ' : :

nodes (i.e., at least one for each node in laygrin layer Lo e R R

that are non-zero ie. Continuing this argument,_it is easy O here the pseudocodeword forms a valid codeword in a
see that the number of non-zero components is at least gie covercy of (¢ and f; , is the fraction of variable nodes
l+d+dd—1)+...+d(d— 12? when 3 s, odd, and j, the it variable node cloud, fob < i < n — 1, of G that
l+d+dd—1)+...+dd—-1)"T +(d—1)"7 when§ haye the assignment (or, value) equaljtdor 0 < j < ¢ — 1,
is even. This proves the desired lower bound. L IENTNPS

Remark 3.1:A non-zero edge-weight times a (non-zero) A ¢-ary symmetric channel is shown in Figiie 1. The input
value, assigned to the corresponding variable node, may%féj the output of the channel are random variables belonging
zero in certain code alphabets. Since we have chosen the ei@g@¢-ary alphabet that can be denoted{ast, 2,...,¢ —1}.
weights to be unity, such a case will not arise here. But alé) €rror occurs with probability, which is parameterized by
more generally, such cases will not arise when the alphatuet 41 channel, and in the case of an error, it is equally prebabl
the arithmetic operations correspond to finite-field operst fOr @n input symbol to be altered to any one of the remaining
However, when working over other structures, such as fingymbols.

integer rings and more general groups, such cases coutd aris Following the definition of pseudocodeword weight for
the binary symmetric channel [5], we provide the following

We note here that in general this lower bound is not mgkfinition for the weight of a pseudocodeword on the
and typically g-ary LDPC codes that have the above grapfiry symmetric channel. For a pseudocodewdtd let £’
representation have minimum distances larger than theeab@¢ the sub-matrix obtained by removing the first column
lower bound. in F. (Note that the first column irf’ contains the entries
fo.0, f1,0, f2,0, - - -5 fn=1,0.) Then the weight of a pseudocode-

B. Pseudocodewords gfary LDPC codes ; J !
word F' on theg-ary symmetric channel is defined as follows.
Recall from [8], [6] that a pseudocodeword of an LDPC

constraint graphG is a valid codeword in some finite cover



Definition 3.1: Let e be the smallest number such thahas the following components;, = ji,7, = j2,...,7, =
the sum of thee largest components in the matrix’, say, ., r;, =0, for i ¢ {i1,is, ...,i.}, will cause the decoder to

t{;’gi\l& ef:gzrﬁ i géevtﬂﬁ'e;_x;riesdy%r#ei%ﬁ% cﬁéglnglfgoglé;i—::g oJnake an error and chooge over the all-zero codeword.
Observe that for a codeword, the above weight definition

B 2e, WLy gyt F figge = Z#il,iz _____ L g0, reduces to the Hamming weight. K represents a codeword

B O T a-fi0- ¢, then exactlyw = wty(c), the Hamming weight o€, rows

in F’ contain the entryl in some column, and the remaining

entries inF’ are zero. Furthermore, the matixhas the entry

in the first column of these rows and has the entry in

e first column of the remaining rows. Therefore, from the

(%eight definition of ", e = 3 and the weight of" is 2¢ = w.

Qi1 ,in,. e

Note that in the above definition, none of thg's, for
k = 1,2,...,e, are equal to zero, and all thg’s, for
k = 1,2,...,e, are distinct. That is, we choose at mos?h
one component from every row df’ when choosing the
largest components. The following sub-section provides

explanation for the above definition of weight. D. TREEBOUND ON THE g-ARY SYMMETRIC CHANNEL

C. PSEUDOCODEWORD WEIGHT FORj-ARY LDPC CODES We define theg-ary minimum pseudocodeword weight of

ON THE ¢-ARY SYMMETRIC CHANNEL G (or, minimum pseudoweight) as in the binary case, i.e., as
Suppose the all-zero codeword is sent acrogsaay sym- the minimum weight of a pseudocodeword among all finite

metric channel and the vectar = (ro,r1,...,r,_1) is COVers ofG, and denote this a@uin(G) OF wmin When it is

received. Then errors occur in positions where# 0. Let clear that we are referring to the graph

S = {i| r; # 0} and letS® = {i| »; = 0}. The distance

_ ! Theorem 3.1: LetG be a d-left regular bipartite graph
betweenr and a pseudocodeword is defined as

with girth ¢ that represents a-ary LDPC codeC. Then
-1 the minimum pseudocodeword weigtt,;,, on the g-ary
d(r,F) = X(ri # k) fiks (2) symmetric channel is lower bounded as

0

n

|
—
)

Il
=)
el
Il

o | . | min > T(d,
where x(P) is an indicator function that is equal toif the Wain 2 T(d, 9)
propositionP is true and is equal t0 otherwise.

The distance betweanand the all-zero codewor@ is Proof.

a(r,0) = 3" x(ri £0)
1=0

which is the Hamming weight of and can be obtained from
equation [[R).

The iterative decoder chooses in favor Bfinstead of the
all-zero codeword whend(r, F) < d(r,0). That is, if f1 2 fr1

Z (1= fio) + Z(l — fir) < Z 1 Fig. 2. Single constraint

i€Se €S €S

The condition for choosingF’ over the all-zero codeword

reduces to
{ > (1—fio) < wa}

i€S° €S
Hence, we define the weight of a pseudocodewBrih the

following manner.
Let ¢ be the smallest number such that the sum
of the e largest components In the matri¢”’, say,

fil-,jl , f:l'27j2, ey ficyje’ exceed{:iiih?z,___,ie (1 - .].ciyo). Then
the weight of I on thep-ary symmetric channel is defined as

wesc (F) = { - o e e :Zi?ﬁhﬂé ----- ie(] ~Ji0)
a -

2e =1, it fiy 5+t fieje > iig g, ie(] = fi,0)

Note that in the above definition, none of thg's, for
k = 1,2,...,e, are equal to zero, and all thg’s, for
k=1,2,..., e, are distinct. That is, we choose at most one
component in every row of” when picking thee largest
components. The received vectore= (rg,71,...,7,—1) that

code.

(1= fio) <
> 21— fio0)

d Root

Fig. 3. Local tree structure fordleft regular
graph.

d(1 = fo0) < >jer, (L= fi0),
d(d—1)(1— fo,0) S ZjeLl (1—=fi0)



>3 (1- fio)

Case: § odd. Consider a single constraint node with all s

variable node neighbors as shown in Figlile 2. Then, forWe can then lower bound this further using the inequality
i=0,1,....,r—1andk = 0,1,...,p — 1, the following in @) as
inequality holds:
auatly 2((1 = firo) + (1= fizo) + ...+ (1= fi.0))
1—fio) < 1—f; 3 oo
( fﬁ)-;( f50) 3 >H+d+dd—1)+...+dd—1)"T]1— foo)
Now let us consider &-left regular LDPC constraint graph Since we assumed that — foo) is the maximum among
representing a-ary LDPC code. We will enumerate the LDPC(! — fi.0) over alli, we have
constraint graph as a tree from an arbitrary root variabtéeno o, 1 _ >2(1=fr )+ (0= Ffuo)d...+(1—F
as shown in FigurEl3. LeF be a pseudocodeword matrix for (1= foo) 2 2= fur0) + (1 = fiz0) D (1= fie0))
this graph. Without loss of generality, let us assume thatth > [1+d+d(d—1)+...+d(d—1)"T (1 = foo)
component(l — fy o) corresponding to the root node is the .= )
maximum among all1 — f; ) over alli. This yields the desired bound
_ Applying Fhe inequality in[[B) at every cons_traint node in wesc(F)=2e>1+d+dd—1)+...+d(d— 1)97*6.
first constraint node layer of the tree, we obtain
Since the pseudocodeword was chosen arbitgary, we also
d(1 - foo) < Z (1= fio0) havewin > 14+ d+d(d—1)+...+d(d—1)“T . The case

j€Lo ¢ even is treated similarly. ]

where L, corresponds to variable nodes in first level of the gjnce the inequality ind3), in the proof of Theor&ml3.1, is
tree. Subsequent application of the inequality th (3) to t"t?pically not tight, the above bound is rather loose.
second layer of constraint nodes in the tree yields

E. PSEUDOCODEWORD WEIGHT ON THEAWGN CHANNEL

dd=1){1 = foo) < Z (L= o), Following the definition of effective distancé?;(F,c),
g€l between a pseudocodewdrdand a codeword on the AWGN
Continuing this process until Iayelrgzs, we obtain channel, presented in [5], the weight of a pseudocodewbrd
» is given bydgff(F, 0). On simplifying the expression in [5],
d(d—1)7 (1= foo) < Z (I-fj0) the weight of pseudocodewor on the AWGN channel is
j€Lgs given by
Since the LDPC graph has girth the variable nodes up to _ (Z?:ol an:lo fimm?)?

(+)

level L,_s are all distinct. The above inequalities yield: wg-awen (F) SIS fimm)?
-6 The above weight definition assumesary pulse amplitude
A+d+dd-1)+...+d(d-1)T](1~ foo) modulation, i.e., the symbols sent across the channel gelon
< Z (1= fio) < Z (1= fio) (4) to the signal se{0,1,2,...,q— 1}.
ie{0}ULoU...L ,_¢ all & Now if we assume a two-dimensional signal set for trans-
o mission on the memoryless AWGN channel, then under the as-
Let e the smallest number such that there arenaximal Sumption that the re5u|ting Signa|-space code is georaﬁyic

COMPONeNtSs, ;.. fi, jas fisjss - - fiejor OF 1,22, . dc @l uniform [11], we can derive the weight of a pseudocodeword
distinct andjy, jz, ..., je € {1,2,...,¢ — 1}, in I’ (the sub-  as the effective distance df from the all-zero codeword
matrix of F' excluding the first column irf") such that in signal space. The pseudocodeword weight'ds given by
o o o _f R—M)?
Jogi ¥ fiaga o ¥ s 2 L Z _ (1= fio) wy—awen (F) = (R—M)” )
i¢{i1,i2,i3,...,0¢ } Vv

Then, since none of thg,’s, k = 1,2, ..., e, are zero, we Where (z,,y) is the coordinate in the two-dimensional

have signal set corresponding to the symhbwole {0,1,...,q—1},
(1= fir0)+ (L= fin0)F A= Ffir0) = firjote o+ fir i R=>"1>" fim(xl, +v2) — 25 — ),
7 m
> (1 - fio)
J m m

Hence we have that

V=251 fimm) =200+ 3 Fmtim) — 10)?),
21~ firo) + (1= fino) -+ (1= firp)) Z 2 ’ Z; gl 0



andj € {0,...n—1}.

sinced iy S0l fimm? = Y0y (fia A figo1) =

Note that forg-ary pulse amplitude modulation as describeE?;ol(l — fi.0), we have

above, this weight definition reduces to the ondin
Suppose we assungePSK modulation, then we hawusg,, =
cos(Z™) and y,, = sin(Q’TTm). Note thatxzy = cos(0) = 1

and yo = sin(0) = 0. In addition, R = 0. Therefore, the

0
Weinglt of a pseudocodewoil on the AWGN channel under

¢-PSK modulation is given byw,—awen (F) = M72 where

M = QZ((Z fi,m cos(
V:4Z [fo,m+2( Z

j m,m/’;m#“m/

-2 Z fj,m cos(

27'rm)) —1
q

27 (m —m')

q

)

f3.m fj,m (cos(

2mm

q

)+1}

F. TREE-BOUND OF ¢-ARY LDPC cODES ON THEAWGN
CHANNEL UNDER ¢-PAM

Theorem 3.2 {-ary pulse amplitude modulation): Let G
be ad-left regular bipartite graph with girthy that represents

1= fo,0
Now, the inequality[{) from the proof of Theordm13.1 yields
the desired lower boun@,_ awen (F) > 1+d+d(d—1)+
oot d(d - 1)5’%G for the casey/2 odd. (The casg/2 even
follows similarly.) [ ]

wg—awan (F) >

IV. CONCLUSIONS

This paper examined the pseudocodeword weightg-of
ary LDPC codes on thg-ary symmetric channel and the
AWGN channel. A definition for the pseudocodeword weight
was derived on the-ary symmetric channel and the AWGN
channel with two-dimensionaj-ary modulation. The tree
bound from [6] for binary LDPC codes was extended to
the g-ary case. More sophisticated bounding techniques for
the pseudocodeword weight gfary LDPC codes remains
an open problem. It would be useful to also derive a cost-
function of the min-sum decoder far-ary LDPC codes to
give an insight into which pseudocodewords are problematic

a g-ary LDPC codeC. Then the minimum pseudocodeworéfr iterative decoding.

weightwy,;,, on the AWGN channel is lower bounded as

Wmin Z T(dv g)

(Note that we assume a slightly unconventional definiti
of g-ary PAM in that the symboin is mapped to the point
rather than to the poirm—1 as in the conventional definition
form e {0,1,2,...,q—1}.)

Proof: Let F' be a pseudocodeword i&. Without loss
of generality, let(1 — fo,0) be the maximum ofl — f ;) over
all <. We will first lower bound the weightvg_ swen (F) as

-1 -1
N (Z?:o anzo i-,mm2)2

Wg—awan (F)

Z?;ol (qun;lo fi,mm)2
> (Z?:_Ol an_:lo fi,me) (**)
- 1— foo
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