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Abstract�This paper investigates the achievable rates using
variable length codes when transmitting independent information
over a degraded broadcast channel. In this note, we de�ne the
transmission rates from the perspective of the receivers and allow
the decoders to make their decision at a different instant of time.
We give an outer bound to the region of achievable rates, as well
as examples of code that achieve this bound in some settings.

I. INTRODUCTION

When a user wishes to send information to a single receiver,

it is known that the use of a variable length code does not allow

to achieve a better transmission rate than the one achieved with

a �xed length code [1]. Variable length coding is rather used

to improve the error exponent of the communication scheme.

In the multiple-user setting, when a user wishes to transmit

information to multiple receivers, a simple argument shows

that, if we require that the receivers decode at the same instant

of time, the set of achievable rates is the same for variable and

�xed length codes. 1

In this paper, we focus on discrete memoryless broadcast

channels with two receivers and consider the transmission of

independent messages to each of them. As in [2], we let the

codewords be in�nite sequences and de�ne the rates from the

perspective of the receivers, and capture the trade-off between

the amount of information received with the �timeliness� of

the information. 2 Let us denote by M the number of possible

messages for one receiver and by E[N ] its average decoding

time, then we de�ne the transmission rate to that receiver by
logM
E[N ] . The expectation operator is motivated by the following

argument. Suppose that, to send information to a receiver, we

use the transmission method a large number n of times. The

corresponding rate experienced by this receiver is equal to
n logM

l1+l2+���+ln
, where li represents the transmission duration of

the i-th transmission. Hence, by the law of large numbers, the

average transmission rate approaches logM
E[N ] with probability

one, as n gets large. The same de�nition is made in [3]. Notice
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1To the contrary assume that such a code exists, let E[N ] be its expected
length, then, by the law of large number the total length of n successive
transmissions is very likely to be less than n

�
E[N ]+ �

�
. Thus, a �xed length

code of this length will achieve almost the same rate with small probability
of error.

2We start counting time from the beginning of transmission for both
receivers.

that, contrary to the setting of [2], there is no schedule that

controls the sequence of channel outputs seen by the receivers.

It was observed by T. Cover in [4], that if we allow the

receivers to decode at a different instant of time, the channel

capacity of each link can be (simultaneously) achieved. This is

done by sending the messages to each receiver in a separated

period of time, and letting the ratio between the sizes of mes-

sages grow appropriately as they go to in�nity. In our setting,

this requires that the ratio between the average transmission

time of each receiver to be in�nite. The objective of this paper,

is to characterize the region of achievable rates for bounded

values of this ratio.

In the next section, we give the de�nition of a variable

length code, along with the associated notions of reliability

and capacity region. In section III we show an outer bound to

the region of achievable rates. Then, in section IV, we analyze

this bound and present examples of coding scheme that can

achieve the outer bound.

II. DEFINITIONS

We consider sending independent information over a memo-

ryless degraded broadcast channel. There are two independent

sources, one producing a message W1 2 f1; 2; � � � ;M1g and

the other producing a message W2 2 f1; 2; � � � ;M2g. The
channel consists of an input alphabet X , two output alphabets

Y and Z , and a probability transition function p(y; zjx).
By the memorylessness of the channel we have, for any n,
p(yn; znjxn) = �n

i=1p(yi; zijxi), where x
n 2 Xn, yn 2 Yn

and zn 2 Zn.

Let N1 be a stopping time w.r.t. (with respect to) fYigi�1,

the sequence of received values at the strong receiver. And, let

N2 be a stopping time w.r.t. fZigi�1, the sequence of received

values at the weak receiver. We de�ne a (M1;M2; N1; N2)
variable length code of rates logM1

E[N1]
and logM2

E[N2]
, as a sequence

of mappings fxi(W1;W2)gi�1, where each xi is a function

of W1 and W2, and two decoding functions (two decoders)

w.r.t. the decoding times N1 and N2,
3

g1 : YN1 ! f1; 2; � � � ;M1g

3For deterministic stopping rules, we can represent the set of all output
sequences for which a decision is made, at each decoder, as the leaves of a
complete jYj-ary (resp. jZj-ary) tree. The leaves have a label from the set of
messages. Each decoder starts climbing the tree from the root. At each time
it chooses the branch that corresponds to the received symbol. When a leaf is
reached, the decoder makes a decision as indicated by the label of the leaf.



and

g2 : ZN2 ! f1; 2; � � � ;M2g:

We de�ne the average probability of error as the probability

that the decoded messages are not equal to the transmitted

messages, i.e.,

Pe = Prfg1(Y
N1) 6= W1 or g2(Z

N2) 6= W2 g

when (W1;W2) are assumed to be uniformly distributed over

f1; 2; � � � ;M1g � f1; 2; � � � ;M2g.

A rate pair (R1; R2) is said to be achievable if for all � >
0, there exists a (M1;M2; N1; N2) variable length code with
logM1

E[N1]
� R1,

logM2

E[N2]
� R2 and Pe < �.

The capacity region of the broadcast channel is the closure

of the set of achievable rates. Notice that, with this de�nition,

the capacity region is simply given by the rectangle [0; C1]�
[0; C2], where C1 , maxp(x) I(X;Y ) is the (usual) channel

capacity of the strong link, and C2 , maxp(x) I(X;Z) is the
channel capacity of the weak link.

As mentioned in the introduction, the argument presented

in [4], that demonstrates the achievability of [0; C1]� [0; C2],
requires making E[N1]=E[N2] approach 0 (or in�nity). There-
fore, in the next section, we show a theorem that gives an outer

bound on the capacity region, with a restriction on E[N1] and
E[N2].

III. OUTER REGION

In order to obtain an outer bound on the capacity region

we state two lemmas. First, let us de�ne N = min(N1; N2).
Observe that N is a stopping time w.r.t. f(Yi; Zi)gi�1, but it

is not (in general) a stopping time w.r.t. individual channel

outputs.

Lemma 3.1: The following inequalities hold:

I(W2;Z
N ) � E[N ]I(U ;Z) + log(eE[N ])

I(W1;Y
N jW2) � E[N ]I(X : Y jU) + log(eE[N ]);

for some joint distribution p(u)p(xju)p(y; zjx).

Proof: Let �i = 1fN � ig, 4 from the chain rule for

mutual information, we have

I(W2;Z
N ) = I(W2;Z1�1; �1; � � � ; Zn�n; �n; � � � )

= I(W2;�1) + I(W2;Z1�1j�1) + � � �

+ I(W2;�nj(Z�)
n�1; �n�1)

+ I(W2;Zn�nj(Z�)
n�1; �n) + � � �

=
1X

i=1

I(W2;�ij(Z�)
i�1; �i�1)

+
1X

i=1

I(W2;Zi�ij(Z�)
i�1; �i):

4Where 1fN � ig is equal to 1 if N � i and equal to 0 otherwise. Also,
we de�ne Zi�i as being equal to Zi if N � i and equal to 0 otherwise.

The �rst summation can be upper bounded as

1X

i=1

I(W2;�ij(Z�)
i�1; �i�1) �

1X

i=1

H(�ij�
i�1)

= H(�1; �2; � � � )

= H(N)

� log(eE[N ]);

where the last inequality is proved in [1] and [5, x3].

For the second summation, we get

I(W2;Zi�ij(Z�)
i�1; �i)

= H(Zi�ij(Z�)
i�1; �i)�H(Zi�ij(Z�)

i�1; �i;W2)

� H(Zi�ij�i)�H(Zi�ij(Y �)
i�1; (Z�)i�1; �i;W2)

= H(Zi�ij�i)�H(Zi�ij(Y �)
i�1; (Z�)i�1; �i;W2)

= Pr(�i = 1)
�
H(Zij�i = 1)

�H(ZijY
i�1; Zi�1; �i = 1;W2)

�

= Pr(N � i)I(Ui;Zij�i = 1);

where Ui = fY i�1; Zi�1;W2g.

Observe that p(zijxi; �i = 1) = p(zijxi), thus, with a slight

abuse of notation, we can write I(Ui;Zij�i = 1) = I(Ui;Zi),
with p(ui) , p(uij�i = 1) and p(xijui) , p(xijui; �i = 1).
Hence, we obtain

I(W2;Zi�ij(Z�)
i�1; �i) �

1X

i=1

Pr(N � i)I(Ui;Zi)

= E[N ]
1X

i=1

Pr(N � i)

E[N ]
I(Ui;Zi):

Now let ai = Pr(N�i)
E[N ] , note that ai � 0 for all i, andP

i ai = 1. Thus, we can de�ne an integer random variable Q
by setting Pr(Q = i) = ai, for all i 2 f1; 2; � � � g. Using this,

the preceding equation becomes

I(W2;Zi�ij(Z�)
i�1; �i)

� E[N ]
1X

i=1

Pr(Q = i)I(UQ;ZQjQ = i)

= E[N ]I(UQ;ZQjQ)

� E[N ]I(U ;Z);

where U , fUQ; Qg and Z , ZQ are new random variables,

the distributions of UQ and ZQ depend on Q in the same

way as the distributions of Ui and Zi depend on i.



Then, consider

I(W1;Y
N jW2) = I(W1;Y1�1; �1; � � � ; Yn�n; �n; � � � jW2)

= I(W1;�1jW2) + I(W1;Y1�1j�1;W2) + � � �

+ I(W1;�nj(Y �)
n�1; �n�1;W2)

+ I(W1;Yn�nj(Y �)
n�1; �n;W2) + � � �

=
1X

i=1

I(W1;�ij(Y �)
i�1; �i�1;W2)

+
1X

i=1

I(W1;Yi�ij(Y �)
i�1; �i;W2):

As previously, we may upper bound the �rst summation as

1X

i=1

I(W1;�ij(Y �)
i�1; �i�1;W2) �

1X

i=1

H(�ij�
i�1)

= H(�1; �2; � � � )

= H(N)

� log(eE[N ]):

And, the ith term in the second summation is

I(W1;Yi�ij(Y �)
i�1; �i;W2)

= H(Yi�ij(Y �)
i�1; �i;W2)

�H(Yi�ij(Y �)
i�1; �i;W1;W2)

(a)
= H(Yi�ij(Y �)

i�1; (Z�)i�1; �i;W2)

�H(Yi�ij(Y �)
i�1; (Z�)i�1; �i;W1;W2)

(b)
= H(Yi�ij(Y �)

i�1; (Z�)i�1; �i;W2)

�H(Yi�ij(Y �)
i�1; (Z�)i�1; Xi�i; �i;W2)

= Pr(�i = 1)
�
H(YijY

i�1; Zi�1; �i = 1;W2)

�H(YijY
i�1; Zi�1; Xi; �i = 1;W2)

�

= Pr(N � i)I(Xi;YijUi; �i = 1);

where in (a) we use the fact that the channel is degraded, and

(b) follows since Xi is a function of (W1;W2; Y
i�1; Zi�1),

and then given Xi, Yi is independent of W1.

Here, following the steps done for the preceding inequality,

we let p(ui) , p(uij�i = 1) and p(xijui) , p(xijui; �i = 1),
then since p(yijxi; ui; �i = 1) = p(yijxi), we have

I(Xi;YijUi; �i = 1) = I(Xi;YijUi). Hence, we get

I(W1;Yi�ij(Y �)
i�1; �i;W2)

�
1X

i=1

Pr(N � i)I(Xi;YijUi)

= E[N ]
1X

i=1

Pr(N � i)

E[N ]
I(Xi;YijUi):

Now, introducing the random variable Q de�ned earlier, we

may write

I(W1;Yi�ij(Y �)
i�1; �i;W2)

� E[N ]
1X

i=1

Pr(Q = i)I(XQ;YQjUQ; Q = i)

= E[N ]I(X;Y jU);

where U , fUQ; Qg, and X , XQ and Y , YQ are new

random variables, whose distributions depend on Q in the

same way as the distributions ofXi and Yi depend on i. Notice
that U ! X ! (Y;Z) forms a Markov chain. Therefore, we

obtain

I(W2;Z
N ) � E[N ]I(U ;Z) + log(eE[N ])

I(W1;Y
N jW2) � E[N ]I(X;Y jU) + log(eE[N ]);

for some joint distribution p(u)p(xju)p(y; zjx).
We state the next lemma without proof, the main ideas being

presented in the previous lemma.

Lemma 3.2: We have the following inequalities:

I(W1;Y
N1

N+1jY
N ;W2) � E[N1 �N ]C1

+ log(eE[N1 �N ])

I(W2;Z
N2

N+1jZ
N ) � E[N2 �N ]C2

+ log(eE[N2 �N ]):
The following theorem shows an outer bound on the region

of achievable rates.

Theorem 3.3: (Outer bound) Let us denote by Cr1;r2 , the set
of rates achievable by using variable length codes for which
E[N ]
E[N1]

� r1 and
E[N ]
E[N2]

� r2. Then, any rate pairs (R1; R2) 2
Cr1;r2 must satisfy

R1 � r1I(X;Y jU) + (1� r1)C1

R2 � r2I(U ;Z) + (1� r2)C2;

for some joint distribution p(u)p(xju)p(y; zjx), with the car-

dinality of the auxiliary random variable bounded by jUj �
min(jX j; jYj; jZj).

Proof: Let Wi be uniformly distributed over

f1; 2; � � � ;Mig, i = 1; 2. Then,

I(W2;Z
N2) = H(W2)�H(W2jZ

N2)

= E[N2]R2 �H(W2jZ
N2);

and

I(W1;Y
N1 jW2) = H(W1jW2)�H(W1jY

N1 ;W2)

� E[N1]R1 �H(W1jY
N1):

Thus, using Fano's inequality, we have

E[N2](R2 � �) � I(W2;Z
N2)

E[N1](R1 � �) � I(W1;Y
N1 jW2);

where �! 0 as Pe ! 0.



From the chain rule for mutual information, we can

write

I(W2;Z
N2) = I(W2;Z

N ) + I(W2;Z
N2

N+1jZ
N );

and

I(W1;Y
N1 jW2) = I(W1;Y

N jW2)

+ I(W1;Y
N1

N+1jY
N ;W2):

Then, applying Lemma 3.1 and Lemma 3.2, we get

I(W2;Z
N2) � E[N ]I(U ;Z) + E[N2 �N ]C2

+ log(eE[N ]) + log(eE[N2 �N ])

I(W1;Y
N1 jW2) � E[N ]I(X;Y jU) + E[N1 �N ]C1

+ log(eE[N ]) + log(eE[N1 �N ]);

for some joint distribution p(u)p(xju)p(y; zjx).

Hence,

E[N1](R1 � �) � E[N ]I(X;Y jU) + E[N1 �N ]C1

+ log(eE[N ]) + log(eE[N1 �N ])

E[N2](R2 � �) � E[N ]I(U ;Z) + E[N2 �N ]C2

+ log(eE[N ]) + log(eE[N2 �N ]);

for some joint distribution p(u)p(xju)p(y; zjx).

Dividing by E[N1] and letting E[N1] ! 1 in the �rst

inequality, and dividing by E[N2] and letting E[N2]!1 in

the second one, we obtain 5

R1 � r1I(X;Y jU) + (1� r1)C1

R2 � r2I(U ;Z) + (1� r2)C2;

for some joint distribution p(u)p(xju)p(y; zjx). The cardinal-
ity bounds for the auxiliary random variable U can be derived

using standard methods from convex set theory.

Notice that the region Cr1;r2 is de�ned for variable length

coding schemes verifying the restrictions on E[N1], E[N2]
and E[N ], given by r1 and r2. The next section presents some

important conclusion that can be derived from the outer bound

on Cr1;r2 .

IV. ANALYSIS AND CODING SCHEMES

To get a better insight into the meaning of the outer region

found in the previous section, we focus on coding schemes

that have E[N ] = E[N1].
6 In this case the outer region is

given by the set of all rate pairs (R1; R2) satisfying

R1 � I(X;Y jU)

R2 �
E[N1]

E[N2]
I(U ;Z) + (1�

E[N1]

E[N2]
)C2;

5Codes achieving low probability of error may exist without requiring
E[N1]!1 or E[N2]!1, but this is needed for codes achieving arbitrary
low probability of error.

6This means that the strong receiver always makes a decision before the
weak one.

for some joint distribution p(u)p(xju)p(y; zjx). 7

Note that this region is composed of the usual (block code)

capacity region for degraded broadcast channelsRDBC , with a

scaling factor on R2, plus a fraction of C2. It turns out that any

rate pairs in this region can be achieve, by choosing E[N1] and
E[N2] large enough, and using a block code of length E[N1]
achieving the corresponding rate pair in RDBC ,

8 followed by

a capacity achieving code of length E[N2] � E[N1], for the
link to the weakest receiver. Note that, the number of messages

for the second receiver behaves like logM2 = E[N1]R
0

2 +�
E[N2]�E[N1]

�
C2, where R

0

2 2 RDBC is the rate at which

the codewords for the weak receiver are generated, during the

transmission of the �rst block code.

This shows that among all coding schemes with E[N ] =
E[N1], the best one is composed of two successive block

codes. Thus, the possibility to employ variable length coding

gives no real improvement over block coding. The gain in

the achievable rates comes from the fact that the receivers

decode their message at a different instant of time. The same

conclusion can be derived if E[N ] = E[N2].
Concerning coding schemes with an arbitrary E[N ], the best

outer bound is obtained by minimizing E[N ]. We know that

with high probability N1 �
logM1

C1

and N2 �
logM2

C2

, thus we

may write E[N ] � min
�
logM1

C1

; logM2

C2

�
. In the special case

when logM1

C1

= logM2

C2

, we can rewrite the outer bound as

R1 �
C1

2� I(X;Y jU)
C1

R2 �
C2

2� I(U ;Z)
C2

;

for some joint distribution p(u)p(xju)p(y; zjx). 9 Observe

that, this outer bound is valid for codes having E[N1] and
E[N2] verifying the condition on their ratio, implicitly given

by logM1

logM2

= C1

C2

.

Now, consider the following random coding scheme. Gen-

erate two capacity achieving (block) codes, one for the strong

link C1 of length logM1

C1

, and one for the weak link C2 of

length logM2

C2

. Then, to transmit a message pair (w1; w2) 2
(W1;W2), with probability p send the codeword in C1 corre-

sponding to w1, followed by the codeword in C2 corresponding
to w2. And, with probability 1� p , �p send it in the reverse

order (C2 followed by C1). For M1 and M2 large enough, this

coding scheme achieve the following rates

R
0

1 =
logM1

logM1

C1

+ �p logM2

C2

=
C1

1 + �pC1

C2

logM2

logM1

R
0

2 =
logM2

logM2

C2

+ p logM1

C1

=
C2

1 + pC2

C1

logM1

logM2

;

with p 2 [0; 1].

7From now on, we omit to mention the cardinality bound on the auxiliary
random variable U .

8For a careful de�nition and analysis of block codes and broadcast channels,
the reader is referred to [6] and the references therein.

9This region is not necessarily convex.



Assuming that logM1

C1

= logM2

C2

, we have that the region of

all rate pairs (R1; R2), satisfying

R1 =
C1

1 + �p

R2 =
C2

1 + p
;

for some p 2 [0; 1], is achievable. This region can be related

to the outer region in the special case given previously. We

see that the corner points of this outer region are achieved.

Furthermore, if C1 = C2 (the statistics over each link are the

same), the two regions coincide.

Again, in this example, the improvement of using variable

length codes is only apparent through the possibility of sending

the messages at different periods of time.

V. REMARKS AND CONCLUSION

For variable length coding over a degraded broadcast chan-

nel, we introduced a new notion of capacity region with a

receiver centric de�nition of the transmission rates. We derived

an outer bound on this region, that capture the variability in

the receiver decoding times.

Through examples of coding scheme, we motivated that the

gain in using variable length codes essentially comes from the

possibility for the receivers to decode at a different instant of

time.

The setup of this paper can be extended to allow an

immediate and noiseless feedback from the receivers to the

transmitter. In the case when the degradation is physical, the

outer bound remains valid. 10 This gives an equivalent to the

result in [7], when the encoder is able to use variable length

codes.
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