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Decentralized Sequential Change Detection Using
Physical Layer Fusion

Leena Zacharias and Rajesh Sundaresan

Abstract— The problem of decentralized sequential detection
with conditionally independent observations is studied. The
sensors form a star topology with a central node called fusion
center as the hub. The sensors make noisy observations of a
parameter that changes from an initial state to a final state at
a random time where the random change time has a geometric
distribution. The sensors amplify and forward the observations
over a wireless Gaussian multiple access channel and operate
under either a power constraint or an energy constraint. The
optimal transmission strategy at each stage is shown to be the
one that maximizes a certain Ali-Silvey distance between the
distributions for the hypotheses before and after the change.
Simulations demonstrate that the proposed analog technique has
lower detection delays when compared with existing schemes.
Simulations further demonstrate that the energy-constrained
formulation enables better use of the total available energy
than the power-constrained formulation in the change detection
problem.

Index Terms— Ali-Silvey distance, change detection, correla-
tion, Markov decision process, multiple access channel, sequential
detection, sensor network

I. I NTRODUCTION

Consider the use of a wireless sensor network for detection
of a disruption or a change in environment. The change is
required to be detected with minimum delay subject to a false
alarm constraint. The standard medium access control and
physical layer design for such a network (e.g., IEEE 802.15.4
standard) is one where sensors quantize their observationsand
send them to a fusion center via random access over a wireless
Gaussian multiple-access channel (GMAC). The transmitted
data are typically quantized individual log-likelihood ratios
(LLR) of the hypotheses representing the environment before
and after the change. The fusion center collects each sensor’s
LLR and adds them to get a fused statistic, if observations
at sensors are independent conditioned on the state of the
environment; this would be the case when the observation
noises are additive and independent from sensor to sensor1.
Such a design has a few drawbacks.

1) It does not exploit the spatial correlation in observations
across sensors.

2) It does not exploit the superposition available on the
GMAC.
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1As we will see later, conditional independence notwithstanding, sensor
observations are correlated.

3) It employs an ad hoc separation between quantization or
compression on one hand, and transmission across the
channel on the other; the latter requires adequate coding
for noiseless reception and correct further processing at
the fusion center.

4) It requires sufficient time slots for sensors to resolve all
channel contentions2.

Our goal in this paper is to detect change in environment in a
manner that addresses the aforementioned drawbacks. Specifi-
cally, we consider a “star” topology of sensors. Sensors make
an affine transformation of the observed data and transmit
the output in an analog fashion over the GMAC. Given that
observations at sensors at any instant are spatially correlated,
only the sum of the LLRs is relevant to the decision maker,
i.e., it is a sufficient statistic to decide on the change. By
making the sensors simultaneously transmit an affine function
of their LLRs in an analog fashion, and via distributed transmit
beamforming, we exploit the spatial correlation in sensor data
and the superposition available on the GMAC – the channel
computes the required sum. Moreover, the analog data is in
loose termsmatched to the channel and does not require
explicit channel coding. Finally, the sum is available at the
fusion center in a single transmit duration unlike the situation
in the random access case.

The biggest challenge in our proposed technique is the prac-
ticality of distributed transmit beamforming. The transmitters’
clocks should be synchronized to some extent, so that carrier,
phase, and symbol ticks align. A technique similar to the
master-slave architecture proposed by Mudumbai, Barriac &
Madhow [1] can be used to achieve this synchronization. The
scheme exploits channel reciprocity in a time-division duplex
(TDD) system.

1) Organization and preview of main results:In Section
II, we formulate and solve a change detection problem under
a power-constrained setting3. We arrive at a Markov decision
problem framework and show that parameters of the affine
transformation should minimize the variance of the combined
observation and GMAC noises, which turns out to be a non-
convex optimization problem. We then provide an explicit al-
gorithm to compute the optimal control parameters. SectionIII
considers an energy-constrained setting. Section IV compares

2Alternatively, a time-division multiplexing protocol needs as many slots
as there are sensors, and does not scale with the number of sensors.

3Sensors are usually powered by batteries with a fixed energy.The power-
constrained model arises when this energy is evenly split over the desired life
time of the sensor (in samples). An energy-constrained model arises when
there is flexibility in how this energy is expended from sample to sample
(subject to, of course, constraints imposed by the power amplifier).
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the simulation performance of our scheme with a previously
known scheme. It also compares the energy-constrained for-
mulation of Section III with the power-constrained formulation
of Section II. Appendix I contains a new characterization of
optimal control: maximize a certain Ali-Silvey distance [2]
between the distributions of the fusion center’s observation
before and after the change. This is used to arrive at the
minimum variance criterion of Section II.

2) Prior work: Change detection problems were solved in
a centralized setting by Page [3], Lorden [4], and Shiryayev
[5]. Shiryayev considered a Bayesian setting which is of
relevance to our work. Veeravalli [6] solved the decentralized
version of this problem with parallel error-free bit pipes of
limited capacity from the sensors to the fusion center and
identified the optimal stopping policy and quantizer structure.
These results are analogous to those for hypothesis testing
and sequential hypothesis testing (Tsitsiklis [7], Veeravalli et
al. [8]). Prasanthi [9] considered access and decision delays
in sequential detection over a random access channel, as it
would be practically implemented using, for example, the
IEEE 802.15.4 wireless personal area network standard. (See
also [10]). Our work differs from those of Prasanthi and
Veeravalli because we propose an analog transmission strategy.

Analog transmissions are optimal for transmission of a
single Gaussian source over a Gaussian channel (Berger [11,
p.100]) and a bivariate Gaussian source over a GMAC for a
certain range of signal-to-noise ratios (SNR) (Lapidoth and
Tinguely [12]), when a running estimate is required. Analog
transmission via waveform design was considered by Mergen
and Tong [13]. They used “type-based” multiple access to
estimate a parameter over a GMAC. Their scheme, as does
ours, exploits the superposition available in the GMAC. (See
also [14], [15], [16], [17], [18], and [19] for analog trans-
mission in other settings). Ertin and Potter [20] considered
generalized cost functions which is mathematically analogous
to our energy-constrained formulation.

II. PHYSICAL LAYER FUSION FRAMEWORK

A. Mathematical Formulation

X ∼ N (θ, σ2) indicates thatX is a Gaussian random
variable with meanθ and varianceσ2.

(1) The state of nature is described by{θk : k ∈ Z+}, a two-
state discrete-time Markov chain taking values in{m0,m1},
with transition probabilities as described in Fig. 1(a)-(b). The
quantitiesm0 andm1 denote, for example, the mean level of
the observations before and after the disruption. The initial
distribution for this Markov chain is obtained fromPr{θ0 =
m1} = ν. The change timeΓ is Z+-valued, and given the
event{Γ > 0}, Γ has the geometric distribution.

(2) The network hasL sensors. At timek, sensorSl makes
an observationXl,k ∼ N (θk, σ

2
obs,l), i.e.,Xl,k = θk + Zl,k,

whereZl,k ∼ N (0, σ2
obs,l), l = 1, . . . , L.

(3) The observations at each sensor are independent, con-
ditioned onθk. Furthermore, the observations are independent
from sensor to sensor, conditioned onθk. Despite these con-
ditional independence assumptions, we remark thatXl,k, l =
1, . . . L, are correlated.

Fig. 1. Problem set-up.

(4) Each sensor transmitsYl,k = φl,k(Xl,k); this being a
function only of the observation at sensorl, our setting is a
decentralized one. See Fig. 1(c). The functionφl,k is affine:

φl,k(x) = αl,k(x− cl,k). (1)

Quantitiesαk = (α1,k, . . . , αL,k) and ck = (c1,k, . . . , cL,k)
are parameters for optimal control. Transmission is done by
setting the amplitude of an underlying unit-energy waveform
to Yl,k. All sensors use the same underlying waveform. The
motivations for the analog amplify-and-forward transmissions
in (1) are given in Section I: conditional independence of
the observations given the state, and the Gaussian observation
noise. If the latter does not hold, affine functions of LLRs
instead of the direct observations could be sent ([21, Ch. 5]).

(5) The GMAC output at the fusion center when projected
onto the common waveform yields

Ỹk =
L∑

l=1

hlYl,k + ZMAC,k,

whereZMAC,k ∼ N (0, σ2
MAC) is independent and identically

distributed (iid) acrossk, and is independent of all other
quantities. The gainhl ∈ R+ is the channel gain for thelth
sensor and is deterministic. See Fig. 1(c). We assume perfect
knowledge of the channel gains is available at the sensors and
the fusion center. While this is not the case in practice, channel
knowledge can be gleaned in time-division duplex (TDD)
systems that possess channel reciprocity (IEEE 802.15.4).See
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Mudumbai, Barriac & Madhow [1] for a suggested master-
slave architecture. In a subsequent section, we study the effect
of imperfect knowledge of these gains.

(6) At the fusion center, form̂Yk as follows:

Ŷk =
1

∑L
l=1 hlαl,k

(
Ỹk +

L∑

l=1

hlαl,kcl,k

)

= θk + ẐMAC,k, (2)

whereẐMAC,k ∼ N (0, σ2
k) and

σ2
k =

∑L
l=1(σobs,lhlαl,k)

2 + σ2
MAC(∑L

l=1 hlαl,k

)2 . (3)

The quantityŶk in (2) is obtained fromỸk using a bijective
mapping; so no information is lost. From (2), we also see
that the distributed multi-sensor setting is equivalent toa
centralized setting where the fusion center makes a direct
(noisy) observation onθk with equivalent additive observation
noise of varianceσ2

k as given in (3). This is enabled by the
affine nature ofφl,k. The centralized problem with constantσ2

k

was studied by Shiryayev [5] with the aim of characterizing
the stopping rule. The new aspect here is the dependence of
σ2
k on the control parameters.
(7) The fusion center chooses an actionak−1 ∈ A at time

k − 1 from setA of actions (controls)

A = {stop} ∪ {(continue, α, c) : α ∈ R
L
+, c ∈ R

L}.
If ak−1 = stop, the fusion center stops. Ifak−1 =
(continue, αk, ck), the fusion center takes another sample
(the kth), and all sensors transmitφl,k(Xl,k) with parameters
(αk, ck).

(8) As done by Veeravalli in [8], we assume a quasi-classical
information structure, i.e., actionak−1 depends on

ik−1 = {a0, ŷ1, a1, ŷ2, . . . , ak−2, ŷk−1} . (4)

Even though the sensors may have local memory of past ob-
servations, our framework does not make use of this additional
information.4 The fusion center feeds back the action param-
etersak−1 to the sensors. (We use the following notation: the
quantity ik−1 in (4) is a realization of the random variable
Ik−1 and takes values in the setIk−1. We setI0 = ∅).

(9) Average power constraint at sensorl is

E

[
α2
l,k (Xl,k − cl,k)

2 |Ik−1

]
≤ Pl,

i.e.,

α2
l,k

[
σ2

obs,l + E

[
(θk − cl,k)

2 |Ik−1

]]
≤ Pl, l = 1, . . . , L.

(5)
The set of feasible controls, givenIk−1 = ik−1, is denoted by

A(ik−1) =

{stop} ∪ {(continue, α, c) : (α, c, ik−1) satisfies (5)}. (6)

In Section III, we relax the constraint in (5) and impose an
expected total energy constraint.

4Veeravalli [8, p.434] discusses other information structures and why they
may be difficult to analyze.

(10) The fusion center policyπ is a sequence of proposed
(deterministic) actionsπ = (πk−1, k ≥ 1), whereπk−1 is
a functionπk−1 : Ik−1 → A. In particular,πk−1(ik−1) =
ak−1 ∈ A(ik−1). Each policyπ induces a probability mea-
sure. All expectations are with respect to this measure. The
dependence of the expectation operation onπ is understood
and suppressed.

(11) τ is the first instant when the fusion center decides to
stop.

The problem we wish to solve is the following:

Problem 1: (Change detection with delay penalty)Min-
imize over all admissible policies the expected detection delay,
EDD = E

[
(τ − Γ)

+
]
, subject to an upper bound on the

probability of false alarmPFA ≤ δ, wherex+ = max(0, x),
andPFA = Pr{τ < Γ}.

The solution to Problem 1 is obtained via a solution to
Problem 2 (below) for a particularλ > 0 (Shiryayev [5]). The
quantityλ may be interpreted as the cost of unit delay.

Problem 2: (Change detection with a Bayes cost)Minimize
over all admissible policies

R(λ) = PFA + λEDD = Pr{Γ > τ} + λE
[
(τ − Γ)

+
]

= E

[
1{θτ = m0}+

τ−1∑

k=0

λ1{θk = m1}
]

(7)

whereλ > 0 andE is under the probability measure induced
by the chosen policy.

The cost function is additive over time. The first term within
the expectation in (7) is the terminal cost; the terms in the
summation a running cost. At each stage the stateθk evolves
in a Markov fashion. The controller sees only a noisy version
Ŷk of the state, but can control the observation noise variance
σ2
k via α andc. It can also stop at any stage and pay a terminal

cost. Any decision affects the future evolution of the cost
process. Such problems are Markov decision problems (MDP)
with partial observations. They can be analyzed by studying
an equivalent complete observation MDP5 with a reduced
(posterior) stateµk

∆
= E [1{θk = m1} | Ik] = Pr{Γ ≤ k | Ik}.

The probability law for{µk : k ≥ 0} is given as follows:
µ0 = Pr{Γ ≤ 0 | I0} = ν, and the law forµk, under
ak = (continue, αk+1, ck+1), is (see Veeravalli [6, eqn. (9)])

µk+1 =
βkfm1,αk+1

(
Ŷk+1

)

βkfm1,αk+1

(
Ŷk+1

)
+ (1− βk)fm0,αk+1

(
Ŷk+1

)

△
=

g
(
Ŷk+1, αk+1, µk

)

h
(
Ŷk+1, αk+1, µk

) △
= ψ

(
Ŷk+1, µk, αk+1

)
, (8)

where βk
△
= Pr{Γ ≤ k + 1|Ik} = µk + (1 − µk)p, and

fmi,αk+1
is the density of anN (mi, σ

2
k+1) random variable.

The quantitiesh andg are as in (8);h is the density ofŶk+1

5See Shiryayev [5], Veeravalli [6] for results with stopping, Bertsekas &
Shreve [22, Ch. 10] for discounted costs, and Bertsekas [23,Ch. V].
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given(Ik, ak), andg is a scaled density. The power constraint
(5) when written for timek + 1 simplifies to

α2
l,k+1

[
σ2

obs,l + (m0 − cl,k+1)
2(1− βk)

+(m1 − cl,k+1)
2βk
]
≤ Pl. (9)

The set of feasible controls in (6) depends onik only through
µk and can be simplified to

A(µ) = {stop} ∪ {(continue, α, c) :
(α, c, µ) satisfies(9)},

whereA(·) is re-used to denote the set of feasible controls
for the equivalent complete observation MDP. LetA

′(µ) =
{(α, c) : (continue, α, c) ∈ A(µ)} denote the set of control
parameters when the action is to continue. Now consider
the objective function. Taking conditional expectations with
respect to the information process, (see Shiryayev [5, pp.195–
196]), (7) reduces to

R(λ) = E

[
(1− µτ ) +

τ−1∑

k=0

λµk

]
. (10)

Minimization of (10) is done via dynamic programming. Some
additional remarks are in order.

Remarks: 1. The varianceσ2
k+1 depends onαk+1 as shown

in (3), and hence the dependence onαk+1 in (8).µk+1 depends
on ck+1 only throughαk+1 because of the processing done in
(2).

2. If the running cost isλ instead ofλ1{θk = m1} in (7),
every sample costsλ units, not just those beyond the change
point that contribute to the delay. This is a minor variationto
Problem 2 and has a similar solution.

3. Another variation is sequential hypothesis testing: set
the transition probabilityp = 0, enhance the actionstop to
(stop, θ̂), whereθ̂ is the decision (eitherm0 or m1), and set
the terminal cost to1{θτ 6= θ̂}. The running cost is a constant
λ for every sample.

B. Optimal Policy

As is usual with such problems, we first restrict the stopping
time τ to a finite horizonT . Using Bertsekas’s result [23, Ch.1,
Prop.3.1], the cost-to-go function recursions are writtenas

JT
T (µT ) = 1− µT ,

JT
k (µk) = min

{
1− µk, λµk +AT

k (µk)
}
, 0 ≤ k < T,

AT
k (µ) = min

(α,c)∈A′(µ)
E

[
JT
k+1

(
ψ
(
Ŷ , µ, α

))]

= min
(α,c)∈A′(µ)

∫

R

JT
k+1

(
g (ŷ, α, µ)

h (ŷ, α, µ)

)
h (ŷ, α, µ) dŷ.

To solve Problem 2, letT → ∞. From results in [8] and [6],
the limit in (11) below exists, does not depend onk (i.e., the
policy is stationary), and defines the infinite horizon cost-to-go
function:

J(µ) = lim
T→∞

JT
k (µ) = min {1− µ, λµ+AJ(µ)} , (11)

where

AJ(µ) = min
(α,c)∈A′(µ)

E

[
J
(
ψ
(
Ŷ , µ, α

))]
. (12)

The following lemma enables a characterization of the optimal
stopping policy.

Lemma 1:The functionsJT
k (µ) andAT

k (µ) are non-neg-
ative and concave functions ofµ, for µ ∈ [0, 1]. Moreover,
AT

k (1) = JT
k (1) = 0. Similarly, the functionsJ(µ) andAJ(µ)

are non-negative and concave functions ofµ, for µ ∈ [0, 1],
andAJ(1) = J(1) = 0.

The proof is the same as that in Bertsekas [23, p. 268] for
sequential hypothesis testing. The concavity ofAJ (µ) and (11)
imply the following theorem (Shiryayev [5], Veeravalli [6]).

Theorem 2:An optimal fusion center policy has stopping
time τ given byτ = inf{k : µk ≥ µ∗}, whereµ∗ is the unique
solution toλµ+AJ (µ) = 1− µ.

To summarize, the optimal detection strategy at timek is
as follows. Convert the received signalỸk into the posterior
probability of changeµk using (2) and (8). Ifµk exceeds
a threshold, declare that a change has occurred. Otherwise,
make the sensors transmit another sample using parameters
α, c chosen optimally as described in the next subsection.

C. Parameters for Optimal Control

We begin this section with an algorithm that calculates the
optimalα.

Algorithm 1: Let

σ2
obs,1h1αmax,1 ≤ · · · ≤ σ2

obs,LhLαmax,L,

where the quantity

αmax,l =
(
Pl/

(
σ2

obs,l + (m1 −m0)
2β(1− β)

))1/2

with β = µ+ (1− µ)p.
• Step 1: Find the uniquek ∈ {1, . . . , L− 1} that satisfies

σ2
obs,khkαmax,k ≤

∑k
l=1(σobs,lhlαmax,l)

2 + σ2
MAC∑k

l=1 hlαmax,l

≤ σ2
obs,k+1hk+1αmax,k+1 (13)

if it exists. Otherwise, setk = L.
• Step 2: Set the optimalα as follows.

a∗ =

k∑

l=1

hlαmax,l +

∑L
l=k+1 σ

−2
obs,l∑k

l=1 hlαmax,l

·
(

k∑

l=1

(σobs,lhlαmax,l)
2 + σ2

MAC

)
, (14)

αm = αmax,m, 1 ≤ m ≤ k,

αm =
1

σ2
obs,mhm

· a
∗ −∑k

l=1 hlαmax,l∑L
l=k+1 σ

−2
obs,l

, k < m.

(15)

The optimal choice sets amplitudes of thek sensors with the
k least scaled observation noise variance (σ2

obs,lhlαmax,l) to
αmax,l. The remaining sensors’ amplitudes are appropriately
chosen smaller values. Intuitively, sensorsl = k + 1, . . . , L
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have so good a channel that scaling byαmax,l for these sensors
will amplify the observation noise leading to a larger overall
noise variance. Note that when all channel gains, observation
variances, and power constraints are equal,αl = αmax for all
sensors. This special case was earlier proved in [24].

Theorem 3:The choice ofcl = m1β + m0(1 − β), l =
1, . . . , L, and α according to Algorithm 1 constitute the
optimal controls that minimize (12).

Proof: Step 1: We prove that the optimal control
minimizes the variance (3). Considerα andα′ with resulting
variancesσ2 < σ′2. From the second equality in (2) we have

Ŷ (α) = θ + σZ, (16)

Ŷ (α′) = θ + σ′Z ′ ∼ θ + σZ1 + (σ′2 − σ2)1/2Z2, (17)

whereZ, Z1, Z2 are iid N (0, 1) with Z ′ = Z1 + Z2. The
time indexk is understood.

From (16) and (17),Ŷ (α′) is a stochastically degraded
version of Ŷ (α) and is equivalent to an additional random
processing on̂Y (α). Theorem 5 in Appendix I shows that

1− Eh


J



g
(
Ŷ (α), α, µ

)

h
(
Ŷ (α), α, µ

)






is anAli-Silvey distancebetween two probability measures. In
Eh the dependence ofh on α is understood and suppressed.
Ali-Silvey distances have a well-known monotonicity prop-
erty: data processing, whether deterministic or random, cannot
increase the dissimilarity measure between two distributions
([2], [25]). This property implies that

Eh


J



g
(
Ŷ (α), α, µ

)

h
(
Ŷ (α), α, µ

)




≤Eh


J



g
(
Ŷ (α′), α′, µ

)

h
(
Ŷ (α′), α′, µ

)




 .

It follows that minimization of the variance in (3) is the
criterion for getting the optimalα.

Step 2: We now identify the optimalc. The minimization
mentioned in the previous step should be done subject to the
power constraint given in (5), which can be rewritten as

α2
l,k ≤ Pl ·

[
σ2

obs,l + E

[
(θk − cl,k)

2 |Ik−1

]]−1

. (18)

The constraint set is enlarged if the upper bound in (18) is
higher. We should therefore choose thecl,k that minimizes

E

[
(θk − cl,k)

2 |Ik−1

]
, i.e.,cl,k is the minimum mean squared

error (MMSE) estimate ofθk givenIk−1. Clearly this is given
by cl,k = E [θk|Ik−1] = m1βk−1 + m0(1 − βk−1), and is
independent ofl. Moreover,

E

[
(θk − cl,k)

2 |Ik−1

]
= Var {θk|Ik−1}
= (m1 −m0)

2βk−1(1− βk−1),

and (18) can be written asαl,k ≤ αmax,l,k, where

αmax,l,k =
(
Pl/

(
σ2

obs,l + (m1 −m0)
2βk−1(1− βk−1)

))1/2
.
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Fig. 2. Performance curves: 1) Clipped transmission via a sigmoidal function
2) Affine transformation 3) Centralized, where all sensor data is available
without noise at the fusion center.

Step 3: Ignoring the time indexk, the optimization problem
to obtain the bestα is:

Problem 3: Minimize
(

L∑

l=1

hlαl

)−2 [ L∑

l=1

(σobs,lhlαl)
2 + σ2

MAC

]
,

whereαl ∈ [0, αmax,l] for l = 1, · · · , L.

This is not a convex optimization problem. However, we
can split it into two simpler convex optimization problems to
get an explicit solution to Problem 3.

Lemma 4:Algorithm 1 solves Problem 3.

See Appendix II for a proof. This concludes the proof of
Theorem 3.

Under the restriction of affine controls, Theorem 3 describes
the optimal choice. However, affine controls are not optimal
in general. This is demonstrated in Fig. 2 where a piece-wise
linear sigmoidal control outperforms the optimal affine control
(see [21, Sec. 2.7]). It would be interesting to see if there are
ranges ofσ2

obs,l andσ2
MAC where the affine control is indeed

optimal. We do not pursue this question in this work.
We now make some remarks on the complexity of overall

detection. Theorem 3 says that the parameters for optimal con-
trol are obtained via a finite step procedure. Indeed, Algorithm
1 gives the output in time linear in the number of sensors, and
is therefore easy to execute. The threshold calculation fora
fixed set of parameters is a one time calculation and is obtained
via the so-calledvalue iteration procedurewhich yields an
approximation. We now explore further simplifications with
reduced feedback information.

D. A Simpler Suboptimal Policy

Let us now restrict the controls to be of the following form:
the decision to stop or continue, saybk, depends onIk, but
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the parameters of the affine transformation at timek + 1 can
only depend onI0 andbk ∈ {stop, continue}. I0 denotes the
prior information before any observations are made andbk is
the decision of the fusion center atk. Note that this reduces
the amount of feedback to simply the binary random variable
bk.

The structure of the controls is similar to that of the optimal
policy of the previous section, but with

βk = Pr {Γ ≤ k + 1|I0} = 1− (1− ν)(1 − p)k+1

so that(α, c) depends on onlyI0 and not onIk. The stopping
policy is chosen as in Theorem 2. As we see in simulation
results presented in Section IV, the performance of this
algorithm is close to optimal for the chosen parameters, yet
requires feedback of only one bit at each stage.

III. E NERGY-CONSTRAINED FORMULATION

The energy-constrained problem is stated as follows.

Problem 4: Minimize the expected detection delay,EDD,
subject to an upper bound on the probability of false alarm,
PFA ≤ δ, and an upper bound on the expected energy spent,

E

[
τ∑

k=1

E
[
φ2l,k(Xl,k)|Ik−1

]
]
≤ El, l = 1, 2, . . . , L. (19)

Let λ = (λ1, . . . , λL, λL+1). As before, to solve Problem
4, we set up the Bayes costR(λ) and minimize it over all
admissible choices of stopping policy and the parametersαl,k

andcl,k of the affine transformationφl,k. The Bayes cost can
be written as

R(λ) = E

[
(1− µτ ) + λL+1

τ−1∑

k=0

µk

+

τ∑

k=1

L∑

l=1

λlE
[
α2
l,k(Xl,k − cl,k)

2|Ik−1

] ]
.

A result analogous to Theorem 2 in Section II-B holds, and
the optimal control at timek + 1, given Ik, is such thatck+1

is independent ofl, the sensor index. More precisely,

ck+1 = m1βk +m0(1− βk), l = 1, . . . , L,

αk+1 = arg min
α∈RL

+

[
L∑

l=1

λlα
2
l

(
σ2

obs,l+(m1−m0)
2βk(1−βk)

)

+

∫

R

J

(
g (ŷ, α, µk)

h (ŷ, α, µk)

)
h(ŷ, α, µk) dŷ

]
,

whereJ(µ) = min {1− µ, λL+1µ+AJ(µ)} , is the infinite
horizon cost-to-go function with

AJ (µ) = min
α∈RL

+

[ L∑

l=1

λlα
2
l

(
σ2

obs,l + (m1 −m0)
2β(1 − β)

)

+

∫

R

J

(
g (ŷ, α, µ)

h (ŷ, α, µ)

)
h (ŷ, α, µ) dŷ

]
.

A minimizing controlα does exist as is shown in [21, Sec.
3.1].
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Fig. 3. Comparison of our algorithms with Veeravalli’s scheme. The
“centralized” performance curve is for the case when all sensor data is
available without noise at the fusion center.

IV. COMPARISONS AND PRACTICAL CONSIDERATIONS

A. Benefits from Exploiting Sensor Correlation

Veeravalli [6] addresses the structure of optimalDl-level
quantizer at sensorSl, l = 1, 2, . . . , L. His model is applicable
to a system that allowslog2Dl bits to be sent error-free from
sensorSl to the fusion center. For simplicity letDl = D, l =
1, 2, . . . , L. In order to show the benefit of exploiting corre-
lation of observations when transmitting across the GMAC,
we do the following. The quantized bits from the sensors in
Veeravalli’s scheme are transmitted using an optimal scheme
designed for independent data streams over a coherent GMAC.
If all sensors operate at the same transmission power, theSNR
required to support such a transmission on the GMAC satisfies
the sum rate constraintL log2D ≤ (1/2) log2 (1 + L · SNR),
and thus

SNR ≥ D2L − 1

L
. (20)

For the simulations, we assume two sensors (L = 2) with
equal gains, i.e.,hl = 1 for l = 1, 2. We also assume one-bit
quantizers (D = 2). From (20) we getSNR ≥ 7.5. Algorithms
operate atSNR = 7.5 with Pl = 7.5 for l = 1, 2 andσ2

MAC =
1. We now summarize the other simulation assumptions which
will be used unless stated otherwise.

Simulation Setup 1:ConsiderL = 2 sensors withN (0, 1)
and N (0.75, 1) observations before and after the change,
respectively. The geometric parameterp = 0.05 and the initial
probability of changeν = 0. We obtain J(µ) via value
iteration procedure until the difference between successive
iterates falls below0.0001 with 1000 points on theµ axis.
All simulations assumePl = P andσ2

obs,l = 1 for l = 1, 2.

Fig. 3 shows that both our algorithms give lesser delays than
Veeravalli’s algorithm that is naively overlaid on the GMAC.
Furthermore, the suboptimal policy of Section II-D degrades
from that in Section II-B only for low false alarm probabilities.

In Veeravalli’s algorithm,D−1 thresholds (∈ R
D−1) and a

decision to stop or continue are fed back to each sensor. Our
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Fig. 4. Performance curves for channel SNR =∞, 3, 0,−3 dB.

scheme requires feedback ofαl ∈ R+, cl ∈ R, and the binary
decision. Even simpler is the strategy in Section II-D; onlya
binary decision is fed back.

The network delay is independent of the number of sen-
sors in both our algorithms; the performance improves with
increasing number of sensors. Veeravalli’s scheme on the other
hand requires an exponential growth inSNR (with L, as in
(20)) to maintain the same delay versusPFA performance.
Our algorithms need a higher level of time and frequency
synchronization of the transmitters for beamforming. Section
IV-D studies the effect of lack of perfect channel knowledge.
Transmit beamforming can be achieved via uplink-downlink
reciprocity in a static time-division duplex (TDD) system (see
[1] for an example mechanism).

B. Performance Comparisons Under Different Channel and
Observation SNRs

We now portray performance under three different settings.

• Fig. 4 shows performance for various channel SNRs
P/σ2

MAC; the other parameters remain as in Simulation
Setup 1.

• Fig. 5 shows performance for various observation SNRs
(m1−m0)

2/σ2
obs when the channel SNRP/σ2

MAC is fixed
at 3 dB.

• Fig. 6 compares the symmetric and asymmetric channel
gain cases. The symmetric curve is obtained withhl = 1
for l = 1, 2, and the asymmetric one withh1 = 1 and
h2 = 0.75. The weaker sensor is 2.5 dB lower than the
stronger one.

The plots show graceful degradation with decreasing SNR with
results along expected lines.

C. Comparison of Power- and Energy-Constrained Formula-
tions

ForPFA ≤ e−4, we first identify the minimum time to detect
change as a function of the energy constraint. This yields
a power constraint for the constant power formulation. We
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Fig. 5. Performance curves for observation SNR =−1,−2.5,−4 dB.
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Fig. 6. Performance curves when 1) centralized (no channel noise) 2)
symmetric channel gains 3) asymmetric channel gains with the weaker sensor
2.5 dB lower.

then compare the delays incurred by the optimal algorithm
under the two formulations in Fig. 7. We use the parameters
in Simulation Setup 1 andhl = 1 for all sensors. For the
samePFA, the energy-constrained solution declares a change
with lesser delay than the constant power solution.

As an illustration, we plot in Fig. 8 the variation ofα2, c,
and µ with time in both the algorithms for a representative
sample path. The change point is at21 samples, shown using
a dotted vertical grid line. The energy-constrained solution is
more energy efficient because it uses lower energy (α2) before
and higher energy after the change point. Indeed, based on the
prior information, the first few samples use negligible energy.

D. Channel Estimation Errors

Thus far we assumed a static channel with perfect knowl-
edge available at both transmitter and receiver. Wireless chan-
nels, however, change with time. Only an estimate of the
channel, based on signal processing on the pilots, beacons,
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Fig. 8. α
2, c, and µ of constant power method and energy-constrained

method for a sample path.

or preambles, may be available. In this section, we study the
effect of imperfect channel knowledge on the physical layer
fusion algorithm.

To arrive at a model for channel errors, we consider complex
channel gains over the GMAC with noise given byZMAC,k ∼
CN (0, σ2

MAC), a circular symmetric complex Gaussian random
variable. The observations are real-valued, but the complex
baseband equivalent signal has two real-valued degrees of
freedom per sample, leading to a bandwidth expansion factor
of two. Suppose that the sensors use transmit beamforming6,
i.e., αl =

h∗

l

|hl|
γl. Then it is sufficient to preserve only the

real part of the received signal at the fusion center, and the
problem reduces to that studied in the earlier parts of this paper
with σ2

MAC replaced byσ2
MAC/2 in Section II. The quantityγl

replacesαl and|hl| replaceshl in Algorithm 1. The output of
the algorithm isγl.

Let {hl} be a sequence ofCN (0, 1) random variables that

6The optimality of cooperative transmit beamforming by sensors remains
an open question.
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Fig. 9. Performance curves comparing the cases when 1) channel is perfectly
known 2) MMSE estimates are used (Pilot SNR = Channel SNR).
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Fig. 10. Performance curves comparing the cases when 1) channel is perfectly
known 2) MMSE estimates are used (Pilot SNR is 8.75 dB lower than Channel
SNR).

obey a block-fading model, i.e., the channel remains constant
for T uses and then changes to an independent channel gain.
If K of theseT samples are available for channel estimation,
then the MMSE estimate of the channel isĥl = (hl+rZ)/(1+
r2), wherer = σMAC/

√
KPl, Pl is the power of sensorl and

Z ∼ CN (0, 1). This is estimated at both ends (using TDD
system’s channel reciprocity).

Figures 9 and 10 show performance of the policy of Section
II-C with ĥ used in place of actualh, across different channel
SNRs. Simulation Setup 1 parameters are used.K = 1, i.e.,
only one sample pilot is used for channel estimation so that
transmit beamforming is only loosely enabled. The pilot SNR
equals the channel SNR in Fig. 9 and is 8.75 dB lower in
Fig. 10. The top-left subplot in Fig. 9 shows that the transmit
beamforming scheme with estimation errors is indeed superior
to Veeravalli’s scheme on a coherent GMAC. Fig. 10 shows no
benefit because the pilot SNR is not sufficient. Other subplots
show graceful degradation with decreasing SNR.
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V. SUMMARY

We considered the use of an analog transmission strategy
via an affine transformation in order to exploit correlationin
the sensor observations. The goal was to detect a change with
minimum expected detection delay given an upper bound on
the false alarm rate. We modeled the problem as a Markov
decision problem with partial observations. We characterized
the optimal control as one that maximizes an Ali-Silvey dis-
tance between the two hypotheses before and after the change
(Appendix I). In the GMAC setting, the optimal strategy
minimizes the error variance of an equivalent observation
at the fusion center. We then gave an explicit algorithm to
identify the optimal control parameters.

We also studied a suboptimal policy that traded performance
for quantity of information fed back. We then demonstrated
via simulation the performance gain achieved by our algorithm
over another scheme that makes only a naive use of the
GMAC. The latter is a multi-access strategy optimal for
independent data coupled with an optimal distributed quan-
tization scheme for change detection; it is suboptimal because
it does not exploit the correlation in sensor observations.
Our proposed algorithm exploits this correlation via transmit
beamforming on the GMAC. Given the control feedback in
our setting, optimal transmission strategies will change from
channel to channel. Techniques based on separation principles
are therefore likely to be suboptimal.

Distributed transmit beamforming is crucial to realize our
proposed scheme. The master-slave architecture of Mudumbai,
Barriac & Madhow [1] and associated channel sensing tech-
niques can be used for frequency and phase synchronization.
Simulations with channel estimation errors indicate that the
degradation due to lack of perfect channel knowledge is
tolerable, making this analog technique a viable option for
implementation.

We then considered a constraint on the average energy
expended instead of a power constraint. We demonstrated
via simulation that this made better use of the scarce energy
resource. Extensions to arbitrary but known distributions, in
particular to the exponential family, and toM -ary hypotheses
can be found in [21, Ch. 5].

APPENDIX I
A CHARACTERIZATION OF OPTIMAL CONTROL

The following characterization ofAJ(µ) was used in iden-
tifying the optimal controls. The characterization refersto a
quantification of dissimilarity between probability measures
called Ali-Silvey distances ([2]). Relative entropy (Kullback-
Leibler divergence) is one example. Such dissimilarity mea-
sures have a well-known monotonicity property: data pro-
cessing, whether deterministic or random, cannot increasethe
dissimilarity measure between two distributions ([2], [25]).
This characterization may be of interest in other sequential
detection settings.

Theorem 5:The minimization in (12) is obtained via a
maximization of an Ali-Silvey distance between the density
functionsfm1,α andfm0,α.

Proof: We first show that the minimization in (12) can
be expressed as the maximization of an Ali-Silvey distance
Ep1

[
C
(
φ(Ŷ )

)]
between probability density functions (pdf)

p1 andp2 where

φ(ŷ) =
p2(ŷ)

p1(ŷ)
=

fm1,α(ŷ)

h(ŷ, α, µ)
,

and C is a convex function. To see this, observe that both
p1(.) and p2(.) are densities. The densityp1 is a mixture of
pdfs under the two hypotheses whilep2 is the pdf underH1.
Thusg(ŷ, α, µ)/h(ŷ, α, µ) = βφ(ŷ), whereβ = µ+(1−µ)p.
From (12), we have

AJ (µ) = min
α,c

Ep1

[
J
(
βφ(Ŷ )

)]
= min

α,c
Ep1

[
G
(
φ(Ŷ )

)]

= 1−max
α,c

Ep1

[
C
(
φ(Ŷ )

)]
, (21)

whereG(x)
△
= J(βx) andC(x)

△
= 1 − G(x). J is concave;

so G is concave,C is convex, and (21) is obtained via a
maximization of an Ali-Silvey distance betweenp1 and p2.
Now,

Ep1

[
C
(
φ(Ŷ )

)]
= Ep1

[
C

(
p2(Ŷ )

p1(Ŷ )

)]

= Ep2

[
p1(Ŷ )

p2(Ŷ )
C

(
p2(Ŷ )

p1(Ŷ )

)]

= Ep2

[
C1

(
φ′(Ŷ )

)]
, (22)

whereφ′(ŷ) = p1(ŷ)/p2(ŷ), andC1(x) = xC (1/x) . C1(x)
is a convex function becauseC(x) is convex andx is nonneg-
ative. Now, letp3(ŷ) = fm0,α(ŷ). Since

p1(ŷ)/p2(ŷ) = β + (1− β)p3(ŷ)/p2(ŷ),

it is clear thatC2(x)
△
= C1 (β + (1− β)x) is a convex

function. Settingφ′′(ŷ) = p3(ŷ)/p2(ŷ), the likelihood ratio
between the original two hypotheses, (22) can be written as
Ep2

[
C2

(
φ′′(Ŷ )

)]
, an Ali-Silvey distance betweenfm1,α and

fm0,α, and the theorem follows.

APPENDIX II
PROOF OFLEMMA 4

Here we solve Problem 3. Order the indices so that
σ2

obs,1h1αmax,1 ≤ · · · ≤ σ2
obs,LhLαmax,L. Let us first add a

constraint
∑L

l=1 hlαl = a, where without loss of generality
a ∈ [0, amax] , with amax =

∑L
l=1 hlαmax,l, and solve the

convex optimization problem:

Problem 5: Minimize
∑L

l=1 σ
2
obs,lh

2
l α

2
l subject to αl ∈

[0, αmax,l] ,
∑L

l=1 hlαl = a ∈ [0, amax] .

This problem is a special case of a separable convex opti-
mization problem studied in Padakandla and Sundaresan [26].
Execution of [26, Algorithm 1] yields the following solution.
Break[0, amax] into L intervals[ak, ak+1], k = 0, 1, . . . , L−1,
wherea0 = 0 and

ak =

(
k∑

l=1

hlαmax,l + σ2
obs,khkαmax,k

L∑

l=k+1

σ−2
obs,l

)
.
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The ordering ofσ2
obs,lhlαmax,l impliesam≤ am+1 so that each

interval is nonempty. Withk such thata ∈ [ak, ak+1], the
optimal solution is:

αl = αmax,l, l = 1, . . . , k, (23)

αl =
1

σ2
obs,lhl

· a−
∑k

m=1 hmαmax,m∑L
m=k+1 σ

−2
obs,m

, l > k. (24)

The corresponding minimum value of Problem 5 for a given
a, denoted byV (a), is given by

V (a) =

k∑

l=1

σ2
obs,lh

2
l α

2
max,l +

(
a−∑k

l=1 hlαmax,l

)2

∑L
l=k+1 σ

−2
obs,l

.

We next look for an optimala by solving

Problem 6: Minimize f(a) =
V (a)+σ2

MAC
a2 subject toa ∈

[0, amax].

While this is not yet a convex optimization, the transforma-
tion b = 1/a casts it into one. Define

g(b) = f

(
1

a

)

= b2




k∑

l=1

σ2
obs,lh

2
l α

2
max,l+σ

2
MAC+

(∑k
l=1 hlαmax,l

)2

∑L
l=k+1 σ

−2
obs,l




− 2b ·
∑k

l=1 hlαmax,l∑L
l=k+1 σ

−2
obs,l

+
1

∑L
l=k+1 σ

−2
obs,l

,

for b ∈ [1/amax,∞), where k depends onb through the
index of the interval in whicha = 1/b lies. The following
observations ong are easy to verify:

• g(b) is a convex parabola on each[1/ak+1, 1/ak], k =
L− 1, · · · , 1, and on[1/a1,∞);

• g(b) is continuous in[1/amax,∞). This needs checking
only at interval boundaries1/ak;

• g(b) is continuously differentiable in(1/amax,∞) with
left continuous derivative at1/amax;

• limb→∞ g′(b) = +∞, so that the derivative eventually
becomes positive for largeb.

Sinceg is convex and continuously differentiable, if we can
find a b∗ such thatg′(b∗) = 0 and b∗ ∈ [1/ak+1, 1/ak] (or
[1/a1,∞)) wherek corresponds toa∗ = 1/b∗, then b∗ is a
point of global minimum. This holds if the minimum point for
a parabola defined in[1/ak+1, 1/ak] (or [1/a1,∞)), which is
easily verified to be

a∗ = 1/b∗ =

k∑

l=1

hlαmax,l

+

∑L
l=k+1 σ

−2
obs,l∑k

l=1 hlαmax,l

·
(

k∑

l=1

(σobs,lhlαmax,l)
2 + σ2

MAC

)
,

also belongs to that interval. This leads to the condition (13). If
no such point occurs,g′(b) 6= 0 in [1/amax,∞), and sinceg′

is eventually positive, it must be positive in the entire interval.
In this latter caseg is an increasing function on[1/amax,∞)
and the minimum is attained atb∗ = 1/amax or a∗ = amax

or k = L. Substitution ofa∗ in (23) and (24) completes the
proof.
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