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~ Abstract— In this work we improve on the bounds presented multiple edges, i.e. a multigraph. At certain places we righ
in [1] for network coding gain in the undirected case. A tightened  refer to the sets of vertices and edges of a grpfespecially
bound for the undirected multicast problem with three terminals if they are not explicitly specified) a¥ (H) and E(H),

is derived. An interesting result shows that with fractiond tivelv. A lticast network with ode 1V
routing, routing throughput can achieve at least 75% of the respectively. A muiticast network with a source node

coding throughput. A tighter bound for the general multicast and a set of sink® = {Ry,..., Rz} €V — s is a network
problem with any number of terminals shows that coding gain 8 where s broadcasts data to all the receiversin At certain

strictly less than 2. Our derived bound depends on the number places in this work we might not distinguish between a source
of Ferm_lnals in the multicast r_1etwork and approaches 2 for or a sink node and simply refer to such a node aerminal.
arbitrarily large number of terminals. If [R| = V — 1 then we callG a broadcast network

. INTRODUCTION We assume that edges capacities are defined over the same

Network coding gain,®, is defined as the improvemembase as the source symbols. In other words, an edge with
in network throughput due to coding compared to routing@Pacity C' can carry at mosC'" symbols. Integer routing
throughput. It is well known that network coding increades t (hroughputrefers to the routing throughput achieved byingu -
space over which throughput is maximized and thus provideglar symbols through edges of the network. Considering
a capacity at least as high as the routing one. In this Wom’ulnple time units in a netwprk, fractional rqutmg thrdymut N
capacity of a network refers to the maximum achievabf€notes the throughput achieved by upscaling edge cagmciti
throughput under a certain coding scheme (routing can P¥7 divided byn. Such a routing scheme may also be referred
considered as a coding scheme with identity mapping). F&as vector routing and it was shown in [8] that doubling exdge
a set of sinks in a directed multicast network, it was showfPacities can result in a throughput more than twice as.good
in [2] that if the network can achieve a certain throughpttWe et i denote the number of symbols a multicast network
to each receiver individually, then it can achieve the san§@n deliver from the source to all sinks, we can define coding
throughput to all the sinks simultaneously by allowing eggli @nd fractional and integer routing capacities as:

at intermediate nodes and thus, achieve a throughput gain7 _ sup{h/n € QT : h/n is an achievable coding r@te

This has ignited an area of research trying to answer many L : . .
guestions; one of them is how much gain is possible? There™” ~ SuP{h/" € Q7" : h/nis an achievable routing ra}te

has been some instances in the literature where the networf = Sup{h € Z* : h is an achievable integer routing rte

coding gain can be unbounded for directed networks [Jlherez+ andQ+ are the sets of positive integers and positive
[4]. Relating coding gain to the integrality gap of lineataiional numbers, respectively. A fractional routing solee
programming formulation for minimum weight Steiner tregith ., — 2 will be referred to as half integer routing and
[5], further examples of directed networks with arbitrahigh ¢ corresponding capacity will be denoted by. In the
coding gain can be obtained [6] [7]. For undirected networkg)|iowing, if a statement is true for both integer and fracal
it was shown in [1] that network coding gain is boundeijouting, we may drop the subscripts and simply writeThe

by 2 when half integer routing is possible. Such a dramatigyin in throughput due to coding compared to integer, half-
difference betweeq directed and undirected mqltlcastqlédsv integer and fractional routing is defined@s= 2, ¢, = 2
results because directed networks can be oriented in a way i Tz Ty
such that routing can offer little compared to coding. Irsthifd®; = =, respectively. _ _
work we further investigate achievable routing througls@utd ~ For @ graphG; = (V;, E), an induced subgrapli is called
derive tighter bounds on the possible coding gain. a spanning tree if and only if 7' is a tree and/(T') = V(G).
This work is organized as follows. Section Il introduce§0r A €V, a subtre€l” of G is called anA-Seiner tree (A-
some necessary definitions. In Section 1ll we use a Steinepanning tree) if and only ift € V/(T'). Steiner tree packing

tree packing argue to present bounds on the achievablegoufiefers to finding the maximum number of edge disjoiw

throughput and derive upper bounds on coding gain. Steiner trees irt. . _
Edge connectivity, A\(G), of a connected grapfi is the size
Il. DEFINITIONS of the smallest sef' C E(G) such thaiG — F is disconnected

An undirected networlG on V nodes andt links can be (G—F denotes the graph induced fragby deleting all edges
modeled as an undirected grapt{V, E) that might contain e € F). A graphG is [-edge connected for any integeK
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AMG). For A C V(G), A\a(A) denotes the edge connectivity T > 1]12(4) ~ 3J
of A in G. The minimum size of a cut between a pair of z T2 8
verticesu,v € V(G) is the edge connectivitp (u, v), of u s M)
andwv in G which by Menger’s theorem equals the maximum Fo= 4

number of edge disjoint paths betweerand v. A cut-edge where ¢ is arbitrarily small for arbitrarily large n and A(A)
(bridge) is an edge € E(G) such thatZ — e is disconnected s the connectivity of A in G.

(clearly, A(G) must be 1 for such an edge to exist). The degrggoof: The proof makes use of the following theorem
of u € V' is the number of incident edges #oand is denoted Theorem 2 (Kriesell, [10]). For any integer k > 1, let A =
asd(u). If the underlying graphG is clear from the context, {v1,v2,v3} be {8’“—+3J-edge connected in G, then there exists
we might drop the subscrigt from the previous quantities. g system of k edgg disioint A-Steiner treesin G.

Lete =rz and f = xt be two edges iG(V, E). Slitting | et A = {v,,v0,v3} be the set of terminals and let be

off the pair of edges and f refers to deleting: and f and  \(A)-edge connected ig. Noting that any positive integer,
introducing a new edgg = rt. We refer to the pair, f ; can be written as

andg as the splitted and the splitting edges, respectively. We

also denote the resulting graph after splitting off edgeg a = dq+b; for some choiceq € {0} UZ",

asG¢f. A pair of edges, f incident with z is admissible if de{1,2,...,a} and b€ {0,1,2,...,d—1} (1)
Ages (u,v) = Ag(u, v) for everyu # v € V — z. An incident .

edge tox is admissible if it belongs to an admissible pair§30n5|der,

otherwise it is non-admissible. A complete splittingzat V' 8k+3| |(6+2)k+3]| i 2k +3 VEe 7zt
(whend(z) is even) refers to: 1) repeatedly splitting off pairs| ¢ o 6 =R 6 ’ €

of incident edges ta: until z is isolated, and 2) deleting. . .

We denote the graph resulting from a complete splitting: at_'l:_:%rg () withd = 3, we can writek = 3¢+m, m & {0, 1,2}.
asG” and call such a splitting suitable one if every splitting '

in step 1) is admissible, i.e. all edges incident:tbelong to 8k +3 6g +2m +3
digoint admissible pairs. 6 6
2m+3
lll. BOUNDS ONACHIEVABLE RATES FORUNDIRECTED = dg+m+|——|, me{012}
NETWORKS 4q, m=0
For networkG modeled as an undirected gra@lV, E') and = dg+1, m=1
a set of terminalst C V/, using a max-flow min-cut argument, dg+3, m=2

the network coding capacity is trivially upper bounded byhys if \(A) is any positive integer such thatA) = 4¢ + j,
A(A). Note that unlike directed networks (where the min-cut ¢ {0,1,3}, we can writeA(A) = LSkT%J for some positive
throughput is always achievable via coding over a suffityentinteger .. The only class of positive integers left is the one
large field [2] [9]) in the undirected case a throughput ofych that\(4) = 4q + 2. For this choice of integers, we can
A(A) might not be achievable (see example 2). It is also clegkite MA) =4g+1+1 = L%THJ + 1 for some positive
thatm < ~ since routing is a special type of coding whergytegerk. Hence, for any positive integek(A), there exist a
only repetition and forwarding are allowed at relay nodés. positive integer for which A(A) = |33 | 4+ 5, wherek is
A(A) =1, then it is clear thaty = = = 1 and hence we can he |argest integer such that 842 | < \(A) andd € {0,1}.

always assume\(A) > 2. On the other hand, iA\(G) = 1 For § = 0, Theorem 2 ensures the existence kokdge
and\(A) > 2 thenV(G) can be partitioned into two disjointdisjoint A-Steiner trees. Thus,

subsetd/(G1) andV(G2) with A C V(G;) and Gy and Go
connected via a cut-edge. In this case we can always delete AA) = {81{ + 3J < 8k +3
G, without affecting the throughput. In conclusion, we can 6 -6
always assume thdt is 2-edge connected, i.& contains N0 \which leads to
cut-edges. Lo BAA) =3 {GA(A) - 3J
A. Multicast Networks with Three Terminals B 8 B 8
Let G = (V, E) be a graph representing a multicast networkor 6 = 1, Theorem 2 also ensures the existence of at least
with a set of terminalsd = {s, R, R,} C V, the following * edge disjointA-Steiner trees, whera(A) = [ %2 | + 1,
theorem provides a lower bound on the routing capacity, from which we first obtain
Theorem 1 For an undirected multicast network with three i 6A(A) -3 3
terminals, the integer, half integer and fractional routing < ] ®)
capacities are bounded as

. W(Ag) _3J

)

we also obtain the following lower bound dn

6(M(A) — 1) — 3

k>
- 8

(4)



Upon combining[(B) and{4) can be bounded as, A(A) > 2 while & is strictly less thar2 for A(A) > 2. The

6MA)—3 6 6A(A) — 3 bound for& indi2c§1tes that with fract_ional routing,_75% of .
—=s 3 <k< — s the throughput achievable by coding is always achievalde vi
. routing.
Noting that

6A(A)—3 {6)\(/1) _3 B. Multicast Networks with Arbitrary Number of Terminals

A
3 3 J+§v AeSc{l,2....7} (3  Let ¢ be a multicast network modeled as an undi-

. . _ rected graphG(V, E) with a set of N — 1 receiversR =
(More specifically, it can be shown that for any integér!), {R1,...,Rx_1} and thus a set of terminalé = s UR C V.

.e. o can beo or 1'_A € {1’3’5’7}’ see part-A of the he gerx — V — A represents the set of non-terminal (relay)
Appendix). Thus the inequality fot becomes nodes inG.
6A(A) —3 6—A <k 6A(A) —3 A 6 Lemma 1 If G*, the graph obtained from G by performing
;) s = < ;) + ] ©6) a suitable complete splitting at z € V' — A, contains a system
Note that & is an integer, hence the previous inequalitmc k: edge digoint A-Seiner trees, then G contains / edge

. ~leaA)-3 N }gisjoint A-steiner trees.
indicates thatk = 8 except for A = 7, where the Proof: Let 7 be a set oft disjoint A-Steiner trees irG*. If

inequality has no valid solution. Therefore, our task istove d(z) = 2, let w be the added edge after splitting off edges
thaté = 1 dismissesA = 7. To prove this, note thatfaf =1, 5nq f. For anyT € T, if T containsw thenT — w, the

we haveA(4) = 4g +2, ¢ € {0} UZ™. Hence, edgese, f and the vertex: form an A-Steiner treel” in G

6A(A) —3 3x8¢+9 and the se{7 — T) U T’ forms a set oft edge disjointA-
] - ] Steiner trees irG. If no 7' € T containsw, thenT is a set
— 3¢+1+4 1 A1 of A-Steiner trees inG. If d(z) # 2, let W be the set of

splitting edges and(w), f(w) be the splitted pair by. Also
Which shows thatA is always 1 foré = 1. From this we let Ty ={T € T : TNW # (}. For everyT € Ty, the tree
conclude that the solution presented earlier is a valid orig. formed by — W, U, cynp(r) 9w @andz is an A-Steiner
Combining this result with the one obtained for the case tfe in G, whereg,, € {0, {e(w)}, {f(w)}, {e(w), f(w)}}.

§ =0in @), we can write Let 77 be the set of such trees, théh — Ty) UT’ forms a
6A(A) — 3 set of £ edge disjointA-Steiner trees irG.
k= {TJ ; for any \(A) € Z* (7)  Alternative proof: Since splitting off does not increase con-

) ) ) nectivity and complete splitting is a series of splitting’®f
Sending one symbol on each tree, an integral routing througRen \ ... (u, v) < Ag(u, v) for all distinctu, v € V(G) — =,
putof £ is achievable. Since; is the supreme of all achievableyith equality if and only if the splitting is suitable. Thus,
rates, thust; > & and the first bound results. If half-integerce containsk-edge disjointA-Steiner trees, the does as
routing is allowed, we can up scale the edge capacity by,

is an achievable routing rate, it represents a lower bound gRctional routing capacityr .
the half integer routing capacity and thus proves the secOfijeorem 3 For a multicast network represented by an

part of the theorem. For fractional routing, we upscale edgfgirected graph G(V, E) with a set of terminals A C V
capacities byn and then divide the integer part of the result N

by n, i.e. mp > A 3HA por sufficiently largen, the > A(4) ( 4] > _
second part approaches zero and the third bound rellts. T2 |A] =1
Corollary 1: For a three terminal multicast network, the where e is arbitrarily small for arbitrarily large n and \(A)
coding gain is bounded as is the connectivity of A in G.
AMA) Proof: The proof uses the following two theorems
6, < Toxa)—3| Theorem 4 (Kriesell, [10]): For any [,k > 2, let G(V, E) be
TJ an |2k + 2| -edge connected graph on [ vertices. Then
2A(A) there exist a system of & edge digoint spanning trees in G.
6y < _W Theorem 5 (Frank, [11]):Let G(V + x, E) be a connected
L 8 graph on V + z, d(x) # 3 and no cut-edge is incident to x.
6 < 4 +é Then there exist @ digoint admissible pairs at z.
3 Consider a complete splitting at every relay nade V — A.
Proof: & = I < @ < W%W' Applying the SinceG is 2-edge connected, then there are no cut-edges in
appropriate lower bound from theorem 1 and the corollagy. From theorem 5, ifi(x) is even then all incident edges to

results. 2 can be partitioned into disjoint admissible pairs. Sinck ha
From corollary 1, it can be seen that the coding gain isteger routing is allowed, we can makiéxr) even for every
always bounded. More specificallgs,; is bounded by3 for x € V — A by upscaling the capacities of the edges(of



by 2 and then downscaling the solution by 2. Thus a suitatfeoof: Proof is similar to the one of corollary 1.
complete splitting exists at all relay nodesGh Let G’ be the
graph obtained after such splitting, th&i(G’) = A and an C- Examples

A-Steiner tree in’ is a spanning tree iG:’. Example 1: For the multicast network in Fig.1(a)(A) = 2.
Next we prove that\(A) being any integer, it can be writtenThe graph resulting from upscaling edge capacities by 2 and
as then performing suitable complete splitting at all relaprin
2k(JAl = 1)+ |A] — 2 hatched) nodes is shown in Fiy.1(b), where thick edges have
AA4) = { |A| J 0 (8) double the capacity of normal on€s’. is a broadcast network,

and from theorem 3 witd = V(G’) the routing capacity of
B Al—1 | [A]-2] G’ can be bounded as; > 3. From theorem 3, this also
flaf(k) = | 2k + g J itis easy to check thafi4|(k+  gerves as a lower bound on the routing capacitg@ind thus
1) = fla)(k) =2+ {%J, A € {0,1,...,]A] —1}. Noting the coding gain in& is bounded by&; < 1.5. Note that% is
Ao a lower bound on the capacity, a routing scheme achieving a
that le € {=1,0} then, fia|(k +1) = flaj(k) € {1.2}.  throughput of 1.5 for’ using fractional routing witth — 9
If there exist an integek: such thatA(4) = fi4/(k) then andn = 6 is shown in FidlL(b). For the network of, a
6 = 0 and we are done. Otherwise, we choésas the largest fractional routing throughput of.8 is possible withh = 9
integer such thak(A4) > f|4/(k). By the choice ofc, A\(A) < andn = 5, Fig[l(a).
fia)(k + 1) and sincefi4)(k + 1) — f‘A‘_(k) < 2 for any | A]
then\(A) = fj4(k) + 1. Thus, for any integeA(A), we can
write A(A) = fia(k)+0, 6 € {0,1}, proving the claim iri(B).
For \(A) = —Qk(‘A‘_|2+‘A‘_2J + 6, theorem 4 ensures the

|
existence ofk edge disjoint spanning trees @', where for

0 = 0 we havek > {%J. If § =1, then\(A) =

for any |A[ > 2 and some integek, whered € {0,1}. Let

%(‘A‘_IQIHA‘_QJ +1 > 2AEDHAZ which results ink <

'A'éﬁﬁﬁ‘f)‘ﬂ + 58y A €{0,1,...,2(]A] - 1) — 1},
Also\(A)—1 = {Qk(‘A‘ngI*‘A‘*QJ < Qk(‘AﬁXIHAH results @) (b)
ink > {‘A‘égﬁ)ﬁlﬁmJ + 2%14_\‘:41‘)' Upon combining the above Fig. 1. Example 1: (a)-Multicast Netwoik. Also shown a fractional routing
o s of , we can wite| A4S | 1 A7y < seheme talaciees s oot Toe e b 1 messages

on the edges represent the messages carried by the edgebeaaddws

|AIMA) | A +2 N ioh indi -
k< { 2(JA]-1) J + 2(JA]-1) which indicates that a valid indicate the direction of the flow. All sinks will recover dlie messages and
solution fork exists as long ad’ € {1,2,...,|A|}. Buté =1 thus a throughput of = 1.8 is possible. , (b) Splitted grapt’ together

implies that that this is the case part-B of the Appendix}‘{ith a fractional routing scheme that achieves athrouglqbt% = 1.5.
j. Combining this with

Thus ford =1, k _OLW
the result obtained faf — 0, we conclude that for any integer =X@mple 2: Figld(a) represents a multicast network with a
A(A) > 2, the number of edge-disjoint-Steiner trees irG’ ¢t of terminalsA = {vo, v, ..., vj4-1} and a set of relay
is k> | AXA-]AI+2 nodesX = {z1,...,zx|} whereX =V — A and v is

= 2(1A]-1) ' assumed to be the source node. The gr@phmesulting from

By Lemma 1, ifG’ containsk edge disjointA-Steiner trees performing suitable complete splitting at all relay nodss i

thenG does, provided that a suitable complete splitting exist$,own in Fid2(b). From theorem 3 witt(A) = 2, the routing
at every relay nodec € V — A. As it was shown at the |A|

. o (AL
beginning of this argument, such a splitting exist if we whsc capac/lty can be lower bounded &g 2 (lAl—l) for both &
the capacity of every edge ity by 2 and then downscaleandG' o

our result by 2. Thus, we conclude that containsk edge ~ Next we show that for the network' in Fig[2(a),» =

_ |A| i
disjoint A-Steiner trees, where > 3 W] Since ™ = (\A\—l)- From [1], v < nc(A) whereng(A) is the

this represents an achievable throughput, it also”reptegen €dgestrength defined as
lower bound on the half integer routing capacity. For frawéil . Eq(P)
routing, we upscale the edge capacitiesrbynd divide the ne(A4) = m'n|7>| 1

result by n and for sufficiently largen we obtainzm, > L . -
MA) [ |A] 0 and the minimization is over all possible partitios =
— €.

2 \JA[-1 ) Vo, Vi,...,Vipj—1} of V(G) such that eachcomponent,
Corollary 2: For a multicast network represented by an 1.~ ot the partition contains at least one terminal, i.e.
undirected graph G(V, £) with a set of terminals A C V Vin A # (0. Eg(P) is the total capacity of edges between
&, <9 <|A| — 1) e distinct components. Let us choose a partitiBnsuch that
F= |A] ViNA=wv; Vi€ {0,1,...,|A| — 1}. For such a partition,




|P| = |A|. Also sinceG is a cycle with each edge havingthus,
unit capacity, thenEq (P |A|l. Becauseng(A) is the

o 7>) ; o 5 ¢=0
minimum of the ratio ‘ G‘ + over all possible partitiong, A 3, c=1
theny < ng(A) < ‘A‘ . Combining this with the lower )11, e¢c=2
bound onr; obtained earller from theorem 3 and the fact that 7, ¢=3
™ <7y, We obtain Note that for the casé = 1, thenc = 2 and thus,A = 1 as
A A it was shown before.
—— <y <y < . . .
|[A] —1 |A] —1 B. For the multicast network with any number of terminals,

! __ H i — —
Thus, for the multicast network’ shown in Fid2(a)r; = A"=0ifand onlyif A =0and 9 =0.

v = Al Proof: From [8)
[A]-1"
A routing scheme achieving the fractional capacity can be A4) = 2k(JAl -1+ (JA[-2) A i
advised as follows: Leb = |A| andn = |A| — 1. Nodev; |A| |A]
to terminalv, 41, Vi € {0,1,...,|A| — 2}. Ter_mlnaluo se_nds ANA) — A +2  A—|A5
|A] — 1 symbols,ay, ..., aj4—1, t0 v;4—1. Finally, terminal k= (AT 1 S(TAT 1
v;11 forwardsi symbols,a 4 —;, . .., a1, toward terminal (4] = 1) (I |/_ )
vi, Vi € {1,...,]A] — 2}. On the other hand, all relay nodes _ VAP‘(A) — 1A+ QJ A+ A A
in X do nothing but forwarding whatever they receive at their 2(141 - 1) 2(141 - 1)

input edge to their output edge, Eib.2(c). Note that withhsugyhere § {0,1}, A € {0,1,...,|A] — 1} and A’ €
a routing scheme, each edge cartiés— 1 symbols and each {0,1,...,2(JA] — 1) — 1}. This shows that\’ + A — |A|6
terminal receivesA| symbols. Achieving a routing throughputis divisible by2(|A| — 1). Thus,

of |A|/(|A| —1). Fig[2(c), shows an example with 5 terminals,
|4]/(1A] - 1). Figl(c) p (A Ay — A1

{vg, v1,v2,v3,v4}, and 2 relay nodes,zq, x2}.

From this we note that i\ = 0 andd = 0, then A’ = 0,
which proves the 'if’ part of the claim. Conversely, &' = 0,
then A = | A|d, which shows that ih = 1, thenA = |A], a

Vo

Vo

v 2 YjA|-1 contradiction (since\ € {0,1,...,]A4|—1}). Thus,d = A =
s 0 and the claim follows.
VIA|-1
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