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Abstract— Pseudocodewords ofq-ary LDPC codes are exam-
ined and the weight of a pseudocodeword on theq-ary symmetric
channel is defined. The weight definition of a pseudocodeword
on the AWGN channel is also extended to two-dimensionalq-ary
modulation such as q-PAM and q-PSK. The tree-based lower
bounds on the minimum pseudocodeword weight are shown to
also hold for q-ary LDPC codes on these channels.

I. I NTRODUCTION

Low density parity check (LDPC) codes have been shown
to achieve near-capacity performance over several communica-
tion channels. Typically, they are binary linear codes described
by sparse, randomly, generated parity-check matrices. In [3]
and [4], the performance of non-binary LDPC codes, defined
over larger finite fields and over integer rings, is investigated
and compared with that of binary LDPC codes. For several
applications such as coded-modulation, codes over higher al-
phabets are more appropriate for system design. The popularity
of LDPC codes is due to their efficient and simple decoding.
Graph-based message passing iterative decoders have been
shown to achieve near-capacity performance with complexity
only linear in the length of the code. However, these iterative
decoders are sub-optimal and discrepancies between iterative
and maximum-likelihood (ML) decoding performance of short
to moderate block length binary LDPC codes has been at-
tributed to the presence of pseudocodewords of the LDPC
constraint graphs (or, Tanner graphs) [8]. Analogous to therole
of minimum Hamming distance,dmin, in ML-decoding, the
minimum pseudocodeword weight,wmin, has been shown to
be a leading predictor of performance in iterative decoding[8].
Furthermore, it has been observed that pseudocodewords with
weight wmin < dmin are especially problematic for iterative
decoding [6]. In this paper, we define pseudocodeword weights
for q-ary LDPC codes when the channel is a AWGN channel
or a q-ary symmetric channel and obtain lower bounds for the
minimum pseudocodeword weight.

The following section shows a tree-based lower bound on
the minimum pseudocodeword weight of binary LDPC codes.
In Section III, the pseudocodeword weight ofq-ary LDPC
codes is defined for the AWGN and theq-ary symmetric
channels. Subsequently, the tree-based lower bound for binary
LDPC codes is extended to theq-ary setting. We note here
that we restrict our analysis to pseudocodewords arising from

finite-degree graph covers as described in [8]. Since these
pseudocodewords are the same as those occurring in the con-
text of linear programming (LP) decoding, the results obtained
here are applicable to pseudocodewords of LP decoding as
well. Section IV summarizes the paper and outlines some
other techniques that are being investigated for bounding the
pseudocodeword weight ofq-ary LDPC codes.

II. B INARY LDPC CODES

Definition 2.1: The tree bound of ad left (variable node)
regular bipartite LDPC constraint graph with girthg is defined
as

T (d, g) :=

{

1 + d + d(d − 1) + d(d − 1)2 + . . . + d(d − 1)
g−6
4 ,

g
2

odd ,

1 + d + d(d − 1) + . . . + d(d − 1)
g−8
4 + (d − 1)

g−4
4 ,

g
2

even.
(1)

Theorem 2.1: LetG be a bipartite LDPC constraint graph
with smallest left (variable node) degreed and girth g. Then
the minimum pseudocodeword weightwmin is lower bounded
by

wmin ≥ T (d, g).

on the additive white Gaussian noise (AWGN) channel and the
binary symmetric channel (BSC).

The proof of this result is presented in [6]. The tree bound
was originally derived by Tanner in [10] to lower-bound the
minimum distance of the code. Since the set of pseudocode-
words includes all codewords, we havewmin ≤ dmin.

III. N ON-BINARY LDPC CODES

Let H be a parity check matrix representing aq-ary LDPC
codeC. Thus,H is sparse in the number of non-zero entries.
The corresponding LDPC constraint graphG that representsH
is an incidence graph of the parity check matrix as in the binary
case. However, each edge ofG is now assigned a weight which
is the value of the corresponding non-zero entry inH . (In [3],
[2], LDPC codes overGF (q) are considered for transmission
over binary modulated channels, whereas in [4], LDPC codes
over integer rings are considered for higher-order modulation
signal sets.) For convenience, we consider the special case
wherein each of these edge weights are equal to one. This is
the case when the parity check matrix has only zeros and ones.
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Furthermore, whenever the LDPC graphs have edge weights
of unity for all the edges, we refer to such a graph as a binary
LDPC constraint graph representing aq-ary LDPC codeC.

A. Bound on minimum distance

We first show that if the LDPC graph corresponding toH
is d-left (variable-node) regular, then the same tree bound of
Theorem 2.1 holds. That is,

Lemma 3.1: IfG is a d-left regular bipartite LDPC con-
straint graph with unity edge weights, girthg, and represents
a q-ary LDPC codeC. Then the minimum distance of theq-ary
LDPC codeC is lower bounded as

dmin ≥ T (d, g).

Proof: The proof is essentially the same as in the binary
case. Enumerate the graph as a tree starting at an arbitrary
variable node. Furthermore, assume that a codeword inC
contains the root node in its support. The root variable node
(at layerL0 of the tree) connects tod constraint nodes in the
next layer (layerL1) of the tree. These constraint nodes are
each connected to some sets of variable nodes in layerL2, and
so on. Since the graph has girthg, the nodes enumerated up to
layerL g−2

2
when g

2 is odd (respectively,L g
2

when g
2 is even)

are all distinct. Since the root node belongs to a codeword,
sayc, it assumes a non-zero value inc. Since the constraints
must be satisfied at the nodes in layerL1, at least one node in
LayerL2 for each constraint node inL1 must assume a non-
zero value inc. (This is true under the assumption that an edge
weight times a (non-zero) value, assigned to the corresponding
variable node, is non-zero in the code alphabet.)

Under the above assumption, there are at leastd variable
nodes (i.e., at least one for each node in layerL1) in layerL2

that are non-zero inc. Continuing this argument, it is easy to
see that the number of non-zero components inc is at least
1 + d + d(d − 1) + . . . + d(d − 1)

g−6
4 when g

2 is odd, and
1 + d+ d(d − 1) + . . .+ d(d − 1)

g−8
4 + (d − 1)

g−4
4 when g

2
is even. This proves the desired lower bound.

Remark 3.1:A non-zero edge-weight times a (non-zero)
value, assigned to the corresponding variable node, may be
zero in certain code alphabets. Since we have chosen the edge
weights to be unity, such a case will not arise here. But also
more generally, such cases will not arise when the alphabet and
the arithmetic operations correspond to finite-field operations.
However, when working over other structures, such as finite
integer rings and more general groups, such cases could arise.

We note here that in general this lower bound is not met
and typically q-ary LDPC codes that have the above graph
representation have minimum distances larger than the above
lower bound.

B. Pseudocodewords ofq-ary LDPC codes

Recall from [8], [6] that a pseudocodeword of an LDPC
constraint graphG is a valid codeword in some finite cover
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Fig. 1. A q-ary symmetric channel.

of G. To define a pseudocodeword for aq-ary LDPC code,
we will restrict the discussion to LDPC constraint graphs that
have edge weights of unity among all their edges – in other
words, binary LDPC constraint graphs that representq-ary
LDPC codes. A finite cover of a graph is defined in a natural
way as in [8] wherein all edges in the finite cover also have
an edge weight of unity. For the rest of this section, letG be
a LDPC constraint graph of aq-ary LDPC codeC of block
length n, and let the weights on every edge ofG be unity.
We define a pseudocodewordF of G as an× q matrix of the
form

F =











f0,0 f0,1 f0,2 . . . f0,q−1

f1,0 f1,1 f1,2 . . . f1,q−1

...
...

...
...

...
fn−1,0 fn−1,1 fn−1,2 . . . fn−1,q−1











,

where the pseudocodewordF forms a valid codeword̂c in a
finite coverĜ of G andfi,j is the fraction of variable nodes
in the ith variable node cloud, for0 ≤ i ≤ n − 1, of Ĝ that
have the assignment (or, value) equal toj, for 0 ≤ j ≤ q− 1,
in ĉ.

A q-ary symmetric channel is shown in Figure 1. The input
and the output of the channel are random variables belonging
to a q-ary alphabet that can be denoted as{0, 1, 2, . . . , q− 1}.
An error occurs with probabilityǫ, which is parameterized by
the channel, and in the case of an error, it is equally probable
for an input symbol to be altered to any one of the remaining
symbols.

Following the definition of pseudocodeword weight for
the binary symmetric channel [5], we provide the following
definition for the weight of a pseudocodeword on theq-
ary symmetric channel. For a pseudocodewordF , let F ′

be the sub-matrix obtained by removing the first column
in F . (Note that the first column inF contains the entries
f0,0, f1,0, f2,0, . . . , fn−1,0.) Then the weight of a pseudocode-
wordF on theq-ary symmetric channel is defined as follows.



Definition 3.1: Let e be the smallest number such that
the sum of thee largest components in the matrixF ′, say,
fi1,j1 , fi2,j2 , . . . , fie,je , exceeds

∑

i6=i1,i2,...,ie
(1− fi,0). Then

the weight ofF on theq-ary symmetric channel is defined as

wqSC (F ) =

{

2e, if fi1,j1
+ . . . + fie,je

=

∑

i6=i1,i2,...,ie
(1 − fi,0),

2e − 1, if fi1,j1
+ . . . + fie,je

>

∑

i6=i1,i2,...,ie
(1 − fi,0).

Note that in the above definition, none of thejk ’s, for
k = 1, 2, . . . , e, are equal to zero, and all theik’s, for
k = 1, 2, . . . , e, are distinct. That is, we choose at most
one component from every row ofF ′ when choosing thee
largest components. The following sub-section provides an
explanation for the above definition of weight.

C. PSEUDOCODEWORD WEIGHT FORq-ARY LDPC CODES

ON THE q-ARY SYMMETRIC CHANNEL

Suppose the all-zero codeword is sent across aq-ary sym-
metric channel and the vectorr = (r0, r1, . . . , rn−1) is
received. Then errors occur in positions whereri 6= 0. Let
S = {i| ri 6= 0} and letSc = {i| ri = 0}. The distance
betweenr and a pseudocodewordF is defined as

d(r, F ) =

n−1
∑

i=0

q−1
∑

k=0

χ(ri 6= k)fi,k, (2)

whereχ(P ) is an indicator function that is equal to1 if the
propositionP is true and is equal to0 otherwise.

The distance betweenr and the all-zero codeword0 is

d(r,0) =
n−1
∑

i=0

χ(ri 6= 0)

which is the Hamming weight ofr and can be obtained from
equation (2).

The iterative decoder chooses in favor ofF instead of the
all-zero codeword0 whend(r, F ) ≤ d(r,0). That is, if

∑

i∈Sc

(1 − fi,0) +
∑

i∈S

(1 − fi,ri) ≤
∑

i∈S

1

The condition for choosingF over the all-zero codeword
reduces to

{

∑

i∈Sc

(1− fi,0) ≤
∑

i∈S

fi,ri

}

Hence, we define the weight of a pseudocodewordF in the
following manner.

Let e be the smallest number such that the sum
of the e largest components in the matrixF ′, say,
fi1,j1 , fi2,j2 , . . . , fie,je , exceeds

∑

i6=i1,i2,...,ie
(1− fi,0). Then

the weight ofF on thep-ary symmetric channel is defined as

wqSC(F ) =

{

2e, if fi1,j1
+ . . . + fie,je

=

∑

i6=i1,i2,...,ie
(1 − fi,0)

2e − 1, if fi1,j1
+ . . . + fie,je

>

∑

i6=i1,i2,...,ie
(1 − fi,0)

Note that in the above definition, none of thejk ’s, for
k = 1, 2, . . . , e, are equal to zero, and all theik’s, for
k = 1, 2, . . . , e, are distinct. That is, we choose at most one
component in every row ofF ′ when picking thee largest
components. The received vectorr = (r0, r1, . . . , rn−1) that

has the following components:ri1 = j1, ri2 = j2, . . . , rie =
je, ri = 0, for i /∈ {i1, i2, . . . , ie}, will cause the decoder to
make an error and chooseF over the all-zero codeword.

Observe that for a codeword, the above weight definition
reduces to the Hamming weight. IfF represents a codeword
c, then exactlyw = wtH(c), the Hamming weight ofc, rows
in F ′ contain the entry1 in some column, and the remaining
entries inF ′ are zero. Furthermore, the matrixF has the entry
0 in the first column of thesew rows and has the entry1 in
the first column of the remaining rows. Therefore, from the
weight definition ofF , e = w

2 and the weight ofF is 2e = w.

D. TREE BOUND ON THE q-ARY SYMMETRIC CHANNEL

We define theq-ary minimum pseudocodeword weight of
G (or, minimum pseudoweight) as in the binary case, i.e., as
the minimum weight of a pseudocodeword among all finite
covers ofG, and denote this aswmin(G) or wmin when it is
clear that we are referring to the graphG.

Theorem 3.1: LetG be a d-left regular bipartite graph
with girth g that represents aq-ary LDPC codeC. Then
the minimum pseudocodeword weightwmin on the q-ary
symmetric channel is lower bounded as

wmin ≥ T (d, g)

Proof:

f0

f1 f2 fr−1

Fig. 2. Single constraint
code.

(1− fi,0) ≤
∑

j 6=i(1− fj,0)

d

d−1d−1
L 0

L 1

Root

Fig. 3. Local tree structure for ad-left regular
graph.
d(1− f0,0) ≤

∑

j∈L0
(1− fj,0),

d(d−1)(1−f0,0) ≤
∑

j∈L1
(1−fj,0)

:



Case: g
2 odd. Consider a single constraint node withr

variable node neighbors as shown in Figure 2. Then, for
i = 0, 1, . . . , r − 1 and k = 0, 1, . . . , p − 1, the following
inequality holds:

(1− fi,0) ≤
∑

j 6=i

(1 − fj,0) (3)

Now let us consider ad-left regular LDPC constraint graph
representing aq-ary LDPC code. We will enumerate the LDPC
constraint graph as a tree from an arbitrary root variable node,
as shown in Figure 3. LetF be a pseudocodeword matrix for
this graph. Without loss of generality, let us assume that the
component(1 − f0,0) corresponding to the root node is the
maximum among all(1− fi,0) over all i.

Applying the inequality in (3) at every constraint node in
first constraint node layer of the tree, we obtain

d(1 − f0,0) ≤
∑

j∈L0

(1− fj,0),

whereL0 corresponds to variable nodes in first level of the
tree. Subsequent application of the inequality in (3) to the
second layer of constraint nodes in the tree yields

d(d− 1)(1− f0,0) ≤
∑

j∈L1

(1− fj,0),

Continuing this process until layerL g−6
4

, we obtain

d(d− 1)
g−6
4 (1− f0,0) ≤

∑

j∈L g−6
4

(1− fj,0)

Since the LDPC graph has girthg, the variable nodes up to
level L g−6

4
are all distinct. The above inequalities yield:

[1 + d+ d(d− 1) + . . .+ d(d− 1)
g−6
4 ](1− f0,0)

≤
∑

i∈{0}∪L0∪...L g−6
4

(1 − fi,0) ≤
∑

all i

(1− fi,0) (4)

Let e the smallest number such that there aree maximal
componentsfi1,j1 , fi2,j2 , fi3,j3 , . . . , fie,je , for i1, i2, . . . , ie all
distinct andj1, j2, . . . , je ∈ {1, 2, . . . , q − 1}, in F ′ (the sub-
matrix of F excluding the first column inF ) such that

fi1,j1 + fi2,j2 + . . .+ fie,je ≥
∑

i/∈{i1,i2,i3,...,ie}

(1− fi,0)

Then, since none of thejk ’s, k = 1, 2, . . . , e, are zero, we
have

(1−fi1,0)+(1−fi2,0)+ . . .+(1−fie,0) ≥ fi1,j1 + . . .+fie,je

≥
∑

i/∈{i1,i2,i3,...,ie}

(1 − fi,0)

Hence we have that

2((1− fi1,0) + (1− fi2,0) + . . .+ (1− fie,0))

≥
∑

all i

(1− fi,0)

We can then lower bound this further using the inequality
in (4) as

2((1− fi1,0) + (1− fi2,0) + . . .+ (1− fie,0))

≥ [1 + d+ d(d− 1) + . . .+ d(d− 1)
g−6
4 ](1− f0,0)

Since we assumed that(1 − f0,0) is the maximum among
(1− fi,0) over all i, we have

2e(1− f0,0) ≥ 2((1− fi1,0) + (1− fi2,0) + . . .+ (1− fie,0))

≥ [1 + d+ d(d− 1) + . . .+ d(d− 1)
g−6
4 ](1− f0,0)

This yields the desired bound

wqSC(F ) = 2e ≥ 1 + d+ d(d− 1) + . . .+ d(d− 1)
g−6
4 .

Since the pseudocodewordF was chosen arbitrary, we also
havewmin ≥ 1 + d+ d(d− 1) + . . .+ d(d− 1)

g−6
4 . The case

g
2 even is treated similarly.

Since the inequality in (3), in the proof of Theorem 3.1, is
typically not tight, the above bound is rather loose.

E. PSEUDOCODEWORD WEIGHT ON THEAWGN CHANNEL

Following the definition of effective distanced2eff (F, c),
between a pseudocodewordF and a codewordc on the AWGN
channel, presented in [5], the weight of a pseudocodewordF
is given byd2eff (F,0). On simplifying the expression in [5],
the weight of pseudocodewordF on the AWGN channel is
given by

wq−AWGN (F ) =
(
∑n−1

i=0

∑q−1
m=0 fi,mm2)2

∑n−1
i=0 (

∑q−1
m=0 fi,mm)2

(∗)

The above weight definition assumesq-ary pulse amplitude
modulation, i.e., the symbols sent across the channel belong
to the signal set{0, 1, 2, . . . , q − 1}.

Now if we assume a two-dimensional signal set for trans-
mission on the memoryless AWGN channel, then under the as-
sumption that the resulting signal-space code is geometrically
uniform [11], we can derive the weight of a pseudocodeword
F as the effective distance ofF from the all-zero codeword
in signal space. The pseudocodeword weight ofF is given by

wq−AWGN (F ) =
(R−M)2

V
,

where (xm, ym) is the coordinate in the two-dimensional
signal set corresponding to the symbolm ∈ {0, 1, . . . , q− 1},

R =
∑

j

[
∑

m

fj,m(x2
m + y2m)− x2

0 − y20 ],

M = 2
∑

j

[(
∑

m

fj,mxmx0)− x2
0 + (

∑

m

fj,mymy0)− y20 ],

V = 4
∑

j

[((
∑

m

fj,mxm)−x0)
2+

∑

j

((
∑

m

fj,mym)− y0)
2],



andj ∈ {0, . . . n− 1}.
Note that forq-ary pulse amplitude modulation as described

above, this weight definition reduces to the one in(∗).
Suppose we assumeq-PSK modulation, then we havexm =

cos(2πmq ) and ym = sin(2πmq ). Note thatx0 = cos(0) = 1
and y0 = sin(0) = 0. In addition,R = 0. Therefore, the
weight of a pseudocodewordF on the AWGN channel under
q-PSK modulation is given by:wq−AWGN (F ) = M2

V , where

M = 2
∑

j

((
∑

m

fj,m cos(
2πm

q
)) − 1)

V = 4

∑

j

[

∑

m

f
2
j,m + 2(

∑

m,m′;m 6=m′

fj,mfj,m′ (cos(
2π(m − m′)

q
)))

−2

∑

m

fj,m cos(
2πm

q
) + 1

]

.

F. TREE-BOUND OF q-ARY LDPC CODES ON THEAWGN
CHANNEL UNDER q-PAM

Theorem 3.2 (q-ary pulse amplitude modulation): Let G
be ad-left regular bipartite graph with girthg that represents
a q-ary LDPC codeC. Then the minimum pseudocodeword
weightwmin on the AWGN channel is lower bounded as

wmin ≥ T (d, g).

(Note that we assume a slightly unconventional definition
of q-ary PAM in that the symbolm is mapped to the pointm
rather than to the point2m−1 as in the conventional definition,
for m ∈ {0, 1, 2, . . . , q − 1}.)

Proof: Let F be a pseudocodeword inG. Without loss
of generality, let(1−f0,0) be the maximum of(1−f0,i) over
all i. We will first lower bound the weightwq−AWGN (F ) as

wq−AWGN (F ) =
(
∑n−1

i=0

∑q−1
m=0 fi,mm2)2

∑n−1
i=0 (

∑q−1
m=0 fi,mm)2

≥
(
∑n−1

i=0

∑q−1
m=0 fi,mm2)

1− f0,0
(∗∗)

This lower bound is obtained by showing that the denomi-
nator in the weight expression can be upper bounded by using
the Cauchy-Schwartz inequality as follows

n−1
∑

i=0

(

q−1
∑

m=0

fi,mm)2

≤ (

n−1
∑

i=0

(fi,1 + fi,2 + . . .+ fi,q−1))(

n−1
∑

i=0

q−1
∑

m=0

fi,mm2).

Further, sincefi,1 + fi,2 + . . .+ fi,q−1 = 1− fi,0 ≤ 1− f0,0,
we obtain the lower bound in(∗∗).

Since
∑n−1

i=0

∑q−1
m=0 fi,mm2 ≥

∑n−1
i=0 (fi,1+ . . .+fi,q−1) =

∑n−1
i=0 (1− fi,0), we have

wq−AWGN (F ) ≥

∑n−1
i=0 (1 − fi,0)

1− f0,0

Now, the inequality (4) from the proof of Theorem 3.1 yields
the desired lower boundwq−AWGN (F ) ≥ 1+ d+ d(d− 1)+

. . .+ d(d − 1)
g−6
4 for the caseg/2 odd. (The caseg/2 even

follows similarly.)

IV. CONCLUSIONS

This paper examined the pseudocodeword weight ofq-
ary LDPC codes on theq-ary symmetric channel and the
AWGN channel. A definition for the pseudocodeword weight
was derived on theq-ary symmetric channel and the AWGN
channel with two-dimensionalq-ary modulation. The tree
bound from [6] for binary LDPC codes was extended to
the q-ary case. More sophisticated bounding techniques for
the pseudocodeword weight ofq-ary LDPC codes remains
an open problem. It would be useful to also derive a cost-
function of the min-sum decoder forq-ary LDPC codes to
give an insight into which pseudocodewords are problematic
for iterative decoding.
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