
ar
X

iv
:0

70
4.

25
96

v1
 [

cs
.IT

]
19

 A
pr

 2
00

7

Computing Extensions of Linear Codes
Markus Grassl

Institut für Algorithmen und Kognitive Systeme
Fakultät für Informatik, Universität Karlsruhe (TH)
Am Fasanengarten 5, 76 128 Karlsruhe, Germany

Email: grassl@ira.uka.de

Abstract— This paper deals with the problem of increasing
the minimum distance of a linear code by adding one or more
columns to the generator matrix. Several methods to compute
extensions of linear codes are presented. Many codes improving
the previously known lower bounds on the minimum distance
have been found.

I. I NTRODUCTION

In this paper we consider the question when a linear code
C = [n, k, d]q overFq of lengthn, dimensionk, and minimum
distanced can be extended to a codeC′ = [n+1, k, d+1]q. It
is a well known fact in coding theory that every binary linear
codeC = [n, k, d]2 whose minimum weightd is odd can be
extended to a code[n+1, k, d+1]2 by adding a single parity
check. This can also be expressed in terms of Construction X
[17] applied to the codeC, its one-codimensional even-
weight subcodeC0, and the trivial code[1, 1, 1]2. While this
result does not have an immediate generalization to non-
binary alphabets, Hill and Lizak [9], [10] proved the following
theorem:

Theorem 1:Let C be an[n, k, d]q code withgcd(d, q) = 1
and with all weights congruent to0 or d (modulo q). Then
C can be extended to an[n+ 1, k, d+ 1]q code all of whose
weights are congruent to0 or d+ 1 (moduloq).
In order to apply this theorem, knowledge about the weight
spectrum of the codeC is required. A generalization of this
theorem due to Simonis [16] can be applied when addition-
ally information on the weight distribution of the codeC
is available. The special cases withgcd(q, d) = 1 and in
particular ternary codes have been treated by Maruta [13]–
[15]. However, these results are of rather theoretical nature
and have mainly be used to prove the non-existence of codes
with certain parameters. The application to a specific code
might be difficult since one has to compute information on
the weight distribution of the code first.

II. EXTENSION BASED ON M INIMUM WEIGHT

CODEWORDS

A. The main criterion

In the following, we consider the problem to test if a code
C = [n, k, d]q which is explicitly given by a generator matrix
G can be extended and to compute an extension if it exists.
Based on the set of all codewords of minimum weight, we get
the following criterion for the extendability of a linear code:

Theorem 2:Let C = [n, k, d]q be a linear code overFq

with minimum distanced. Furthermore, letG ∈ F
k×n
q be a

generator matrix forC of full rank. By Sd = {c ∈ C|wgt c =
d} we denote the set of all codewords of minimum weight
and by Jd = {v ∈ F

k
q |wgt(vG) = d} we denote the

corresponding information vectors.
The codeC can be extended to a codeC′ = [n+m, k, d+

1]q if and only if there is a matrixX ∈ F
k×m
q such that

k
∑

i=1

viXi 6= 0 for all v ∈ Jd, (1)

whereXi denotes thei-th row of the matrixX .
Proof: Let G′ = (G|X) be the matrix that is obtained

by appending the matrixX to G. Encoding an information
vectorv with the matrixG′ we get

c′ = vG′ = (vG|
k
∑

i=1

viXi).

The weight of a non-zero codewordc′ is d if and only if
wgt(vG) = d and

∑k

i=1
viXi = 0.

In particular we consider the extension by a single column:
Corollary 3: Using the notation of Theorem 2, a linear code

C = [n, k, d]q can be extended to a codeC′ = [n+1, k, d+1]q
if and only if there exists a column vectorx ∈ F

k
q such that

k
∑

i=1

vixi 6= 0 for all v ∈ Jd. (2)

In order to apply criterion (1) or (2), we have to compute the
setJd of information vectors of all codewords of minimum
weight.

B. Computing the minimum weight codewords

In the sequel we describe an algorithm to compute the
minimum distance of a code as well as all words of minimum
weight. The algorithm is based on an algorithm by Zimmer-
mann to compute the minimum distance (see [19] and [1,
Algorithmus 1.3.6]) which improved an algorithm by Brouwer.
Together with some further improvements, the algorithm is
implemented in the computer algebra systemMAGMA (see
[2], [8]).

The main idea of the algorithm is to enumerate the code-
words in such a way that one does not only obtain an upper
bound on the minimum distance of the code via the minimum
of the weight of the words that have been encountered, but to
establish lower bounds on the minimum distance as well. For
this, we are using a collection of systematic generator matrices

http://arxiv.org/abs/0704.2596v1

Gj with corresponding information setsIj . Given an ordered
list (I1, I2, . . . , Iµ) of information sets, we define therelative
rank rj of Ij as

rj := k −
∣

∣

∣Ij ∩

j−1
⋃

l=1

Il

∣

∣

∣,

i.e., rj equals the number of positions in the information set
Ij that are disjoint from all informations setsIl with l < j. If
we now encode all wordsi ∈ F

k
q of weightwgt i ≤ w using

all systematic generator matrices, we know that the weight of
the remaining codewords is at least

dlb :=

µ
∑

j=1

max(0, (w + 1)− (k − rj)),

as the weight in each corresponding information set is at least
w+1, and we have to subtract the positions which have been
double-counted due to overlapping information sets.

Algorithm 4 (Minimum Weight Words):
MinimumWeightWords:=function(C);

minwords:=∅;
dlb:=1;
dub:=n− k + 1;
w:=1;
while w ≤ k and dlb ≤ dub do

for j:=1 to µ do

words:={i ·Gj : i ∈ F
k
q |wgt(i) = w};

d:=min{wgt(c) : c ∈ words};
if d<dub then

dub:=d;
minwords:={c : c ∈ words|wgt(c) = dub};

else

minwords join:={c : c ∈ words|wgt(c) = dub};
end if;

end for;

dlb:=
µ

P

j=1

max(0, (w + 1)− (k − rj));

w:=w + 1;
end while;

return minwords;

end function;

With a slight modification, this algorithm can also be used
to compute all codewords of a given weight or all codewords
whose weight is below a certain value. The total number of
encodings to find all codewords of weight not exceedingd is
given by

w0
∑

w=1

µ

(

k

w

)

(q − 1)w−1, (3)

wherew0 is the minimum value such that
µ
∑

j=1

max(0, (w0 + 1)− (k − rj)) > d. (4)

Of course, if (3) is larger thanqk, one should directly
enumerate all codewords instead of using Algorithm 4. But
in most cases, using more than one generator matrix results in
an overall saving as the maximum weightw0 of the vectors
i that has to be considered is smaller, and (3) grows only
linear in µ, but exponential inw0. If partial knowledge of

the automorphism group of the code is available, which is
e. g. the case for cyclic or quasi-cyclic codes, the lower bound
(4) onwo can be improved so that the overall complexity for
computing the minimum weight codewords is reduced [4], [8],
[18].

III. C OMPUTING EXTENSIONS

A. Exhaustive search

Given the setJd of information vectors of the minimum
weight codewords, one can use an exhaustive search to find a
column vectorx or a matrixX that fulfills condition (2) or (1).
In total there areqmk−1 non-zero matrices. As both conditions
are bilinear, it suffices to consider normalized information
vectors and may normalize the columns in the matrixX ,
reducing the total number of matrices by no more than the
factor (q − 1)m. Sorting the columns of the matrix gives an
additional reduction by a factor of at mostm!. Hence using
this approach, one has to test at least

qmk − 1

m!(q − 1)m
(5)

matrices in order to show that no extension exists. If one
is interested in all possible extension, an exhaustive search
is necessary, too. Nonetheless, exhaustive search might be
feasible to find an extension if the dimensionk of the code is
small or if many extensions exist.

B. Extending binary codes by one position

For binary codes, condition (2) can be re-written as

k
∑

i=1

vixi = 1 for all v ∈ Jd. (6)

The possible extensions of the code correspond to the set of
solutions of the inhomogeneous system of linear equations (6).
The complexity of computing the solutions if one exists is no
longer exponential as in (5), but only polynomial. Moreover,
it suffices to compute a subsetJ ′

d of the information vectors
of the minimum weight codewords such that the linear spans
of Jd andJ ′

d coincide.

C. Extensions by one via solving polynomial equations

For non-binary codes, condition(2) does not directly trans-
late into an equation. However, using the fact that the roots
of the polynomialyq−1 − 1 ∈ Fq[y] are exactly the non-zero
elements ofFq, we get the condition

(

k
∑

i=1

vixi

)q−1

= 1 for all v ∈ Jd. (7)

The set of all solutions of conditions (7) is characterized by
the ideal

J :=

〈(

k
∑

i=1

vixi

)q−1

− 1: v ∈ Jd

〉

E Fq[x1, . . . , xk] (8)

in the polynomial ringFq[x1, . . . , xk] in k variables overFq.
Testing whether the system of polynomial equations (7) has a

2

solution and computing the solutions can be done e. g. using
Gröbner bases [5]. The system does not have a solution if
and only if a Gröbner basis of the idealJ contains a non-
zero constant polynomial. In general, it is difficult to estimate
the complexity of computing a particular Gröbner basis, and
the complexity might be exponential. However, computing
a Gröbner basis without homogenization quite often quickly
shows that there is no solution. Using the algorithmF4 of
Faugére to compute a Gröbner basis [6] as implemented in the
computer algebra systemMAGMA [2], it was quite often faster
to compute all solutions via the Gröbner basis than finding a
single solution using exhaustive search (see below).

D. General extensions via solving polynomial equations

For both binary and non-binary codes, condition (1) can be
expressed in terms of polynomial equations. A vectory ∈ F

m
q

is non-zero if and only if at least one coordinate is non-zero,
i. e.

m
∏

j=1

(

y
q−1

j − 1
)

= 0.

Hence the solutions of (1) are characterized by the ideal

J :=

〈

m
∏

j=1





(

k
∑

i=1

viXij

)q−1

− 1



 : v ∈ Jd

〉

(9)

in the polynomial ringFq[X11, . . . , Xkm] in km variables over
Fq. Note that even forq = 2, the conditions are no longer
linear, but of degreem.

E. Further remarks

For linear binary codes we have seen that sometimes it is
sufficient to compute only a subset of the minimum weight
codewords. In general, one can use a subset ofJd to test
whether a code can be extended and compute a set of
candidates for the extension using the idealJ of eq. (8) or
eq. (9). In many cases, the resulting set of candidates is rather
small, so that one can perform an exhaustive search among
them. Similar, a double extension of a codeC to a code
C′′ = [n + 2, k, d + 2]q can be found using the solutions
for the single extension toC′ = [n+ 1, k, d+ 1]q.

Kohnert [11], [12] has proposed to compute extensions us-
ing integer linear programming by reformulating (1) as hitting-
set problem. The ground set of the hitting-set problem is the
set of all normalized non-zero vectors that can be appended
to the generator matrix, so its size grows exponentially in the
dimension of the code.

IV. EXAMPLES

We tested the various methods using the best known linear
codes (BKLC) fromMAGMA and the linear codes from [7]
which establish or improve the lower bound on the minimum
distance in Brouwer’s tables [3]. We have not found any binary
code that can be extended by one position, but many codes
over Fq for q = 3, 4, 5, 7, 8, 9. In Table I we list 71 of these
codes together with some timing information. The columns
with headingsSd and |Sd| provide the time to compute all

minimum weight words and the number of minimum weight
words. In the columnsfull iteration and iteration the time
needed to find all or just one solution by exhaustive search
(see Sect. III-A) is given for some of the codes. The next four
columns provide information on the approach of Sect. III-C
solving a system of polynomial equations. We have used
the additional equationsx2

1
− x1 which ensures that the first

component of the column vectorx is either zero or one, and
x
q
j − xj for j = 2, . . . , k as all entries ofx are elements of

Fq. The total running time is dominated by the time needed to
compute theGröbnerbasis, the construction of theequations
and computing thesolutionscan be neglected in most of the
cases. In the final column the total number of solutions is
given, where we have identified solutions that differ by a non-
zero scalar factor.

With some few exceptions, e. g., for the codes[89, 11, 54]5,
[93, 11, 57]5, [76, 8, 53]7, [45, 8, 30]9, computing all solutions
via a Gröbner basis is even faster than finding a single solution
by exhaustive search.

Table II contains some binary and ternary codes whose
minimum distance can be increased by appending two columns
to the generator matrix. For these codes, the Gröbner basis
approach is quite fast, but unfortunately, this is not always
true.

There is a ternary codeC = [178, 23, 81]3 with 80 words of
weight 81 that can be extended to a codeC′ = [179, 23, 82]3.
Computing a Gröbner basis took about 79 hours on an AMD
Opteron 252 (clock speed 2.6 GHz), using about 16 GB of
memory. Using exhaustive search, a solution was found in
189.730 seconds, while the projected total running time for
the complete exhaustive search is more than 250 hours.

Furthermore, there is a quasicyclic codeC = [140, 19, 73]4
with 840 words of weight73 that can be extended to a code
C′ = [142, 19, 74]. Using exhaustive search, a solution was
found after 4.36 hours on an AMD Opteron 250 (clock speed
2.4 GHz). After 35.75 days of CPU time, 654 solutions have
been found while the projected total running time for the
exhaustive search is1011 years. Computing a Gröbner basis
for the idealJ of this code seems to be infeasible.

It turns out that the codes with parameters[66, 22, 22]3,
[67, 23, 22]3, [78, 11, 47]5, [51, 6, 37]7, and [76, 8, 53]7 are
doubly extendible. The codes[172, 17, 70]2 and [173, 18, 70]2
in Table II can be extended in two steps to codes[175, 17, 72]2
and[176, 18, 72]2. The codes[119, 7, 75]3 and[85, 9, 51]3 can
even be extended to codes[123, 7, 78]3 and [89, 9, 54]3.

ACKNOWLEDGMENT

The author would like to thank John Cannon, Allan Steel,
and Greg White from theMAGMA group, University of
Sydney, for their support.

REFERENCES

[1] A. Betten, H. Fripertinger, A. Kerber, A. Wassermann, and K.-H.
Zimmermann,Codierungstheorie: Konstruktionen und Anwendungen
linearer Codes. Berlin: Springer, 1998.

[2] W. Bosma, J. J. Cannon, and C. Playoust, “The Magma Algebra System
I: The User Language,”Journal of Symbolic Computation, vol. 24, no.
3–4, pp. 235–265, 1997.

3

TABLE I

CODESC = [n, k, d]q THAT CAN BE EXTEND TO CODESC′ = [n+ 1, k, d+ 1]q .

code computingSd |Sd| full iteration iteration equations Gröbner solution total Gröbner#solutions

[233, 9, 146]3 0.130 1410 0.150 0.020 0.020 0.040 0.000 0.080 1
[86, 10, 49]3 0.020 1008 0.430 0.030 0.020 0.030 0.000 0.050 3

[175, 10, 103]3 0.100 352 0.440 0.010 0.010 0.010 0.000 0.020 1
[87, 11, 49]3 0.030 3312 1.250 0.280 0.070 0.100 0.000 0.180 2
[176, 13, 97]3 0.120 66 11.370 0.000 0.000 0.140 0.000 0.150 9
[100, 19, 43]3 2.080 21140 10602.910 1920.910 0.980 4.260 0.000 5.310 1
[102, 19, 44]3 2.540 14492 9893.640 1257.940 0.650 2.020 0.000 2.710 1
[166, 19, 81]3 11.640 328 9686.610 189.260 0.020 0.130 0.010 0.160 9
[104, 20, 44]3 4.010 15722 – 3513.530 0.770 2.420 0.000 3.250 1
[66, 22, 22]3 0.690 90 – 160.600 0.000 780.780 26.570 807.380 465
[108, 22, 43]3 13.450 102 – 1820.900 0.000 604.690 0.010 604.710 12
[165, 22, 75]3 140.230 96 – 116.360 0.010 793.850 0.260 794.130 92
[67, 23, 22]3 0.440 134 – 8931.530 0.010 43.320 2.450 45.800 201
[97, 23, 37]3 24.150 746 – 154487.840 0.040 0.130 0.000 0.170 1
[99, 23, 38]3 30.600 658 – 160156.420 0.030 0.100 0.000 0.140 1
[111, 23, 44]3 40.170 114 – 119090.890 0.000 905.710 0.000 905.720 3
[149, 23, 64]3 149.090 108 – 11522.410 0.010 1147.910 0.010 1147.930 23
[166, 23, 75]3 238.290 200 – 35682.570 0.010 10.390 0.000 10.400 3
[191, 23, 89]3 420.910 98 – 1736.210 0.000 9430.260 0.690 9430.960 123
[191, 24, 88]3 722.510 112 – 3220.530 0.010 2265.550 0.010 2265.570 15
[194, 24, 90]3 830.840 112 – 32986.960 0.010 2262.690 0.000 2262.700 13
[197, 24, 92]3 1050.770 110 – 10215.69 0.010 2396.040 0.030 2396.090 32
[194, 25, 89]3 2390.880 114 – 5909.010 0.000 6391.800 0.060 6391.860 39
[215, 25, 103]3 5443.010 164 – 150817.640 0.010 97.980 0.000 97.990 1
[178, 27, 77]3 13427.570 126 – 301975.480 0.010 127409.310 0.070 127409.400 41
[127, 28, 49]3 7995.850 12440 – – 0.920 1.880 0.000 2.860 4

[135, 6, 96]4 0.030 225 0.050 0.000 0.010 0.000 0.000 0.010 2
[159, 7, 111]4 0.050 2604 0.180 0.020 0.030 0.070 0.000 0.130 1
[241, 7, 174]4 0.130 804 0.170 0.010 0.010 0.020 0.000 0.030 1
[190, 8, 130]4 0.200 4164 0.720 0.030 0.080 0.080 0.000 0.170 3
[191, 8, 130]4 0.130 4158 0.720 0.030 0.080 0.080 0.000 0.170 4
[132, 11, 81]4 0.160 777 43.430 1.140 0.020 0.040 0.000 0.070 1
[94, 13, 53]4 0.420 16890 738.800 1.760 0.540 1.270 0.000 1.870 3
[129, 13, 77]4 0.660 15312 865.230 221.230 0.540 1.060 0.000 1.670 2
[132, 13, 79]4 0.680 17136 747.580 217.610 0.630 1.280 0.000 1.980 3
[142, 13, 85]4 0.720 8049 737.340 33.000 0.270 0.500 0.000 0.810 1
[149, 13, 90]4 1.140 18318 764.780 21.600 0.660 2.020 0.010 2.750 4
[161, 13, 98]4 1.340 31884 817.810 229.780 1.280 4.870 0.000 6.300 2
[196, 13, 122]4 1.380 168 745.220 14.860 0.000 43.960 0.000 43.970 3
[120, 14, 69]4 1.920 315 2989.640 0.010 0.010 0.880 13.190 14.150 729
[182, 14, 110]4 3.530 19698 3142.570 741.160 0.760 2.430 0.000 3.280 6
[134, 15, 77]4 5.220 50793 12051.040 463.570 2.110 13.010 0.000 15.350 4
[183, 15, 110]4 13.190 49218 12193.490 3525.470 2.320 18.940 0.010 21.500 3
[45, 16, 17]4 0.180 192 47480.220 2358.470 0.010 2833.000 0.000 2833.010 3
[91, 16, 47]4 6.430 3330 – 1831.150 0.120 0.180 0.000 0.300 1
[136, 16, 75]4 18.300 38880 – 308.820 1.580 6.940 0.000 8.700 18
[176, 16, 103]4 29.980 219 – 2779.760 0.010 3747.880 0.000 3747.890 1
[64, 17, 29]4 4.430 6048 – 699.140 0.220 0.340 0.000 0.580 3
[116, 17, 61]4 25.710 249 – 1.660 0.010 8275.260 0.320 8275.610 243
[137, 17, 75]4 37.240 122751 – 2731.850 5.870 107.510 0.000 113.990 3
[172, 17, 99]4 83.180 65325 – 1379.040 3.230 30.070 0.000 33.670 27
[87, 19, 41]4 125.400 2550 – 126.980 0.130 0.520 0.000 0.660 4
[95, 19, 45]4 50.430 11451 – 43493.400 0.590 1.230 0.000 1.880 1
[110, 19, 54]4 31.710 330 – 177473.000 0.010 28449.570 0.000 28449.590 5

Timings in seconds using Magma V2.13-8 on an AMD Opteron 252 (clock speed 2.6 GHz, 16 GB RAM); forq = 3, an AMD Opteron 254 (clock speed
2.8 GHz, 16 GB RAM) has been used.

4

TABLE I (continued)

CODESC = [n, k, d]q THAT CAN BE EXTEND TO CODESC′ = [n+ 1, k, d+ 1]q .

code computingSd |Sd| full iteration iteration equations Gröbner solution total Gröbner#solutions

[105, 7, 77]5 0.040 1760 1.010 0.070 0.050 0.230 0.000 0.280 1
[78, 11, 47]5 0.060 780 682.690 53.860 0.060 55.730 0.000 55.790 3
[84, 11, 51]5 0.220 3424 667.630 0.020 0.300 1.900 0.000 2.220 3
[89, 11, 54]5 0.180 232 683.130 3.170 0.020 4324.910 0.020 4324.950 35
[93, 11, 57]5 0.270 224 659.400 0.630 0.020 4172.490 0.060 4172.570 45

[65, 4, 53]7 0.020 408 0.040 0.000 0.010 0.010 0.000 0.020 1
[51, 6, 37]7 0.020 504 2.070 0.000 0.030 0.360 0.000 0.390 14
[76, 8, 53]7 0.030 912 102.710 1.080 0.080 249.500 0.000 249.590 4

[44, 8, 29]8 0.020 2443 376.920 2.830 0.090 2.240 0.000 2.340 1
[68, 8, 49]8 0.100 12936 338.610 11.270 0.670 0.830 0.000 1.550 1
[27, 9, 15]8 0.020 4914 2760.190 52.360 0.170 2.140 0.000 2.330 1
[69, 9, 49]8 0.300 25480 2804.850 19.510 1.870 2.810 0.000 4.800 1

[82, 5, 67]9 0.150 2176 1.700 0.030 0.050 0.200 0.000 0.260 1
[87, 6, 69]9 0.400 4256 15.750 0.050 0.140 0.800 0.010 0.970 3

[127, 6, 103]9 0.230 976 15.310 0.500 0.030 4.170 0.000 4.210 1
[98, 7, 76]9 0.860 6776 146.120 1.430 0.360 2.550 0.000 2.950 1
[45, 8, 30]9 0.220 1408 1332.960 325.270 0.070 10637.000 0.000 10637.080 1

Timings in seconds using Magma V2.13-8 on an AMD Opteron 252 (clock speed 2.6 GHz, 16 GB RAM).

TABLE II

CODESC = [n, k, d]q THAT CAN BE EXTEND TO CODES

C′ = [n+ 2, k, d+ 1]q .

C = [n, k, d]q Sd |Sd| iteration Gröbner #solutions

[205, 13, 94]2 0.070 2169 152.280 0.440 3
[172, 17, 70]2 0.060 2616 71392.360 0.860 3
[166, 18, 66]2 0.050 1800 – 0.600 3
[173, 18, 70]2 0.080 4230 – 1.570 3
[205, 19, 82]2 0.080 1632 – 0.600 9

[119, 7, 75]3 0.020 756 16.510 0.710 6
[85, 9, 51]3 0.030 4536 143.400 3.500 24

Timings in seconds using Magma V2.13-8 on an AMD Opteron 254,clock
speed 2.8 GHz, 16 GB RAM.

[3] A. E. Brouwer, “Bounds on the Size of Linear Codes,” inHandbook
of Coding Theory, V. S. Pless and W. C. Huffman, Eds. Amsterdam:
Elsevier, 1998, pp. 295–461.

[4] C.-L. Chen, “Computer Results on the Minimum Distance ofSome Bi-
nary Cyclic Codes,”IEEE Transactions on Information Theory, vol. 16,
no. 3, pp. 359–360, May 1970.

[5] D. A. Cox, J. B. Little, and D. O’Shea,Ideals, Varieties, and Algorithms.
New York: Springer, 1992.

[6] J.-C. Faugére, “A new efficient algorithm for computingGröbner bases
(F4),” Journal of Pure and Applied Algebra, vol. 139, no. 1–3, pp. 61–
88, 1999.

[7] M. Grassl, “Tables of linear codes,” on-line available at
http://www.codetables.de/.

[8] ——, “Searching for linear codes with large minimum distance,” in
Discovering Mathematics with Magma — Reducing the Abstractto the
Concrete, W. Bosma and J. Cannon, Eds. Heidelberg: Springer, 2006,
pp. 287–313.

[9] R. Hill and P. Lizak, “Extensions of Linear Codes,” inProceedings 1995
International Symposium on Information Theory, Whistler, BC, Canada,
September 17–22 1995, p. 345.

[10] R. Hill, “An Extension Theorem for Linear Codes,”Designs, Codes and
Cryptography, vol. 17, no. 1–3, pp. 151–157, Sept. 1999.

[11] A. Kohnert, “Update on the Extension of Good Linear Codes,” Elec-
tronic Notes in Discrete Mathematics, vol. 26, pp. 81–85, Sept. 2006.

[12] ——, “(l, s)-Extension of Linear Codes,” inProceedings Combinatorics
2006, 2007, preprint arXiv:cs/0701112v1 [cs.IT].

[13] T. Maruta, “Extendability of Linear Codes overGF (q) with Minimum
Distanced, gcd(d, q) = 1,” Discrete Mathematic, vol. 266, no. 1–3,
pp. 377–385, May 2003.

[14] ——, “A New Extension Theorem for Linear Codes,”Finite Fields and
Their Applications, vol. 10, pp. 674–685, 2004.

[15] ——, “Extendability of Ternary Linear Codes,”Designs, Codes and
Cryptography, vol. 35, no. 2, pp. 175–190, May 2005.

[16] J. Simonis, “Adding a Parity-Check Bit,”IEEE Transactions on Infor-
mation Theory, vol. 46, no. 4, pp. 1544–1545, July 2000.

[17] N. J. A. Sloane, S. M. Reddy, and C.-L. Chen, “New Binary Codes,”
IEEE Transactions on Information Theory, vol. 18, no. 4, pp. 503–510,
July 1972.

[18] G. White, “An Improved Minimum Weight Algorithm for Quasi-cyclic
and Quasi-twisted Codes,” 2005, submitted to IEEE Transactions on
Information Theory.

[19] K.-H. Zimmermann, “Integral Hecke Modules, Integral Generalized
Reed-Muller Codes, and Linear Codes,” Technische Universität Ham-
burg-Harburg, Tech. Rep. 3-96, 1996.

5

http://www.codetables.de/
http://arxiv.org/abs/cs/0701112

	Introduction
	Extension Based on Minimum Weight Codewords
	The main criterion
	Computing the minimum weight codewords

	Computing Extensions
	Exhaustive search
	Extending binary codes by one position
	Extensions by one via solving polynomial equations
	General extensions via solving polynomial equations
	Further remarks

	Examples
	References

