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Abstract

In this paper, the inherent drawbacks of the naive latticeodimg for MIMO fading systems is investigated.
We show that using the naive lattice decoding for MIMO systémas considerable deficiencies in terms of the
rate-diversity trade-off. Unlike the case of maximum-likeod decoding, in this case, even the perfect lattice
space-time codes which have the non-vanishing determimamqterty can not achieve the optimal rate-diversity
trade-off. Indeed, we show that in the case of naive lattieeoding, when we fix the underlying lattice, all the
codes based on full-rate lattices have the same rate-dwaesle-off as V-BLAST. Also, we drive a lower bound on
the symbol error probability of the naive lattice decoding the fixed-rate MIMO systems (with equal numbers of
receive and transmit antennas). This bound shows that detiogily, the naive lattice decoding has an unbounded

loss in terms of the required SNR, compared to the maximueiitikod decodi

I. INTRODUCTION

In recent years, there has been extensive research on idgspyactical encoding/decoding schemes to
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approach theoretical limits of MIMO fading systems. Theimat rate-diversity trade-off [1] is considered
as an important theoretical benchmark for practical systéfar the encoding part, recently, several lattice
codes are introduced which have the non-vanishing detamhiproperty and achieve the optimal trade-
off, conditioned on using the exact maximum-likelihood algiag [2] [3] [4]. The lattice structure of
these codes facilitates the encoding. For the decoding yeibus lattice decoders, including the sphere
decoder and the lattice-reduction-aided decoder are mexsén the literature [5] [6]. To achieve the exact
maximum likelihood performance, we need to find the closesttpf the lattice inside the constellation

region, which can be much more complex than finding the ctggemit in an infinite lattice. To avoid
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this complexity, one can perform the traditional latticeaging (for the infinite lattice) and then, discard
the out-of-region points. This approach is called NaiveticatDecoding (NLD).

In [7], the authors have shown that this sub-optimum deagpdand even its lattice-reduction-aided
approximation) still achieve the maximum receive diversit the fixed-rate MIMO systems. Achieving
the optimal receive diversity by a low decoding complexitgk®s lattice-reduction-aided decoding (using
the LLL reduction) an attractive choice for different agplions. Nonetheless, this work shows that
concerning rate-diversity trade-off, the optimality cast be achieved by the naive-lattice decoding or its
approximations.

In [8], using a probabilistic method, a lower bound on thethievable trade-off, using the naive
lattice decoding, is presented. In this paper, we presentpaer bound on the performance of the naive
lattice decoding for codes based on full-rate lattices. Wwsthat NLD can not achieve the optimum
rate-diversity trade-off. Also, for the special case of @goumber of transmit and receive antennas, we
show that even the best full-rate lattice codes (includiegfqrt space-time codes such as the Golden
code [3]) can not perform better than the simple V-BLAST (i wse the naive lattice decoding at the
receiver). It should be noted that in this paper, we havemasduthat the underlying lattice is fixed for
different rates and SNR values (e.g. lattice codes intredun [2] [3] [4]). If we relax this restriction,
there can exist a family of lattice codes (based on diffelattice structures for different rates and SNR
values) which achieves the optimum tradeoff using the nkattece decoding [9].

In section 1V, we complement the result of [7] by showing tfat the special case of equal number
of transmit and receive antennas, although the naive datteroding (and its LLL-aided approximation)
still achieve the maximum receive diversity, their gap wte optimal ML decoding grows unboundedly
with SNR.

[l. SYSTEM MODEL

We consider a multiple-antenna system wMhransmit antennas arid receive antennas. In a multiple-
access system, we consider different transmit antennaiffaedt users. If we considey = [y, ..., yn]7,
x = [x1,...,op])T, W = [wy,...,wy]T and theN x M matrix H, as the received signal, the transmitted

signal, the noise vector and the channel matrix, respégtivee have the following matrix equation:

y = Hx +w. (2)



The channel is assumed to be Raleigh, i.e. the elemenks affe i.i.d with the zero-mean unit-variance
complex Gaussian distribution, and the noise is Gaussidsn, Ave have the power constraint on the
transmitted signal, [x||* = P. The power of the additive noise i8* per antenna, i.e. [Bv||*> = No2.
The signal to noise ratio (SNR) is defined @as- %

We send space-time codewords= [x, ..., xy] with complex entriesx; € C) and at the receiver,

we findx; asH'y; wherely, ..., yr] is the closest\/T-dimensional lattice point tdy,, ..., yr|.

IIl. RATE-DIVERSITY TRADE-OFF FOR THE NAIVE LATTICE DECODING

To drive the upper bound on the rate-diversity trade-off @D\ we first present a lower bound on the
probability that the received lattice (the lattice codeeaftassing through the fading channel) has a short

vector.

Lemma 1 Assume that the entries of the NV x M matrix H has independent complex Gaussian distributions
with zero mean and unit variance and consider d (HrL) as the minimum distance of the lattice generated
by HrL, where L is the full-rank MT x MT generator of a given complex lattice with unit volumtg and
Hy isthe NT x MT block diagonal matrix constructed by repeating H along the main diagonal. We

have,

<2M(N — M +1) (2)
e—0 log e

Proof: Considero; < oy < ... < oy, the nonzero singular values #1. Considering the pdf of the
singular values of a Gaussian matrix [10], it can be showhn [tha
M

= 2N — M +2i— 1), 3)

i=1

. logPr{o; <eh, .. oy <}
lim
£—0 log e

Thus

logPr{m < ﬁgM,ai < 4—\/1M fori> 1}

lim =
e—0 log e
i), § o8
2N = M+ 1) | M+ lim —2 ) 4 Y "2(N — M +2i — 1) - lim
e—0 — =0 loge

2\/olume of a lattice generated by matixis defined aslet A £ det(L*L)%, and is equal to the volume of the fundamental region of

the lattice.



=2M (N — M +1). (4)

Considerv,,;,, as the singular vector dfl, corresponding t@r,. For eachMT-dimensional complex

VeC'[OfV = [aflv;in QZVJ,;Z'H“' aTV;lin]T’
[Hypv|* = Za2||Hme||2 ZU%HazvmanZ = at|Iv]*. (5)
=1
Thus, assuming; < ﬁEM,
1 M
e v|l. 6
SNiTi vl (6)

ConsiderA as a2MT-dimensional hypercube with edges of Ieng&h whose2T edges are parallel

to the subspace spanned by the vectoes [a;, v ., ayv]. .. arv] . ]T and the otheRT (M — 1) edges

min mwn

are orthogonal to that subspace. The volume of this cube?¥°”. Because the volume of the lattice is
1, for K, the number of lattice points inside this cube, we Gaue._, - —kA =1

Now, assumingr; < 4—\/M M ando,, < W’ the regionHrA is |nS|de a2MT-dimensional orthotope
(in the subspace spanned Bl) whose2T edges (which correspond to the smallest singular valye

have Iength— and the length of the otheT'(M — 1) is at most——— (because of the bound on the

4\/_ M
largest singular value;,). The2T smaller edges can be covered by at n{dstc~1] < 27171 segments
of length —= and the others can be covered by at miaist' e =M+ < 2-1e=(M+1) segments of length
—- Thus, this orthotope can be covered by at maste—1)*" (2—15—(M+1))2T(M_1) = 9 2MT—2M*T

hypercubes of edge Iengtjfz Becausehma_m = 1, whene — 0, the number of these small

hypercubes is smaller than the number of Iattlce pointsdenghem. Thus, based on Dirichlet's box
principle, in one of these hypercubes there are at least 2tpoif the new lattice, hencé(HrL) is
smaller than the diameter of the small hyper cubes:
dy < VM - JLM @)
Therefore,

3When a region is large, the number of lattice points insigerédgion can be approximated by the ratio between the voldrteeaegion

and the volume of the lattice.



log Pr{d (H7rL) < log P <eM gy < S
lim 28PHd (HrL) e} o logPrioi <e UM_ZM}:2M(N—M+1). 8)
€0 loge €0 loge

Theorem 1 Consider a MIMO fading channel with M transmit and N receive antennas (M < N) with
codebooks from an M T-dimensional lattice L, which are sent over 7' channd uses. For the naive lattice

decoding, the rate-diversity trade-off of the systemis

dNLD(’I“)SM(N—M—Fl)—T(N—M—}—l),
for 0 <r < M. 9)

Proof: Consider the code of ratB constructed from the lattice. The number of codewords isaktpu
2F_ Without any loss of generality, we can assume that the velofirthe lattice is fixed and is equal to
1, and the power constrairit is dependent on the rate. To satisfy the power constraingast half of
the codewords should have power less tBah The number of codewords with power less thah is
equal to the number of lattice points inside &/-dimensional sphere whose volume is proportional to
PM_ Thus, by approximating the number of lattice points with tatio of the volume of the region and

the volume of the lattice:

oft < ¢, PM, (10)

wherec; is a constant, independent of gﬂ\lﬁé\ccording to the definition of the multiplexing gain,=

. l R .
limgnR— o0 logm%- Using [10),

log - log R
lim o8 f o logy s (11)
SNR—oo log SNR logSNR M

For the symbol error probability,, consideringSNR = ¥F

o2

PezPr{d(HTL)g\/LM}.Q<ﬁ):Pr{d(HTL)g VP }Q( ! ) (12)

“Throughout this papet:, cz, ... are only dependent on size of dimensions.




Therefore, using lemma 1 (with= VD ) and [11),

VSNR
VP
dyip(r)= lm 8% oy ~losr{dn < i}
NEDY ™ oNR—o0 log SNR = SNR—oo log SNR
VP
o RMIV - <1og m)
= SN R log SNR
oy, 2MIN M) (3log P — 3log SNR)
T SN log SNR
< (N amv— )
= \aM 2
=M(N—-M+1)—r(N—M+1). (13)

Corollary 1 In a MIMO fading channel with A/ = N transmit and receive antennas, if we use the
naive lattice decoding, the rate-diversity trade-off for full-rate lattice code can not be better than that of
V-BLAST.

Proof: When M = N, according to Theorem 1,

dNLD(T) S M—r (14)
On the other hand, for the V-BLAST system with lattice deocgdj11],
dV—BLAST(T> = M — T (15)

|

It is interesting to compare this result with the results attide space-time codes which have non-
vanishing determinants. Although by ML decoding, theseesouch as the x 2 Golden code) achieve
the optimal rate-diversity trade-off, when we replace Mlcaing with the naive lattice decoding (and
its approximations), their performance is not much bett@ntthe simple V-BLAST scheme (specially

when the number of transmit and receive antennas are the) same
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Fig. 1. Comparison between the optimal rate-diversityedidand the upper bound on the rate-diversity trade-offulifriite lattice codes

(including perfect space-time codes such as the Golden) code

To better understand the difference between the naivedattecoding and the ML decoding, we note
that for small constellations, when the generator of theiwed lattice has a small singular value, the
minimum distance of the lattice can be much smaller than tienmum distance of the constellation.
Figure 2 shows this situation for a small 4-point constelafrom a 2-dimensional lattice.

We should note that this upper bound is for full-rate lagticeattices with lower rate, can provide
higher diversity, but their rate is limited by the dimensmirthe lattice. For example, The Alamouti code,
based on QAM constellations, can achieve the full divertyfixed rates £ = 0), but its rate is limited

by one.
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Fig. 2. Minimum distance of a latticelfs = d (HrL)), compared to the minimum distance of a lattice codgif)

IV. ASYMPTOTIC PERFORMANCE OF THE NAIVE LATTICE DECODING FOR/ = N

In [7], it is shown that forN > M, the naive lattice decoding achieves the receive diversityBLAST
systems (indeed, even its simple latice-reduction-aiggataximation still achieves the optimum receive
diversity of orderN). However, there is a difference between two cased/o& N and M = N. While
for M < N, compared to ML decoding, the performance loss of the naitee¢ decoding is bounded in
terms of SNR [7], here we show this is not valid for the caselbf= N. This dichotomy is related to
the bounds on the probability of having a short lattice vetia lattice generated by a random Gaussian
matrix.

In [12], an upper bound on the probability of having a shottida vector is given:

Lemma 2 Assumethat the entries of the M x M matrix H hasindependent complex Gaussian distributions
with zero mean and unit variance and consider d(H) as the minimum distance of the lattice generated
by H. Then, there is a constant C' such that [12],
1 M—-1
Prob{d(H) < e} < Ce** In (E) :

The termin (%) suggests an unboundedly increasing gap between the parioarof ML decoding
and the naive lattice decoding (though both of them have dngesslopel/).

In this section, we present a lower bound on the error prdibalof the naive lattice decoding and

show that this unboundedly increasing gap does exist.



Lemma 3 For M > 2 and € < 1, for the lattice generated by an M x M random complex Gaussian

matrix H with zero mean and unit variance, there is a constant C’ such that,
1
Prob{d(H) < &} > C'¢* In (g) : (16)

Proof: ConsiderL,,. v, as the lattice generated by,v,,...vy,. Each point ofL, . ., can be

represented by ., . = z1v1 + 2ve + ... + zy v, Wherezq, ..., zy, are complex integer numbers.

ZM)
The vectorsvy,vs,...,vy; are independent and jointly Gaussian. Therefore, for ecempplex vector
b = (b, ...,by), the vectorvy, = byvy + byvse + ... 4+ by vy, has complex circular Gaussian distribution

with the variance

or, = |bl|* = b1 > + ... + |bar]*. (17)

Now, considering the pdf of,, we can boundPr {||vy|| < e} = fMEa fvi, (V) dv by using the fact

|
£2 lIv]|2

thate % <e % <1 for |lv|] <e:

1 -= / / 1
———e % dv < fo(v)dv < ———— dv. (18)
/IIVISE M g Ivli<e ) vi<e ™ oM

Thus, because the volume of region of the integral (which 28/&dimensional sphere with radiug

is proportional tos2",

2M 2M

52
¢ TP < Pr{|lvp] < &} < C7||£W' (19)

We can represent any/-dimensional complex integer vector ag & -dimensional real integer vector.

YR

In our proof, we consider only integer vectors in the Betvhich consists of integer vectosssuch that
their real entries do not have a nontrivial common divisod #n||.. < e =7 where|| - ||, represents
the norm of the largest real entry. First, we show that the memof such integer vectotsin the region
20=1) < ||z||o < 2F is at leas?M*, The total number of integer points in the regdhi—b < ||z|/o < 2*
i (281 + 1)2M —(2F+ 1)2M. The number of those points whose entries have a commorodivis at
most equal to the number of integer points in the redjgf., < % Thereforeny, the number of integer

vectorsz whose entries does not have nontrivial common divisors,b@atower bounded by

oM oM
).

®The number of points in the cubipr||. < 2* is (2" +1)"" and the number of points in the cubie|| < 2~ is (2" +1
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2k ok 2M
N 2 <(2k+1 + 1)2 (2k + 1)2M> Z (2_. T 1)

- 1
=2

> <(2’f+1 + 1)2M ~(3- 2k—1)2M> B i (32;)2M

=2
3 2M 3 2M oo 1
2kM+2M
s (1 ()7 (3)
=2
3N 3\ /1 1 |
2kM+2M
o (e
st [ §2M_ §2M_ le_ §2M‘ 1
4 4 2 2 32M-1(20] — 1)
3\*" 1 2
2kM+2M _ i b
> 2 (1 2(4) 22M.<1+2M_1)>

4
> 92kM+2M (1 —2 G) 214 (1 + g)) > QZMARM 9= > 92kM  for N > 2, (20)

Now, we find an upper bound dpbr {||v || < e, ||v,|| < e} for two different complex integer vectors
z' andz” which belong toB. We can writez’ asaz” +r wherea is a complex number andis a complex

vector, orthogonal ta”. We show thaf|r| >

\/lesﬁ. The area of the triangle which has vertexgs
z', andz”, is equal toS = 1|r|| - [|z”|. On the other hand, becaudez’, andz” are integer points2.S
should be integer. Also, because the entrieg’afo not have any nontrivial common divisaef, can not
be a multiplier ofz” (and vice versa). Becaugé andz” are not multipliers of each othe$, is nonzero.
Thus,S > 1, hence,

//||

(21)

N —

1
Sl Iz

! ! __L (22)

>
V2M|z"|o ~ V2Memm  V2M

Now we boundPr {||v,| < ¢,||vy| < e}. Becauser L z”, we can see that, L v,.. Thus, when

1
— I = gy 2

|ve|| > €, using the fact that,,p, = va + Vb,
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Fig. 3. integer points in the regiofz||e. < e,
IVarl| = Vel = ¥+ Vil > vl >

Therefore,
Pr{|va| <&, [|va] < e}

S Priflvell < ¢, [lver|| <€} (23)

Based on the orthogonality af andz”, v, andv,. are independent. Thus, usirig{19),1(22), and noting

that ||z”|| > 1 (becausez” is a nonzero integer vector):

Pri[lva| < e [[var|l <€} < Pr{[[va|| <e}-Pr{|ve]| <&}

E2M 62]\/[
= (C7||z~||2M) ' (C7||r||2M)
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= cgeM (24)

Now, we use the Bonferroni inequality [13],

Pr{dH) <e}=Pr{3z#0: ||v,|| <e} >Pr{dz: ze B, |v,| <&}

>3 Prjival <<}

zeB
— > Pr{|lva] <& llvarll <€} (25)
Z’,Z”EB
For the first term of[(25),
> Pr{lv.l < e} (26)
zeB
)
> S Prflvill<e} (27)
k=0  zeB2k—1< |zl <2"

By using (20), [(1B), and noting thdk| < v2M||z||., and ¢ T > e~ ! (because < 1 and||z|| > 1),

el #H)) »

@> > oM. (28)

> Z coe™™ (29)

— (Llog <g_ﬁ)J + 1) ~0952M > 01052M -In (é) . (30)



13

For the second term of of (25), because the number of complegers in5 (which is at most the

1

2M
number of integer points in the cuble||., < 5‘ﬁ) is bounded by, <5‘m) = c;1e7 1, the number

of pairs (2, z") is at most(c;;e~1)°. Thus, using[(24):

Y. Pr{lval <& lvarll <} (31)

z',z""€B
< (0115_1)2 . 0854M_1 (32)
< cppet? (33)

Now, by using [(3D) and (33),
1
@ > 010€2M In (g) - 012€4M_3 (34)
1

> (C'e*Mn (g) , for M > 2. (35)

Theorem 2 Consider a MIMO fading channel with M transmit and M receive antennas and a V-BLAST
transmission system. The naive lattice-decoding has an asymptotically unbounded loss, campared to the

exact ML decoding.

Proof: For ML decoding, by using the Chernoff bound for the pairweseor probability and then

applying the union bound for the finite constellation, we énfi/4]
Perror—ML S 013(SNR)_M (36)

wherec;3 depends on the size of constellation.

For naive lattice decoding,

1 1
Perror— Z Pr<d S . =
NLD { H SNR} Q ( /—M)
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> e (SNR)™In(SNR). (37)

Therefore, although both of them asymptotically have thmesalope and achieve the optimal receive
diversity of orderM, for large SNRs, the gap between their performances is urdemi(with a logarithmic
growth, or in other wordsloglog SN R in dB scale).l

V. CONCLUSIONS

In this paper, the inherent limitations of the performant¢he naive lattice decoding is investigated.
The naive lattice decoding and various implementions o$uch as the sphere decoding) and its simple
approximated versions (such as the LLL-aided decodingyarg attractive for the practical MIMO sys-
tems. Nontheless, to achieve theoretical benchmarks @stne rate-diversity trade-off), these techniques
are not always sufficient. For the rate-diversity trade-although different elegant lattice codes have been
introduced which achieve the optimal trade-off [2] [3] [#hey need ML decoding to achieve optimality.
On the other hand, there can exist a family of lattice codesdt on different lattice structures for
different rates and SNR values) which achives the optim@adetnff using the naive lattice decoding [9].
However, the existence proof in [9] does not provide any tactve solution for the encoding of such
codes. Therefore, the problem of achieving the optimumrdityemultiplexing tradeoff by a practical

encoding and decoding scheme is still open.
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