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Abstract

In this paper, we consider the problem of robust joint sowttgnnel coding over an additive white
Gaussian noise channel. We propose a new scheme which esliey optimal slope of the signal-to-
distortion (SDR) curve (unlike the previously known codischemes). Also, we propose a family of
robust codes which together maintain a bounded gap with ghimam SDR curve (in terms of dB). To
show the importance of this result, we drive some theorktiocands on the asymptotic performance of
delay-limited hybrid digital-analog (HDA) coding schemé&ge show that, unlike the delay-unlimited
case, for any family of delay-limited HDA codes, the asyntigtperformance loss is unbounded (in
terms of dB).

I. INTRODUCTION

In many applications, delay-limited transmission of agakources over an additive white
Gaussian noise channel is needed. Also, in many cases, dloe gnal-to-noise-ratio (SNR) is
not known at the transmitter, and may vary over a wide rangeabfes. Two examples of this
scenario are transmitting an analog source over a qudgi-&ding channel and/or multicasting
it to different users (with different channel gains).

Without considering the delay limitations, digital codesdheoretically achieve the optimal
performance in the Gaussian channel. Indeed, for the exguudint-to-point channels, Shannon’s
source-channel coding separation theorem [1] [2] ensine®ptimality of separately designing

source and channel codes. However, for the case of limitéaly,dseveral articles [3] [4] [5]
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[6] [7] have shown that joint source-channel codes have tebperformance as compared to
the separately designed source and channel codes (whidaled tandem codes). Also, digital
coding is very sensitive to the mismatch in the estimatiothefchannel SNR.

To avoid the saturation effect of digital coding, variousalmg and hybrid digital-analog
schemes are introduced and investigated in the past [§]-428ong them, examples of 1-to-2-
dimensional analog maps can be found as early as the workisapin®n [8] and Kotelnikov [9]
and different variations dbhannon-Kotelnikov maga/hich are also calletivisted modulations
are studied in [10] [11] [19]. Also, in [14] and [15], analogdes based on dynamical systems
are proposed. Although these codes can provide asympiaiis gfor high SNR) over simple
repetition codes, they suffer from a threshold effect. djevhen the SNR becomes less than
a certain threshold, the performance of these systems dlegrseverely. Therefore, design
parameters of these methods should be chosen according toptrating SNR, resulting in
sensitivity to SNR estimation errors. Also, although thef@@nance of the system is not saturated
for the high SNR values (unlike digital codes), the scalifighe end-to-end distortion is far
from the theoretical bounds. Theoretical bounds on thesiass of joint source channel coding
schemes (for the delay-unlimited case) are presented inajad [25].

To achieve better signal-to-distortion (SDR) scaling, diecg scheme is introduced in [26]
[27] which usesB repetitions of a £,n) binary code to map the digits of the infinite binary
expansion ofk samples of the source to the digits ofn@-dimensional transmit vector. For
this scheme, the bandwidth expansion factor is % and the SDR asymptotically scales as
SDR « SNR?, while in theory, the optimum scaling iSDR o« SNR". Thus, this scheme
cannot achieve the optimum scaling by using a single mapping

In this paper, we address the problem of robust joint soahegwel coding, using delay-
limited codes. In particular, we show that the optimum slop¢he SDR curve can be achieved
by a single mapping. The rest of the paper is organized agwisll

In section II, the system model and the basic concepts asepred. Section Il presents an
analysis of the previous analog coding schemes, and thatations. In section 1V, we introduce
a class of joint source-channel codes which have a selfairsiructure, and achieve a better

asymptotic performance, compared to the other minimuraydahalog and hybrid digital-analog



coding schemes. The asymptotic performance of these codésrms of the SDR scaling, is
comparable with the scheme presented in [26], but with a lgimgiructure and a shorter delay.
We investigate the limits of the asymptotic performanceeadf-similar coding schemes and their
relation with the Hausdorff dimension of the modulationnsijset. In section V, we present
a single mapping which achieves the optimum slope of the Sive¢ which is equal to the

bandwidth expansion factor. Although this mapping aclsetree optimum slope of the SDR
curve, its gap with the optimum SDR curve is unbounded (imgof dB). In section VI, we

construct a family of robust mappings, which individuallshéeve the optimum SDR slope, and
together, maintain a bounded gap with the optimum SDR cufealso analyze the limits on

the asymptotic performance of the delay-limited HDA codsuipemes.

[I. SYSTEM MODEL AND THEORETICAL LIMITS

We consider a memorylesgX;};-, uniform source with zero mean and variangg i.e.
—% <z < % Also, the samples of the source sequence are assumed mogepevith identical
distributions (i.i.d.). Although the focus of this paperds a source with uniform distribution,
as it is discussed in Appendix C, the asymptotic results alie for all distributions which have
a bounded probability density function.

The transmitted signal is sent over an additive white Gansebise (AWGN) channel. The
problem is to map the one-dimensional signal to ffi@limensional channel space, such that
the effect of the noise is minimized. This means that the data% <z< % is mapped to the
transmitted vectos = (sy, ..., siy). At the receiver side, the received signalyis= s + z where
z = (z1,..., zn) is the additive white Gaussian noise with variance

As an upper bound on the performance of the system, we candeortbe case of delay-
unlimited. In this case, we can use Shannon’s theorem onejp@ration of source and channel
coding. By combining the lower bound on the distortion of thmntized signal (using the rate-
distortion formula) and the capacity of parallel Gaussian channels with the noise variartge

we can bound the distortio® = E {|z — 7|*} as [15]
D > co®N 1)

wherec is a constant number.



[1l. CODES BASED ON DYNAMICAL SYSTEMS AND HYBRID DIGITAL-ANALOG CODING

Previously, two related schemes, based on dynamical sgsteave been proposed for the
scenario of delay-limited analog coding:

1) Shift-map dynamical system [14]

2) Spherical shift-map dynamical system [15]

These are further explained in the following.

A. Shift-map dynamical system

In [14], an analog transmission scheme based on shift-mapndical systems is presented.

In this method, the analog datais mapped to the modulated vectas, ..., sy) where

s1=x mod 1 (2)
Si+1 = biSi mod 1, for 1 S ) S N -1 (3)

whereb; is an integer numbeb, > 2. The set of modulated signals generated by the shift map
consists ofy; - by - ... - byy_; parallel segments inside aM-dimensional unit hypercube. In [15],
the authors have shown that by appropriately choosing thenpeters{b;} for different SNR
values, one can achieve the SDR scaling (versus the chaii®) ®ith the slopeN — ¢, for

any positive numbet. Indeed, we can have a slightly tighter upper bound on thetewhd

distortion as follows:

Theorem 1 Consider the shift-map analog coding system which mapsdbees sample to an

N-dimensional modulated vector. For any noise varidneg < % we can find parameted
such that for the shift-map scheme with the paramétetsa > 2, the distortion of the decoded

signal D is bounded

D < co®(—logo)N ™t 4)

wherec depends only onV.

1The result is still valid ifo® < 8, for some0 < § < 1 (but ¢ will depend oné).
2\We uselog z to denote the natural logarithm, ileg, .



Proof: See Appendix AR

Also, we have the following lower bound on the end-to-endadisn:

Theorem 2 For any shift-map analog coding scheme and any noise vagiafic< % the output

distortion is lower bounded as

D> do*N(~logo)N ! (5)
whered depends only omV.

Proof: See Appendix BE

B. Spherical shift-map dynamical system

In [15], a spherical code based on the linear systgm= Asr is introduced, wheres
is the 2N-dimensional modulated signal amtl is a skew-symmetric matrix, i.eA” = —A.
This scheme is very similar to the shift-map scheme. Indeeth an appropriate change of

coordinates, the above modulated signal can be represasted

Sy = — (Cos 21z, cos 2amx, ..., COS 20N iz,

VN

sin 27, sin 2anz, ..., sin 261

- (6)

for some parameter.
If we considers,,, as the modulated signal generated by the shift-map schethgaiameters

b; = a in (), then, [[6) can be written in the vector form as

ST = (Re {6”53’”} ,Im {e’”SSm }) . (7)

The relation between the spherical code and the linear-stafi code is very similar to the
relation between phase-shift-keying (PSK) and pulse-angd-modulation (PAM). Indeed, the
spherical shift-map code and PSK modulation are, respdygtithe linear shift-map and PAM

modulations which are transformed from the unit interya}, 1), to the unit circle.
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3 <r< D)

sy =2 mod 1

S$o =as; mod 1
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Fig. 1. The shift-map modulated signal set fir= 3 dimensions and = 2.

For the performance of the spherical codes, the same resdlheorem 1 is valid. Indeed,
for any parameterg and V, the spherical code asymptotically has a savinégl@f or 5.17 dB
in the power. This asymptotic gain results from transfognihe unit-interval signal set (with
length 1 and powell%) to the unit-circle signal set (with lengthr and powerl) . However,
the spherical code usesV dimensions (compared t&/ dimensions for the linear shift-map
scheme).

For both these methods, for any fixed parametethe output SDR asymptotically has linear
scaling with the channel SNR. The asymptotic gain (over thigpke repetition code) is approxi-
matelya®>V -1 (because the modulated signal is stretched approxinmltfeliltimesH. Therefore,

a larger scaling parameterresults in a higher asymptotic gain. However, by increasinthe
distance between the parallel segments of the modulatedlssgt decreases. This distance is
approximately% and for the low SNRs (when the noise variance is larger thazoomparable to
5), jumping from one segment of the modulated signal set taremmne becomes the dominant
factor in the distortion of the decoded signal which resirts& poor performance in this SNR
region. Thus, there is a trade-off between the gain in thb-8BiyR region and the critical noise

3The exact asymptotic gain is equal to the scaling factor efsignal set, i.ea?(™ 1) (1 +H+.+ (LQ(T{U) for the shift

map andnZ g2(N -1 (1 +L 4+ GQ(T{U) for the spherical shift map.



level which is fatal for the system. By increasing the saplparameter, the asymptotic gain
increases, but at the same time, a higher SNR threshold dedede achieve that gain. In [28],
the authors have combined the dynamical-system scheme4d.@RC and iterative decoding to
reduce the critical SNR threshold. However, overall betvagf the output distortion is the same
for all these methods. Also, in [29] and [30], a scheme isoihticed for approaching arbitrarily
close to the optimum SDR, for colored sources. However, nas delay-limited and it only
works for the bandwidth expansion of 1.

The shift-map analog coding system can be seen as a variatianhybrid-digital-analog
(HDA) joint source-channel code. Various types of such l/lschemes are investigated in
[16] [17] [18] [24] and [31]. Indeed, for the shift-map systewe can rotate the modulated
signal set such that all the parallel segments of it becomgeed in the direction of one of the
dimensions. In this case, by changing the support regioheofitodulated set (which is a rotated
N-dimensional cube) to the standard cube, we obtain a newasimbdulation which is hybrid
digital-analog and has almost the same performance. In ¢lae modulation, the information
signal is quantized by~ ~! points in an(/N — 1)-dimensional sub-space and the quantization
error is transmitted over the remaining dimension.

Regarding the scaling of the output distortion, the pertomoe of the shift-map scheme, with
appropriate choice of parameters for each SNR, is very diogbe theoretical limit. In fact,
the output distortion scales as$” (—logo)¥~!, instead of being proportional @*". However,
for any fixed set of parameters, the curve of SDR-versus-SNRIE) is saturated by the unit
slope (instead ofV). This shortcoming is an inherent drawback of schemes hieeshift-map
code or the spherical code (which are based on dynamicamg3t Indeed, in [32], it is shown
that no single differentiable mapping can achieve an asgtigpslope better than 1. This article
addresses this shortcoming.

There are some other analog codes in the literature whichdiffe#ent mappings. Analog
codes based on the 2-dimensional Shannon map [20] [21] B3] pr the tent map [14] are
examples of these codes. However, all these codes sharbdtte@nings of the shift-map code.



V. JOINT SOURCECHANNEL CODES BASED ON FRACTAL SETS

In this section, we propose a coding scheme, based on thalfssts, that can achieve slopes
greater than 1 (for the curve of SDR versus SNR).
Scheme |: For the modulating signat, —% <z< % we consider the binary expansion of
T+ %:
vt g = (0 Bbaby),. ®)

Now, we construck, s, ..., Sy as

s1=(0-Dibny1bani1-), 9
53 = (0 babnyobania...), (10)
SN = (0 . bNb2Nb3N"')a (11)

where (0 - bibobs...)  is the basex expansiola.

Theorem 3 In the proposed scheme, for amy > 2 and noise variancer? < % the output
distortion D is upper bounded by

D < co®(—log o)V (12)
wherec depends only oV, and § = N &2

loga”

Proof: Considerz; as the Gaussian noise on tith dimension:
Pr{|zi\ > QWU\/—loga} - (13)

2@ (2\/N P 10g0’> S 6_M _ 6—2N(—10g0) — O_2N (14)

“In this article, we define the base-expansion, for any real number > 2 and any binary sequencg:bzbs...), as
(0 . blbgbg...)a £ Zzoil biaii.
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Now, we bound the distortion, conditioned ¢n| < 2v/Noy/—logo for 1 <4 < N. If the
kth digit of s; and s are different,

|s; — s3] > (15)
(0 0.0 1000..) . (0 0.0 0111...) (16)
YA A
k-1 N k-1 N
> (o — 2)a~ kD (17)

Therefore, if|s; — si| < § for § > 0, the first k digits of s; and s; are the same, where
k> |—log, (-%5)] — 1. Now, by considering = 4v/No+/—log o,

|s; — 1| < 2|z < 4V Nov/—logo (18)
— k> {— log,, (NNUV _Qlog“)J 1 (19)
o —

Therefore, forl < i < N, the first

{ | (4\/Na\/Tga>J
— log,, -1

a—2

digits of sy, s9, ..., sy can be decoded without any error, hence, the first

(e () )

a—2
bits of the binary expansion af can be reconstructed perfectly. In this case, the outptartiisn

is bounded by

VD < 27N (|7lesa (M557) | 1) (20)
— D < 0% (= logo)V (21)

wherec; depends only omv and N. By combining the upper bounds for the two cases, noting
thato < 1
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N

D <Y Prilzl>2vVNoy/—logo b + c10?(—log o)V (22)
> pr{ls]
=1

<o + 0% (= logo)V (23)

< co?(=logo)". (24)

[

According to the theorem 2, for any > 0, we can construct a modulation scheme that
achieves the asymptotic slope &f— ¢ (for the curve of SDR versus SNR, in terms of dB). As
expected (according to the result by Ziv [32]), none of thesgpings are differentiable. More
generally, Ziv has shown that [32]:

Theorem 4 ( [32], Theorem 2) For the modulation mappisg= f(x), define
dp(A) =E{|[f(z +A) = f(2)*}.
If there are positive numberd, v, A, such that
de(A) < AAY for A < A,. (25)

Then, there is constantsuch that
D> o (26)

In Scheme |, by decreasing, we can increase the asymptotic slofje However, it also
degrades the low-SNR performance of the system. This phenomis observed in figure 3.

In scheme 1, the signal set is a self-similar fractal [33],enéh the parametef, which
determines the asymptotic slope of the curve, is the dimensi the fractal. There are different
ways to define the fractal dimension. One of them is the Hatfsdomension. ConsidetF
as a Borel set in a metric space, aRidas a countable family of sets that covers it. We
define H:(F) = inf )" , 4 (diameter(.A))°, where the infimum is over all countable covers
that diameter of their sets are not larger tharThe s-dimensional Hausdorff space is defined

as H*(F) = lim._,o H3(F) = sup,.o HZ(F). It can be shown that there is a critical valsge
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such that fors < s, this measure is infinite and for > sq, it is zero [33]. This critical value
so Is called the Hausdorff dimension of the sEt

Another useful definition is the box-counting dimensionwk partition the space into a grid
of cubic boxes of size, and considern. as the number of boxes which intersect theBethe
box-counting dimension of is defined as
log m,.

Dim(7) = iy 1

(27)

It can be shown that for regular self-similar fractals, thausdorff dimension is equal to
the box-counting dimension [33]. Intuitively, theorem 3ane that in scheme | among thé
available dimensions, only dimensions are effectively used. Indeed, we can show thadrfp
modulation s& with box-counting dimensiow, the asymptotic slope of the SDR curve is at

most 3:

Theorem 5 For a modulation mapping = f(z), if the modulation setF has box-counting

dimensiong, then
. logD
lim
oc—0 logo

< 2B. (28)

Proof: We divide the space to boxes of size Considerm, as the number of cubic boxes that
cover F. We divide the source signal set4e, segments of Iengtl;?;To. ConsiderAy, ..., Ay,

as the correspondingy-dimensional optimal decoding regions (based on the MMStérarn),
andB;, ..., By, as their intersection with the,, cubes (see figure 2). Total volume of these,
sets is equal to the total volume of the covering boxesigr". Thus, at least, half of these
sets (i.e2m, of them) have volume less th%mrN . For any of these sets suchBsand any box,
the volume of the intersection of that box with the other st least/,;, = oV — 1oV = LoV,
For any point in the corresponding segments of the3sethe probability of decoding to a wrong
segment is lower bounded by the probability of a jump to thghi®Boring sets in the same box.
Because the variance of the additive Gaussian noisé iger each dimension, and for such a
jump the squared norm of the noise at most needs t&bé (square of the diameter of the

box), the probability of such a jump to the neighboring sets be lower bounded as

*Modulation set is the set all possible modulated vectors.
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Fig. 2. Boxes of sizer and their intersections with the decoding regions

r(jump) > o 2 (2) (29)

1 1 No? 1 N
> ol T = 77, 30
T2 (27)2 oN 22 Hgy (30)

where f, (z) is the pdf of the noise vectar.
Now, for these segments of the source, consider the subsegmith Iengthﬁ at the center

of them. When the source belongs to one of these subsegmeaatsy segment decoding results

10me

2 2
in a squared error of at Ieaf{t% : (ﬁ — 20})@(})) = ( L ) . Thus, for these subsegments

whose total length is at leagt'— - 2m, = 5, at least with probabilityPr(jump), we have a
’ 2

squared error which is not less thé%) . Therefore,

D > 11—0Pr(jump)~ ( ! ) = % (31)
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wherec only depends on the bandwidth expansiénOn the other hand, based on the definition

of the box-counting dimension,

. logm,
f = lim log L~ (32)
By using [31) and[(32),
lim 222 <95 (33)
o—0 logo

[

It should be noted that theorem 5 is valid for all signal setg,just self-similar signal sets.
As a corollary, based on the fact that the box-counting dsincan not be greater than the
dimension of the space [33], Theorem 5 provides a geometsight to [(1).

Another scheme based on self-similar signal sets and theitenfoinary expansion of the
source is proposed in [26] [27], which similar to the schemappsed in this section, achieves a
SDR scaling better than linear coding, but cannot achies@gtimum SDR scaling. The scheme
presented in [26] is based on usifgrepetitions of a ,n) binary code to map the digits of the
infinite binary expansion of samples of the source to the digits oh&-dimensional transmit
vector. This scheme shares the shortcoming of Scheme I6]ntf#& bandwidth expansion factor
isn = % and the SDR asymptotically scales®P R « SN R”, instead of the optimum scaling
SDR x SNR". The main difference between Scheme | and the scheme pipod@6] is
that in Scheme 1, the delay is minimum (it uses only one saroplthe source for coding),
but in [26], the delay ist, and the the ratio between the SDR exponent and the optimuR SD
exponent is dependent on the delay (it’g&s i.e. to increase it, one needs to increase the length
of the binary code, which results in increasing the delay.

The idea of using the infinite binary expansion of the soui@ejoint source-channel coding,
can be traced back to Shannon’s 1949 paper [8], where shyffiendigits is proposed for band-
width contraction (i.e. mapping high-dimensional data teignal set with a lower dimension).
For bandwidth expansion, space-filling self-similar sigeets have been investigated in [13],
however, the SDR scaling of those schemes are not betterlithear coding. The reason is
that when we use a self-similar set to fill the space, the sguarror caused by jumping to
adjacent subsets dominates the scaling of the distortioravdid this effect, we need to avoid

filling the whole space. This results in losing dimensiayafor self-similar sets, which results
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in sub-optimum SDR scaling (as investigated in this segtida avoid this drawback, we need

to consider signal sets which are not self-similar, as pgeddn the next section.

V. ACHIEVING THE OPTIMUM ASYMPTOTIC SDR SLOPE USING A SINGLE MAPPING

Although Scheme | can construct mappings that achieve oy@arrum slope for the curve of
SDR (versus the channel SNR), none of these mappings caevadiie optimum slop&/. To
achieve the optimum slope with a single mapping, we slightbdify Scheme I:

For the modulating signal, considerz + 3 = (0.b1b2bs...),. We constructsy, s, ..., sy as

s1 = (0.600bnv+1) ,  Oniveny o DNven 0b 2y eN+1 ) 34
1 ( 1 ) UNUEED o DNURED 4 Ny VR ERIENED g - ] (34)
So = [ 0.byb300 N+1)(N+2 b N+1)(N+2 b N+1)(N+2 0) 35
2 ( 20300 prenyoven) ybovenoven 4o bovenwis 4y 50 ) (35)
SN = (O.bN(J\;—l)_’_le(l\;fl)+2...bN(1\;+1)0...)2 (36)

The difference between this scheme and Scheme | is thathstieassigning thé N + ith bit
to the signals;, the bits of the binary expansion af+ % are grouped such that thgh group
(I = kN + i) consists ofl bits and is assigned to thi¢éh dimension. In decoding, we find the
point in the signal set which is closest to the received wectp z. If |z;| < 271~ Xx=o (BN +it1),
the first>";_, (kN + i + 1) bits of s; can be decoded error-freely (for< : < N) which include
> r—o (EN + 1) bits of the sourcer.

Theorem 6 Using the mapping constructed by Scheme I, for any noisanee 02 < % the

output distortionD is upper bounded by

D S 010_2N2cgw/—log2a (37)

wherec; and ¢, only deper@l on N.

®Throughout this paper;;, co, ... are constants, independent of(they may depend ofV).
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Proof: Let z; be the Gaussian noise on tfte dimension and assume thatis selected such
that

n+1 n+2
> (kN +1) < —logyo < Y (kN +1). (38)
k=1 k=1

The probability that z;| > 2-1-X%=1 *N+1) js negligible. Indeed,

n+1
Pr {|zi| > 271Xk VD | og, 0 > Y (N + 1)} < (39)

k=1

2—1—22:1 (EN+1)
— (n+1)N

2Q( 9~ kL) (kN+1) ) 202 ) (40)
290 (2 i kN+1) (41)
2 2@ (Qw/—logQ 0) é 2_22\/7log2 o—1 (42)

where () because\/ZZif EN +1 = \/w +n+2< (n+1)N for N > 2, and ¢)

22

because[(38) , and)becaus&)(z) < 1e~ 7.
On the other hand, whepy;| < 271Xk (\N+D) for 1 < j < N, |z] < 271-Zico (kN+it1),

hence the firsp;—, (kN + i + 1) bits of s; can be decoded error-freely which inclugled'_} (kN + i)

bits of the sourcer. Thus, the firsty_" | S/~ (kN + i) = >"" j bits of = can be decoded

error-freely. Now,

Zj:nN(n;V—l—l) (43)

:N<N(n+22)(n+3)+n+2)_N2(5n+6)2+nN+4N (44)
n+2
:N<Z(kN+1)> _N2(5n+6)2+nN+4N (45)
k=1

>N (% (kN + 1)) — ¢ i (kN +1) (46)

k=1
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wherec; depends only onV. Therefore, by using the assumptidn|(38),

di> (47)

— Nlogyo — c3y/—log, 0 (48)

Consequently, the output distortion is bounded by

N
D<Y Pr {|Zi| > 2—1—zz:wv} o2 (49)
1=1
< 2Q (2w/—10g2 cr) + 22N10g2 o0+2c34/—logy o (50)
— 2@ <2\/—log20) + O_2N202w/—log20. (51)
= D < ¢ o?N22v log20, (52)

[

It should be noted that in this proof, the assumption of hgnanuniform distribution is not
used, and the above proof is valid for any source whose sangpiein the interval—1, 1).
In Appendix C, we extend the scheme proposed in this sectiarthter sources which are not

necessarily bounded.

VI. APPROACHING A NEAROPTIMUM SDRBY DELAY-LIMITED CODES

In [24], a family of hybrid digital-analog (HDA) source-chiael codes are proposed which
together can achieve the optimum SDR curve and each of thdynsoiffers from the mild
saturation effect (the asymptotic unit slope for the curf’f&&DR versus SNR). However, their
approach is based on using capacity-approaching digittdsas a component of their scheme.
In [25], it is shown that for any joint source-channel codatttouches the optimum SDR curve

at a certain SNR point, the asymptotic slope can not be betser one.
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In this section, we consider the problem of finding a familydeflay-limited analog codes
which together have a bounded asymptotic loss in the SDRpeance (in terms of dB). Results
of Section Il show that none the previous analog coding swse(based on dynamical systems)
can construct such a family of codes. In this section, we sitgv that no HDA source-channel
coding scheme can achieve this goal.

In the HDA source-channel coding, in general, to mapMdndimensional source to afrv
dimensional signal set, the source is quantized pypints which are sent ovéy — M dimensions
and the residual noise is transmitted over the remainindimensions. In other words, the region
of the source (which is a hypercube for the case of a uniforancs) is divided into: subregions
Ay, ..., A.. These subregions are mappedxtparallel subsets of th& dimensional Euclidean

space, A}, ..., A, where A} is a scaled version of{; with a factor ofa.

Theorem 7 Consider a HDA joint source-channel code which mapsi&imensional uniform
source (inside the unit cube) toparallel M-dimensional subsets of ai dimensional Euclidean
space (V > M), with a power constraint of. If the decoding of digital and analog parts are
done separately, for any noise varianeé < 1, the output distortion is lower bounded by

N-M

D > coir (—logo) & (53)
wherec depends only o/ and N.

Proof: See Appendix DIl

Now, we construct families of delay-limited analog codeschitby a proper choice of param-
eters (according to the channel SNR) have a bounded asymfuts$ in the SDR performance
(in terms of dB).

Type | - Family of piece-wise linear mappings: For any2—%~! < ¢ < 27%, for k > 0, we
construct an analog code as the following:

Nk—lx .
For x + % = (0 . blb2...ka_1)2 + %NTl} where {-} represents the fractional part, we

constructs;, s, ..., sy as
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k

Sg = Z(Q_i + 27" (k — 9))b-1)n+2

=1

k
SN—1 = Z(Q_i +27%(k — )b 1)NN-1

i=1

o k Nk—k— { 2Nk= 195}
SN = 2(2_2 +27%(k — i)bi-1yn+n +2 2W (54)

=1
First, we show that < s; < 2, for 1 < j < N. By using the fact that the value of the bits

are at most 1, ang2"" 'z} < 1,

k k+1
ZQ—HFQ 4+ o7kl = Zz +2kz — ) (55)
k(k—1
<1427F. ( )<2. (56)

2
Therefore, noting tha < s; < 2, by an appropriate shift (e.g. modifying the transmitteghsi
set as’ = s—1), the transmitted power can be bounded by one. Next, we dhatitie proposed

scheme has a bounded gap (in terms of dB) to the optimum SDR:cur

Theorem 8 In the proposed scheme, noise variance< % the output distortionD is upper
bounded by

D < co®N (57)
wherec depends only onV.

Proof: The signal set consists @f"*~! segments of lengtAh—*~!, where each of them is a
subsegment of the source region (the unit interval), sclyed factor of2V+—+-2,

The probability that the first error occurs in tité bit (( = (i — 1)V + j, wherel < j < N)
of = is bounded byP, < 2@ (%) <2Q (%4 — ;%) and it results in an output squared error of at
most D; < 471 = 4-G-DN=j+1 Therefore, by considering the union-bound over all pdssib

errors, we obtain
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Nk—1

D S Z Dl : Pl + Dno—bit—error
=1

Nk—-1

kool
< ) o4t (— — —) + 4~ (Wk=k=2) 52 (58)
— 2 2N

Now, by usingQ(z) < e~ and2+ < o, we have

kN—1 .
D < 2: 2—2l+36—% 1 g (Nk—k=2) 2
=1

kN-—1 .
< Z 9—20+309— =) 1 g (Nk—k=2) 2
=1

kN—1
< 9—2kN Z 22(kN—l)+32—% 44~ (Nk—k=2) ;2
=1

kN1 (k—1/N—8N)2
5 _I/N—
— 2—2]<:N . 23 . 28N E L S + 4—(Nk‘—k‘—2)0.2
=1

< 9—2kN 93  98N? Z 2—% 4y (Nh—k=2) 2

l=—00

_ 92N 93 8N i g0 4 4~ (Nk—k=2) ;2

I/'=—0c0

< 97N o 4 gm(Nk—k=2) ;2

< co®N. (59)

[
It is worth noting that in the proposed family of codes, focle@ode, the asymptotic slope of
the SDR curve is 1 (as we expected from the fact that for eade,dbhe mapping is piecewise

differentiable). We can mix the idea of this scheme with Sobdl of the previous section, to
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construct a family of mappings where for each of them, thergugtic slope isV, and together,
they maintain a bounded gap with the optimal SDR (in termsB) d
Type Il - Family of robust mappings: For z + 5 = (0 - bibbs...),, We constructfy(z) =

(Slu 52, ey SN) as

k

s1= ) (27 + 27k — )by + 277 (0 “bn+10D, 5, N@+1>+1ka+NUgH)+2...>
1=1

2

k

SS9 = ;(Q_i + 2_k(/{: — i))b(z’—l)N+2 + 27kt (0 . ka+zka+SOka+(N+1)2(N+2)+1~-~)

2

k

sv =) (27 + 27k = )ba_ynen + 277 (0 Dy v by v +2...)
1=1

2

Theorem 9 In the proposed family of mappings (Type Il), there are camistc, ¢, , ¢;, indepen-
dent of o and k& (are only dependent o®V) such that for every integet > 0, if we use the
modulation mapfy(x),

i) For 27F1 < o < 27K,

D < co?V. (60)

i) for any o < 27k,

D < ¢10?N 22V ~loga o (61)

Proof: i) The probability that the first error occurs in tlih bit ( = (: — 1)N + j < kN)
of z is bounded byP, > 2Q (%) and it results in an output squared error of at most,
and when there is no error in the firatk bits, the squared error iB’ < 4-V*, Therefore, by

considering the union-bound over all possible errors, weeha

Nk
D<> D-P+D
=1
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Nk k I
< 4—l+1 .9 v 4—Nk
<> (yogy )
Similar to the proof of theorem 8, by usin@(z) < e‘é and27%"! < ¢ < 27%, we have

Nk—1 iy
D< Z gl B | jaN
=1

< e AN 4 2N

< co?N,

il) Considerz; as the Gaussian noise on tite channel and assume thatis selected such
that

n+1 n+2

k+> (IN+1)<—logyo<k+> (IN+1) (62)

1=1 I=1
The probability thafz;| > 2-#~1-2= (N+1) s negligible (it is bounded bgQ (2"+VN)).

On the other hand, whej;| < 27~ 1-Xis (V4D the firstk + 7' (IN +4 + 1) bits of s;
can be decoded error-freely € i < N) which includek + El"z_ol (IN + 1) bits of z. Thus, the
first kN +Z;Livl j bits of x can be decoded error-freely. Now, similar to the proof obtieen 6,

niN

EN+Y 5> (63)

i=1

=1 =1

N(Hi(mﬂ)) — ¢ i(uvﬂ) (64)

=1 =1

N<k+nZ(ZN+1)>—CGJkH—nZ(ZN%—l) (65)

Therefore, by using the assumptidn|(62),

nN
EN+Y 5> (66)

i=1
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— Nlogy o — cgy/—log, o (67)

Therefore, the output distortion is bounded by

D < 27 2(WN+350) 4 90 (20DN) (68)
< 22N10g2 o+2c6+/—logy o + 2@ (2(n+1)N) (69)
— D < ¢V 080 (70)

VIl. SIMULATION RESULTS

In figure 3, for a bandwidth expansion factor of 4, the perfange of Scheme | (with
parametersy = 3 and 4) is compared with the shift-map scheme witk- 3. As we expect,
for the shift-map scheme, the SDR curve saturates at slopehile the new scheme offers
asymptotic slopes higher than one. For the proposed scheftte parametersn; = 3 and

as = 4, the asymptotic slope is respectively = 41(1;%2 and 3, = 41(1)?42 = 2 (as expected from

Theorem 3). Also, we see that the proposed scheme providescafgl degradation in the low
SNR region.

Figure 4 shows the performance of Scheme Il fér= 4 dimensions. As it is shown in
the figure, the asymptotic exponent of the SDR is close to fitenam value of 4, i.e. the
bandwidth expansion ratio. The fluctuations of the slopehef ¢urve is due to the fact that
groups of consequent bits are assigned to each dimensidnfoardifferent ranges of SNR,
errors in different dimensions become dominant (for examfar SNR values around 40-50dB,
the error in the second layer of bits ef becomes dominant in the overall squared error). By
modifying Scheme Il and assigning groups of bits of lenfith= i + k(N — 1) (instead of
l =i+ kN) to theith dimension, we can slightly improve the performance inrthddle SNR

range. Asymptotic exponents of the SDR in both variationSdfieme Il are the same.
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4 dimensions
107 T T T T T

r —8— Scheme |, a=4
10| —©6— Scheme |, 0=3
E : — — — shift-map, a=3

SDR
P
o

10 1 1 1 1 | 1
10 15 20 25 30 35 40 45

SNR (dB)

Fig. 3. The output SNR (or SDR) for the first proposed schemiéh(w = 4 and 3) and the shift-map scheme with= 3.
The bandwidth expansion & = 4.

VIIl. CONCLUSIONS

To avoid the mild saturation effect in analog transmissian @chieving the optimum scaling
of the output distortion), one needs to use non-differétgianappings (more precisely, mappings
which are not differentiable on any interval). Two non-dré#ntiable schemes are introduced in
this paper. Both these schemes, which are minimum-delagnses, outperform the traditional
minimum-delay analog schemes, in terms of scaling of theguduSDR. Also, one of them
(Scheme I1) achieves the optimum SDR scaling with a simplppimgy (it achieves the asymptotic
exponentN for the SDR, versus SNR).
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300

—+— Scheme Il (&
—Oo— Scheme Il (b

250

200

150

SDR (dB)

100

50

O 10 20 30 40 50 60 70 8 90 100
SNR (dB)

Fig. 4. Performance of Scheme Il f&¥ = 4 dimensions. (a) corresponds to the scheme introduced itio8e¢ and (b)

corresponds to the other variation of Scheme Il, when graddé= i + k(N — 1) bits are considered.

APPENDIX A: PROOF OFTHEOREM 1

The set of modulated signals consists a@f ! parallel segments where the projection of

each of them on théth dimension has the lengtit “—1), hence, each segment has the length

V1+a2+ ...+ a2N-1, By considering the distance of their intersections with llgperspace
orthogonal to theVth dimension (which is at least!) and the angular factor of these segments,
respecting to thesy-axis, because: > 2, we can bound the distance between two parallel

segments of the modulated signal set as (see Fig. 1)

a_l a_l a—l
d= = — > - — > (71)
Vi+ta2+.. +a20N-D 7 /14+2°24+  +2°20N-1 2

. . 1 - _ 1 g
First, we consider the case of/—logo < TR Considera = {WTMJ Probability of

a jump to a wrong segment (during the decoding) is bounded by
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Pr(jump) < 2Q (i) <20 (—1) (72)

20 4o
VNo—1
<20 <8 o oga> . (73)
4o
By usingQ(z) < %e‘%
—(2VNv~Toga)*
Pr(jump) <e (2ot el e?Nlogo — 52N (74)

On the other hand, each segment of the modulated signal aeteigment of the source signal

set, stretched by a factor af¥~'v/1 4 a=2 + ... + a—2(¥-1 (its length is changed frong%

to V1 + a2+ ...+ a2N-D), Therefore, assuming the correct segment decoding, tbeage

2
distortion is the variance of the channel noise divided(bﬁy‘lx/l +a24 ..+ a—Q(N—U) ;

E{|i—x|2|n0 jump} = (75)
2
7 ; < (76)
(aN_l\/l +a2+ ...+ a_Z(N_l))
o? o? _
ST ) ST < c10*N (—log U)N ! (77)
LWNUWJ

wherez is the estimate of and ¢, is independent ofi and o and only depends ofV. Now,

because® {|z — z|*|jump} and Pr(no jump) are bounded by 1,

D = Pr(jump) - E{|z — z|*|jump} + Pr(no jump) - E {|Z — z|*|no jump} (78)

— D < Pr(jump)+E{|f—55|2‘n09ﬂmp} (79)

1

< 020'2N(_ 10g0>N_17 for gv —IOgO' < ]_6\/N

1
On the other hand, fo#y/—logo > oV/N

(80)
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D<1=0*(=logo) W=V .s2N(—logs)¥! (81)

= (O‘\/— log 0) - (—logo) - o*N(—logo)V ! (82)

< (L)_w - (—1ogV2) - o (~log o)V ! (83)
16V N

< c30?N (= logo)N L (84)

Therefore, by combining these two bounds together, we btai

D < co®™(—logo)N 1. (85)

APPENDIX B: PROOF OFTHEOREM 2

We consider two cases:

4 .
Case 1y < Vel

Each segment of the modulated signal set is a segment of thieessignal set, scaled by a

factor of aV V1 + a2+ ... + a2V, hence

D > E{|z — z|*|no jump} (86)

2
_ o 2 (87)

<CLN_1\/1 +a 2+ ..+ a‘2(N‘1)>

2

o
> 22(N—1) (88)
> ;0% (—log o)Vt (89)

Case2)w%<a§#%,forl21:
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In this case, we bound the output distortion by the averaggedion caused by a large jump to
another segment. Let be the additive noise in the first dimension afid) = s the modulated
vector corresponding to the source sample

For any point in the interval-3 + (k — 1)a™ < 2 < —3 +ka™! (for 1 < k < a — 2'*1),
when z; > 21gt, for any pointz’ < x + 2la™?, the received pointf(x) + z is closer to
f (2" +2'a™!) than f(z). Therefore, the decoded signalds> z + 2'a™'. Thus, in this case,

the squared error is at Iea@la‘l)z. Therefore, the average distortion is lower bounded by

D >Pr {—% <z < % - 2l+1a_1} Priz >2"ta"} (21a_1)2 (90)
= (1-2"a7)-Q <20—) (2’ (91)
. (1 ST loga) 0 <m/—aloga) . (m/—?loga) 92)

— (1-0y/"Tog0) - @ (v Togs) - 17l (93)
( )@ )

By usinge " < Q(x),
2(_
DZ(l—a\/—logU)wf-w (94)

= D > cy0° (—logo). (95)
By combining the bounds (for two cases), and noting taK %

D > min {0203 (—logo),cio®™ (—log U)N_l} (96)

D> cdo*N(—=logo)¥"! for N >2. (97)



28

APPENDIX C: CODING FOR UNBOUNDED SOURCES

Consider{X;}.~, as an arbitrary memoryless i.i.d source. We show that thétsesf Section
V can be extended for non-uniform sources, to constructgbjaint-source channel codes with
a constraint on the average power. Without loss of gengralie can assume the variance of
the source to be equal to 1. For the source samplge can write it ast = z; + o wherex;
is an integer—3 <z, < 1, andzy + 4 = (0 bibobs...),. Now, we construct theV-dimensional
transmission vector as = (s}, s, ..., siy) = (21 + 51— 3,50 — 3,..., 5y — 3), Wheres;, ..., sy
are constructed using (36) in section V. L2t be the distortion conditioned on correct decoding

of x;. Similar to the proof Theorem 6, we can show that theis upper bounded by

Dl < ClO.ZNQCQ\/—lOgO' (98)

wherec; andc, depend only onV.

Now, we bound the distortio,, for the case that; is not decoded correctly. Sinceg is
constructed by scheme Il (in Section \), is betweer) and (0.10111 - - -),, hence0 < s; < 3.
To have an error ofz; — 71| = k, the amplitude of the noise on the first dimension should
’“;%). When [z, — 71| = k, the

loa

be greater thaﬁ“;—%, hence its probability is bounded 2y (

overall squared error is lower bounded by

v — 7| <|ry — 21|+ |22 — T2 <k + 1. (99)

Therefore, by using the union bound for all valueskothe distortionD, is lower bounded by

s _3
Dy <) 20Q (2—04) (k+1) (100)
k=1
- (5
<Y e T (k+1) (101)
k=1
< czeTEoT. (102)

Thus,D < Dy + D, < ¢qo?N2e2v=Togo,
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To finish the proof, we only need to show that the average tnéted power is bounded. For

sh, ..., sy, the transmitted power is bounded [a§? < 1. For s},

o 1 2 1 2
|Sl‘ = l’1+81—§ S |.T1‘—|— 81—5 (103)
1 1)\?
< (lel+5+35) = (el 17 (104)

Thus, using the Cauchy-Schwarz inequality,

E{|s)2} <E{(z]+1)?} < (\/WH) (105)

<(1+1)7=4 (106)

APPENDIX D: PROOF OFTHEOREM 7

We consider two cases far, the scaling factor,
Case 1)a < 2 '(—logo)

Each subset of the modulated signal set is the scaled vestmisegment of the source signal

(N M)+4 (N M

set by a factor ofi, hence, we can lower bound the distortion by only considetie case that

the subset is decoded correctly and there is no jump to adjacdsets,

D > E{|z — z[*|no jump} (107)
2
-Z (108)
a
> 040%(— log U)W (109)
Case 2)2l+1+2(N s 7 < i+ 25 for | > 3

o~ M (—logo) 2M
In this case, we bound the output distortion by the averagtomion caused by a jump to

another subset. Without loss of genergl,ltwe can consides < ( ) hence2~!'a > 8. First, we

"For1 < o < 1, the distortionD is larger thanD (the distortion forc = 1), henceD > D, > Dio 3t (—logo) 7,
and D1 depends only onV.
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show that there are two constantsand ¢s (independent of: and o) such that probability of

an squared error of at least (Q‘Za)_2 is lower bounded by

Pr(jump) > csQ (\/ —log U) > ce0 (110)
By considering the power constraint, the maximum distarfoeach source sample to its quan-

tization point is upper bounded by

1
dmax S - (111)

a

We can partition thel/-dimensional uniform source ta = (L%J)M > (#)M cubes of

Sizes = LiJ > %l > 2'd,.... We considerB; as the union of the quantization regions whose
of

center is in theith cube { < i < n). Because the decoding of digital and analog parts are
done separately, theV — M)-dimensional subspace (dedicated to send the quantizations)

can be partitioned te decoding subsets, corresponding to regiéhs..., 5,. If we consider

Ci, ...,Cy, the intersections of these decoding regions and the- M )-dimensional cube of size

(4)N71V1

4, centered at the origin, at lea$tof them have volume less thah(%) < ( S

2-l-1q
N—L

20NV-M(—logs)"= . This volume is less than the volume of &N — M )-dimensional sphere
of radiuso(— log a)%. Thus, for any point insidé; with this property, the probability of being
decoded to a wrong subsBi is at least equal to the probability that the amplitude ofribese
is larger than the radius of that sphere (io€¢— log o—)%). This probability is lower bounded
by Pr {zl > o(—log a)%} = @ (v/=logo) > o. Now, for the cubes corresponding to these
subsets, we consider points inside a smaller cube of 5ixath the same center.

For these points, at least with probability decoder finds a wrong quantization region where

the distance of its center and the original point is at Ie%}éi =2 > ? hence, the final

4
squared error is at Iea:{t? - olm,m)2 > <# — %)2 > cs (2—la)_2.
Because at least half of thesubsets have the mentioned property, the overall probabiii
having this kind of points as the source is at Ie]gﬁtM, and in transmitting these points, with

a probability which is lower bounded by, the squared error is at Ieagt(2‘la)_2. Therefore,

the distortion is lower bounded by

1 , _ _
D> 52_M -0 - Cs (2_la) 2 > cro (2_la) 2
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2(N—M) N—M

>cgo-0 M (—logo) ™

2N-—M N-—M

=cgo M (—logo) ™ . (112)

Finally, by considering the minimum of (109) arid (112), wenclade
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N-M

D >coi (—logo) o . (113)
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