arXiv:0704.2596v1 [cs.IT] 19 Apr 2007

Computing Extensions of Linear Codes

Markus Grassl
Institut fur Algorithmen und Kognitive Systeme
Fakultat fur Informatik, Universitat Karlsruhe (TH)
Am Fasanengarten 5, 76 128 Karlsruhe, Germany
Email: grassl@ira.uka.de

Abstract— This paper deals with the problem of increasing generator matrix fo€' of full rank. By S; = {c € C|wgt ¢ =

the minimum distance of a linear code by adding one or more j} we denote the set of all codewords of minimum weight

columns to the generator matrix. Several methods to compute _ k _
k - ht and b = F t = d} we denote the
extensions of linear codes are presented. Many codes impiiag y Ja {v € ‘1| wet(vG) t

the previously known lower bounds on the minimum distance corresponding information vectors.
have been found. The codeC can be extended to a cod¥ = [n+m, k,d+

1], if and only if there is a matrixX € F5*™ such that
. INTRODUCTION
In this paper we consider the question when a linear code
C = [n, k, d], overF, of lengthn, dimensiork, and minimum P
distanced can be extended to a cod® = [n+1,k,d+1],. It h _ _
is a well known fact in coding theory that every binary lineaf/Nere Xi denoteslthe—th row of the matrixX. _
codeC = [n, k, ], whose minimum weight! is odd can be Proof: . Let G' = (G|X) be the mat.rlx that_|s obtal_ned
extended to a codg + 1, k, d + 1], by adding a single parity by appendmg the ma_trn_é/( to G. Encoding an information
check. This can also be expressed in terms of Construction’&¢torv with the matrixG” we get
[17] applied to the codeC, its one-codimensional even- k
weight subcode”y, and the trivial coddl, 1, 1],. While this ¢ =vG" = (vG] ZUiXi)-
result does not have an immediate generalization to non- i=1
binary alphabets, Hill and Lizak [9], [10] proved the followy The weight of a non-zero codeword is d if and only if
theorem: wgt(vG) =d and Zle v; X; = 0. |
Theorem 1:Let C be an[n, k, d], code withged(d,q) =1 |n particular we consider the extension by a single column:
and with all weights congruent t0 or d (modulog). Then  Corollary 3: Using the notation of Theoreft 2, a linear code
C can be extended to gn + 1, k,d + 1], code all of whose ¢ — [n, k,d], can be extended to a cod¥ = [n+1,k,d+1],

weights are congruent t or d + 1 (modulog). if and only if there exists a column vectar€ F* such that
In order to apply this theorem, knowledge about the weight

spectrum of the codé€’ is required. A generalization of this for all 2
theorem due to Simonis [16] can be applied when addition- Zvixi #0 forallve Jq @

ally information on the weight distribution of the cod€ |n order to appli;lcriteriori]l) of12), we have to compute the

is ayailable. The special cases withd(g,d) = 1 and in get 7, of information vectors of all codewords of minimum
particular ternary codes have been treated by Maruta [13}might.

[15]. However, these results are of rather theoretical neatu
and have mainly be used to prove the non-existence of codesComputing the minimum weight codewords
with certain parameters. The application to a specific codeln the sequel we describe an algorithm to compute the
might be difficult since one has to compute information ominimum distance of a code as well as all words of minimum
the weight distribution of the code first. weight. The algorithm is based on an algorithm by Zimmer-
mann to compute the minimum distance (see [19] and [1,
Algorithmus 1.3.6]) which improved an algorithm by Brouwer
o Together with some further improvements, the algorithm is
A. The main criterion implemented in the computer algebra syststAGMA (see
In the following, we consider the problem to test if a codf], [8]).
C = [n, k,d], which is explicitly given by a generator matrix The main idea of the algorithm is to enumerate the code-
G can be extended and to compute an extension if it existgords in such a way that one does not only obtain an upper
Based on the set of all codewords of minimum weight, we gbbund on the minimum distance of the code via the minimum
the following criterion for the extendability of a linear@e: of the weight of the words that have been encountered, but to
Theorem 2:Let C' = [n,k,d], be a linear code oveF, establish lower bounds on the minimum distance as well. For
with minimum distanced. Furthermore, letG' € F’;X" be a this, we are using a collection of systematic generatorioesr

k
> wiXi#0 forallve gy, (1)

k

Il. EXTENSION BASED ONMINIMUM WEIGHT
CODEWORDS


http://arxiv.org/abs/0704.2596v1

G; with corresponding information sef5. Given an ordered the automorphism group of the code is available, which is
list (71, I, . . ., Z,,) of information sets, we define thelative e.g. the case for cyclic or quasi-cyclic codes, the lowemlou

rank r; of Z; as (@) onw, can be improved so that the overall complexity for
i1 computing the minimum weight codewords is reduced [4], [8],
rji= k— ‘Ij N U 7, [18]
=1 I11. COMPUTING EXTENSIONS

i.e., r; equals the number of positions in the information se{ Exhaustive search
Z; that are disjoint from all informations sefs with [ < j. If Given the set7; of information vectors of the minimum

. k - . .
we now enc_ode all words € ]F.q of weight wgt i < w using weight codewords, one can use an exhaustive search to find a
all systematic generator matrices, we know that the weight o | . hat fulfill diti
the remaining codewords is at least column vectoee or a matrixX that fu ills condition (¢3)] or[@).
In total there arg™*—1 non-zero matrices. As both conditions
H are bilinear, it suffices to consider normalized informatio
dip = ZmaX(O’ (w+1) = (k =15)), vectors and may normalize the columns in the matkix
j=1 reducing the total number of matrices by no more than the
as the weight in each corresponding information set is at ledactor (¢ — 1)™. Sorting the columns of the matrix gives an

w+ 1, and we have to subtract the positions which have beadditional reduction by a factor of at most!. Hence using

double-counted due to overlapping information sets. this approach, one has to test at least
Algorithm 4 (Minimum Weight Words): L
MinimumWeightWords:=function (C); _— (5)
minwords:=0; ml(qg—1)™
dip:=1; matrices in order to show that no extension exists. If one
Z)uf’:?_k+1" is interested in all possible extension, an exhaustiveckear
while w <k and dip < du do is necessary, too. Nonetheless, exhaustive search might be
for j:=1 to p do feasible to find an extension if the dimensibrof the code is
words:={i-Gj;: i € F¥|wgt(i) = w}; small or if many extensions exist.
d:=min{wgt(c): ¢ € words};
if d<dy then B. Extending binary codes by one position
ifri;jr;dsz={6: ¢ € words| wet(c) = dus); For binary codes, conditiofi](2) can be re-written as
else k
minwords join:={c: ¢ € words|wgt(c) = dup}; Zvixi =1 forallveJ,. (6)
end if; i=1
end for; .
r The possible extensions of the code correspond to the set of

v i; max(0, (w+1) = (k= 75)); solutions of the inhomogeneous system of linear equati@hns (
wr=w+1; The complexity of computing the solutions if one exists is no
izguzglii;words- longer exponential as ifl(5), but only polynomial. Moregver
’ it suffices to compute a subsgt; of the information vectors

end function; > ) .
With liaht modification. this alaorith Iso b of the minimum weight codewords such that the linear spans
ith a slight modification, this algorithm can also be useSf 7, and 7, coincide.

to compute all codewords of a given weight or all codewor
whose weight is below a certain value. The total number €. Extensions by one via solving polynomial equations

encodings to find all codewords of weight not exceediig  For non-binary codes, conditiq®) does not directly trans-

given by wo late into an equation. However, using the fact that the roots
Z u<k> (q—1)* 1, 3) of the polynomialy?~! — 1 € F,[y] are exactly the non-zero
= \w elements off;, we get the condition

wherewy is the minimum value such that

k q—1
(Z vm) =1 forallveJy. 7
=1

The set of all solutions of conditionEl(7) is characterizgd b
the ideal

> max(0, (wo + 1) — (k —r5)) > d. (4)
j=1

Of course, if [B) is larger thany®, one should directly
enumerate all codewords instead of using Algorithm 4. But k -t
in most cases, using more than one generator matrix results / = <<Z w:m) -live ~7d> dFq[21,. .. 2k] (8)

an overall saving as the maximum weighy of the vectors i=1

¢ that has to be considered is smaller, aptl (3) grows orilythe polynomial ringF,[z1, ..., z] in k variables oveff,.
linear in u, but exponential inwg. If partial knowledge of Testing whether the system of polynomial equatidis (7) has a



solution and computing the solutions can be done e. g. usiminimum weight words and the number of minimum weight
Grobner bases [5]. The system does not have a solutionmbrds. In the columndull iteration and iteration the time
and only if a Grobner basis of the idedl contains a non- needed to find all or just one solution by exhaustive search
zero constant polynomial. In general, it is difficult to esdite (see SecfII-A) is given for some of the codes. The next four
the complexity of computing a particular Grobner basigd arcolumns provide information on the approach of SEci 1II-C
the complexity might be exponential. However, computingolving a system of polynomial equations. We have used
a Grobner basis without homogenization quite often qyickthe additional equations? — z; which ensures that the first
shows that there is no solution. Using the algorittitn of component of the column vectar is either zero or one, and
Faugére to compute a Grobner basis [6] as implementeckin Izl‘g —x; for j =2,...,k as all entries ofc are elements of
computer algebra systemAGMA [2], it was quite often faster IF,. The total running time is dominated by the time needed to
to compute all solutions via the Grobner basis than findingc@mpute theGrobnerbasis, the construction of thegjuations
single solution using exhaustive search (see below). and computing theolutionscan be neglected in most of the
B. General extensions via solving palynomial equations cases. In the final co!umn. Fhe totall number qf solutions is
' given, where we have identified solutions that differ by a-non
For both binary and non-binary codes, conditibh (1) can B&ro scalar factor.
expressed in terms of polynomial equations. A vegta F;"  With some few exceptions, e. g., for the cod&s, 11, 54]5,
is non-zero if and only if at least one coordinate is non-zerm3 11,57, (76,8, 53]+, [45, 8, 30]s, computing all solutions
i.e. m via a Grobner basis is even faster than finding a singleisalut
I1 (y;rl _ 1) —0. by exhaustive search.

Table[dl contains some binary and ternary codes whose
minimum distance can be increased by appending two columns
to the generator matrix. For these codes, the Grobner basis

j=1
Hence the solutions of (1) are characterized by the ideal

m k a1 approach is quite fast, but unfortunately, this is not akvay
J = <H <Z vin--) —-1):ve Jd> (9) true.
j=1 \ \i=1 There is a ternary cod€ = [178, 23, 81]3 with 80 words of
in the polynomial ringf, [X11, . . ., X&m] in km variables over weight 81 that can be extended to a cale= [179, 23, 82];.

Computing a Grobner basis took about 79 hours on an AMD
Opteron 252 (clock speed 2.6 GHz), using about 16 GB of
memory. Using exhaustive search, a solution was found in
E. Further remarks 189.730 seconds, while the projected total running time for

For linear binary codes we have seen that sometimes itlf§ complete exhaustive search is more than 250 hours.
sufficient to compute only a subset of the minimum weight Furthermore, there is a quasicyclic code= [140, 19, 73]4
codewords. In general, one can use a subsefpfto test with 840 words of We_|ght73 that can be extended to a code
whether a code can be extended and compute a setCof= [142,19,74]. Using exhaustive search, a solution was
candidates for the extension using the iddabf eq. [8) or found after 4.36 hours on an AMD Opteron 250 (cIQck speed
eqg. [9). In many cases, the resulting set of candidateshigrat2-4 GHz). After 35.75 days of CPU time, 654 solutions have

small, so that one can perform an exhaustive search am&i§gn found while the projected total running time for the

them. Similar, a double extension of a codeto a code €X austive search is0'! years. Computing a Grobner basis
C" = [n+2,k,d+ 2], can be found using the solutionsfor the idealJ of this code seems to be infeasible.

for the single extension t6” = [n + 1, &, d + 1],. It turns out that the codes with parametgés, 22, 223,
Kohnert [11], [12] has proposed to compute extensions u§7>23,22ls, [78,11,47]s, [51,6,37]7, and [76,8,53]; are

ing integer linear programming by reformulatifig (1) asihge doubly extendible. The codgs72,17,70]; and (173, 18, 70}
set problem. The ground set of the hitting-set problem is tif2 Tablelll can be extended in two steps to codés, 17, 72|,

set of all normalized non-zero vectors that can be appenddfl[176,18,72]>. The codes119,7, 75]; and(85,9, 51]; can
to the generator matrix, so its size grows exponentiallhin t 8V€N be extended to cod@e3, 7, 783 and (89, 9, 54]5.
dimension of the code. ACKNOWLEDGMENT
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TABLE |

CoDESC = [n, k,d]q THAT CAN BE EXTEND TO CODESC’ = [n+ 1,k,d + 1]q.
code computingSy |Sg| | full iteration iteration | equations Grobner  solution  total Grobner#solutions
(233, 9, 146]3 0.130 1410 0.150 0.020 0.020 0.040 0.000 0.08( 1
(86,10, 49]3 0.020 1008 0.430 0.030 0.020 0.030 0.000 0.05( 3
[175,10,103]3 0.100 352 0.440 0.010 0.010 0.010 0.000 0.02 1
[87,11,49]3 0.030 3312 1.250 0.280 0.070 0.100 0.000 0.18 2
[176,13,97]3 0.120 66 11.370 0.000 0.000 0.140 0.000 0.15 9
(100, 19, 43]3 2.080 | 21140 10602.910 1920.910 0.980 4.260 0.000 5.31( 1
(102,19, 44]3 2540 | 14492 9893.640 1257.940 0.650 2.020 0.000 2.71( 1
(166,19, 81]3 11.640 328 9686.610 189.260 0.020 0.130 0.010 0.16( 9
(104, 20, 44]3 4.010 | 15722 - 3513.530 0.770 2.420 0.000 3.25 1
(66,22, 22]3 0.690 90 - 160.600 0.000 780.780 26.570 807.380 465
(108, 22, 43]3 13.450 102 - 1820.900 0.000 604.690 0.010 604.71D 12
(165,22, 75]3 140.230 96 - 116.360 0.010 793.850 0.260 794.13D 92
(67,23,22]3 0.440 134 - 8931.530 0.010 43.320 2.450 45.800 201
[97,23,37]3 24.150 746 — | 154487.840 0.040 0.130 0.000 0.17( 1
(99, 23, 383 30.600 658 — | 160156.420 0.030 0.100 0.000 0.14 1
(111,23, 44]3 40.170 114 — | 119090.890 0.000 905.710 0.000 905.72p 3
(149, 23, 64]3 149.090 108 - | 11522.410 0.010 1147.910 0.010 1147.930 23
(166, 23, 75]3 238.290 200 — | 35682.570 0.010 10.390 0.000 10.400 3
(191, 23, 89]3 420.910 98 - 1736.210 0.000 9430.260 0.690 9430.960 123
(191, 24, 88]3 722.510 112 - 3220.530 0.010 2265.550 0.010 2265.570 15
(194, 24, 90]3 830.840 112 - | 32986.960 0.010 2262.690 0.000 2262.700 13
(197,24, 92]3 1050.770 110 - 10215.69 0.010 2396.040 0.030 2396.090 32
(194, 25, 89]3 2390.880 114 - 5909.010 0.000 6391.800 0.060 6391.860 39
(215, 25,103]3 5443.010 164 — | 150817.640 0.010 97.980 0.000 97.990 1
(178,27,77]3 13427.570 126 — | 301975.480 0.010 127409.310 0.070 127409.400 41
(127,28, 49]3 7995.850 | 12440 - - 0.920 1.880 0.000 2.86 4
[135,6,96]4 0.030 225 0.050 0.000 0.010 0.000 0.000 0.01 2
[159,7,111]4 0.050 2604 0.180 0.020 0.030 0.070 0.000 0.13 1
(241,7,174]4 0.130 804 0.170 0.010 0.010 0.020 0.000 0.03( 1
(190, 8,130]4 0.200 4164 0.720 0.030 0.080 0.080 0.000 0.17( 3
(191, 8,130]4 0.130 4158 0.720 0.030 0.080 0.080 0.000 0.17( 4
[132,11,81]4 0.160 777 43.430 1.140 0.020 0.040 0.000 0.07 1
(94, 13,53]4 0.420 | 16890 738.800 1.760 0.540 1.270 0.000 1.87 3
[129,13,77]4 0.660 | 15312 865.230 221.230 0.540 1.060 0.000 1.67 2
(132,13, 79]4 0.680 | 17136 747.580 217.610 0.630 1.280 0.000 1.98( 3
(142,13, 85]4 0.720 8049 737.340 33.000 0.270 0.500 0.000 0.81( 1
(149,13, 90]4 1.140 | 18318 764.780 21.600 0.660 2.020 0.010 2.75( 4
(161, 13,98]4 1.340 | 31884 817.810 229.780 1.280 4.870 0.000 6.30 2
[196,13,122]4 1.380 168 745.220 14.860 0.000 43.960 0.000 43.970 3
(120, 14, 69]4 1.920 315 2989.640 0.010 0.010 0.880 13.190 14.150 729
(182,14,110]4 3.530 | 19698 3142.570 741.160 0.760 2.430 0.000 3.28( 6
(134,15,77]4 5.220 | 50793 12051.040 463.570 2.110 13.010 0.000 15.350 4
(183,15,110]4 13.190 | 49218 12193.490 3525.470 2.320 18.940 0.010 21.500 3
[45,16,17]4 0.180 192 47480.220 2358.470 0.010 2833.000 0.000 2833.010 3
[91,16,47]4 6.430 3330 - 1831.150 0.120 0.180 0.000 0.30 1
(136, 16, 75]4 18.300 | 38880 - 308.820 1.580 6.940 0.000 8.70 18
(176,16, 103]4 29.980 219 - 2779.760 0.010 3747.880 0.000 3747.890 1
(64,17,29]4 4.430 6048 - 699.140 0.220 0.340 0.000 0.58( 3
(116,17,61]4 25.710 249 - 1.660 0.010 8275.260 0.320 8275.610 243
[137,17,75]4 37.240 | 122751 - 2731.850 5.870 107.510 0.000 113.99D 3
[172,17,99]4 83.180 | 65325 - 1379.040 3.230 30.070 0.000 33.670 27
[87,19,41]4 125.400 2550 - 126.980 0.130 0.520 0.000 0.66 4
(95,19, 45]4 50.430 | 11451 — | 43493.400 0.590 1.230 0.000 1.88( 1
(110,19, 54]4 31.710 330 177473.000 0.010 28449.570 0.000 28449.590 5

Timings in seconds using Magma V2.13-8 on an AMD Opteron 23@ck speed 2.6 GHz, 16 GB RAM); fay = 3, an AMD Opteron 254 (clock speed
2.8 GHz, 16 GB RAM) has been used.



TABLE [ (continued)
CoDESC = [n, k,d]q THAT CAN BE EXTEND TO CODESC’ = [n+ 1,k,d + 1]q.

code computingSy |Sq| | full iteration | iteration | equations Grobner  solution  total Grobner#solutions
[105,7,77]5 0.040 | 1760 1.010 0.070 0.050 0.230 0.000 0.28( 1
[78,11,47]5 0.060 780 682.690 | 53.860 0.060 55.730 0.000 55.790 3
(84,11, 51]5 0.220 | 3424 667.630 0.020 0.300 1.900 0.000 2.22 3
(89,11, 54]5 0.180 232 683.130 3.170 0.020 4324.910 0.020 4324.950 35
(93,11, 57]5 0.270 224 659.400 0.630 0.020 4172.490 0.060 4172.570 45
(65,4, 53]7 0.020 408 0.040 0.000 0.010 0.010 0.000 0.02 1
[51,6,37]7 0.020 504 2.070 0.000 0.030 0.360 0.000 0.39 14
(76,8, 53]7 0.030 912 102.710 1.080 0.080 249.500 0.000 249.59D 4
[44,8,29]s 0.020 | 2443 376.920 2.830 0.090 2.240 0.000 2.34 1
(68, 8,49]s 0.100 | 12936 338.610| 11.270 0.670 0.830 0.000 1.55 1
[27,9,15]s 0.020 | 4914 2760.190| 52.360 0.170 2.140 0.000 2.33 1
(69,9, 49]s 0.300 | 25480 2804.850| 19.510 1.870 2.810 0.000 4.80( 1
(82,5,67]9 0.150 | 2176 1.700 0.030 0.050 0.200 0.000 0.26 1
[87,6,69]9 0.400 | 4256 15.750 0.050 0.140 0.800 0.010 0.97 3
[127,6,103]9 0.230 976 15.310 0.500 0.030 4.170 0.000 4.21 1
(98,7, T6]9 0.860 | 6776 146.120 1.430 0.360 2.550 0.000 2.95( 1
(45,8, 30]9 0.220 | 1408 1332.960| 325.270 0.070 10637.000 0.000 10637.080 1

Timings in seconds using Magma V2.13-8 on an AMD Opteron 2%@ck speed 2.6 GHz, 16 GB RAM).

TABLE [8] ——, “Searching for linear codes with large minimum dista,” in
CODESC' = [n, k, d]q THAT CAN BE EXTEND TO CODES Discovering Mathematics with Magma — Reducing the Abstathe
C'=[n+2k,d+1]q. Concrete W. Bosma and J. Cannon, Eds. Heidelberg: Springer, 2006,
. . . . . 287-313.
€ =[nk,dlq Sd IS4l iteration | Grobner | #solutions [9] IgF.)HiII and P. Lizak, “Extensions of Linear Codes,” Rroceedings 1995
[205,13,94]2 | 0.070 | 2169 152.280|  0.440 3 International Symposium on Information Theowhistler, BC, Canada,
[172,17,70]2 0.060 | 2616 | 71392.360 0.860 3 September 17-22 1995, p. 345.
[166,18,66]2 | 0.050 | 1800 _ 0.600 3 [10] 2 Hill, “An rI\Exterrsion Theore;”l for Linear CodSeSD'esi%r;sé Codes and
_ ryptography vol. 17, no. 1-3, pp. 151-157, Sept. 1 .
[173,18,70]z | 0.080 4230 1.570 3 [11] A. Kohnert, “Update on the Extension of Good Linear Catidlec-
[205,19,82]> | 0.080 | 1632 — 0.600 9 tronic Notes in Discrete Mathematicsol. 26, pp. 81-85, Sept. 2006.
[119,7,75]3 | 0.020 | 756 16.510 0.710 6 [12] —, “(1, s)-Extension of Linear Codes,” iRroceedings Combinatorics
(85,9, 51]3 0.030 | 4536 143.400 3.500 24 2006 2007, preprint_arXiv:cs/0701112v1 [cs.IT].
Timings in seconds using Magma V2.13-8 on an AMD Opteron 2%k [13] T._ Maruta, “Extendability of Li_near Codes ovéFE(q) with Minimum
speed 2.8 GHz, 16 GB RAM. Distanced, gcd(d,q) = 1,” Discrete Mathematicvol. 266, no. 1-3,
pp. 377-385, May 2003.
[14] ——, “A New Extension Theorem for Linear Codeglhite Fields and
Their Applications vol. 10, pp. 674-685, 2004.
[3] A. E. Brouwer, “Bounds on the Size of Linear Codes,” ifandbook [15] ——, “Extendability of Ternary Linear CodesDesigns, Codes and
of Coding TheoryV. S. Pless and W. C. Huffman, Eds. Amsterdam:  Cryptography vol. 35, no. 2, pp. 175-190, May 2005.
Elsevier, 1998, pp. 295-461. [16] J. Simonis, “Adding a Parity-Check BitJEEE Transactions on Infor-
[4] C.-L. Chen, “Computer Results on the Minimum DistanceSoine Bi- mation Theoryvol. 46, no. 4, pp. 1544-1545, July 2000.
nary Cyclic Codes,IEEE Transactions on Information Theoryol. 16, [17] N. J. A. Sloane, S. M. Reddy, and C.-L. Chen, “New Binargd€s,”
no. 3, pp. 359-360, May 1970. IEEE Transactions on Information Theomyol. 18, no. 4, pp. 503-510,
[5] D.A.Cox, J.B. Little, and D. O’Shedgeals, Varieties, and Algorithms July 1972.
New York: Springer, 1992. [18] G. White, “An Improved Minimum Weight Algorithm for Qé&cyclic
[6] J.-C. Faugeére, “A new efficient algorithm for computi@yobner bases and Quasi-twisted Codes,” 2005, submitted to IEEE Trafwzston
(F4),” Journal of Pure and Applied Algebraol. 139, no. 1-3, pp. 61— Information Theory.
88, 1999. [19] K.-H. Zimmermann, “Integral Hecke Modules, Integralei@ralized
[7] M. Grassl, “Tables of linear codes” on-line availablet a Reed-Muller Codes, and Linear Codes,” Technische Uniérsiam-
http://www.codetables.de/. burg-Harburg, Tech. Rep. 3-96, 1996.
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