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Abstract— We prove the concentration of the capacity, in the
large system limit, for a code division multiple access system
over an additive white Gaussian noise channel, with Gaussian
signature sequences andbinary input symbols. The probabilistic
tools that are used are quite powerful and could have applications
in many other similar situations.

I. I NTRODUCTION AND MAIN RESULTS

We consider the following setting for randomly spread
code division multiple access (CDMA) communication on an
additive white Gaussian noise (AWGN) channel.K users send
binary information symbolsx = (x1, ..., xK)t, xk ∈ {±1},
through a single AWGN channel. Each user has a signature
sequencesk = (s1k, ..., sNk)t assumed to be known to the
receiver. At each time intervali = 1, ..., N the received signal
is 1√

N

∑K
k=1 sikxk + ni where n = (n1, ..., nN )t are inde-

pendent identically distributed Gaussian variablesN (0, σ2)
and σ is the noise amplitude. The scaling factor1/

√
N is

introduced so that the energy of each user per information bit
is normalized to 1. Here we takesik as generated randomly
from independent identically distributed standard Gaussians
N (0, 1) and denote the correspondingK ×N random matrix
as s. The received vectory = (y1, ..., yN )t can be expressed
as

y =
1√
N

sx + n

If all users communicate at the same rateR the capacity is
the maximum achievable such rate

C(s) =
1

K
max
p(x)

I(X; Y | s)

A priori this quantity depends on the realisation of the random
matrix s. The main result in this contribution is a proof that
in the large system limit(K and N → +∞ with K/N = β
fixed) C(s) concentrates on its meanES[C(s)].

Tanaka [1] has derived analytical expressions, in the large
system limit, for ES[C(s)] and the bit error rate, thanks to
the formal “replica trick” of statistical mechanics. Though the
replica method is not rigorous it is generally conjectured to
yield an exact result. In the case ofGaussian inputsthis can
be explicitly verified by comparing the expressions resulting
from the replica method and the rigorous random matrix
calculations [4],[3]. In the present case withbinary inputs

the usual random matrix techniques do not work but the
conjecture is again supported by the recent work of Montanari
and Tse [2] who proved that Tanaka’s formula is rigorous
at least for regimes of parameters (β and σ) without phase
transitions (the bit error rate has no jumps). The extensionof
such proofs to regimes with phase transitions (the bit errorrate
is discontinuous) is to the best of our knowledge still open.

However, for the case of binary inputs, these works do not
adress the underlying question of the concentration of relevant
quantities such as the capacity and the bit error rate. Let
us mention that in the case of a Gaussian input signal, the
concentration can be deduced from general theorems on the
concentration of the spectral density for random matrices,but
this approach breaks down for binary inputs.

In this contribution we provide all the details of a proof of
concentration for the capacity thanks to powerful probabilistic
tools developed by Talagrand [5], [6]. The mathematical
underpinning of this result is in fact the concentration of a
“free energy” which we also prove. We also indicate why the
considerations about the free energy could conceivably allow
to attack the more difficult problem of the concentration of
the bit error rate.

In the sequel‖ · ‖ always denotes an appropriate Euclidean
norm.

From general arguments the maximum of the mutual in-
formation is attained for a uniform input distributionp(x) =
2−K ,

C(s) = ln 2 − 1

K
H(X | Y , s)

where the conditional entropy is the average (overY only)
Shannon entropy of the posterior distribution

p(x | y, s) =
e−

1

2σ2
‖N−

1

2 sx−y‖2

Z(y, s)
(1)

with the normalization factor

Z(y, s) =
∑

x

e−
1

2σ2
‖N−

1

2 sx−y‖2

(2)



The average overY is carried out with the distribution

p(y | s) =
∑

x0

p(y | x0, s)p(x0)

=
1

2K

∑

x0

e−
1

2σ2
‖N−

1

2 sx0−y‖2

(
√

2πσ2)N

wherex0 is to be interpreted as an input signal.
Although in this contribution we do not use any specific

notion from statistical mechanics, it is insightful to view(1) as
the Gibbs measure of a “spin glass” wherexk ∈ {−1, +1} are
the spin varaibles, and (given) realizationsy, s the “quenched
disorder”. The normalization factor (2) is called the “partition
function” andlnZ(y, s) is the “free energy”. In the appendix
we deduce a relationship between the capacity and the average
free energy of the spin glass, namely

C(s) = ln 2 − 1

2β
− 1

K
EY [lnZ(y, s)] (3)

Let us mention that the “underlying graph” of the spin glass
is the complete graphwith K vertices, because if the norm
in (1) is expanded all pairsxkxl are present. The situation is
thus similar to the classic Sherrington-Kirkpatrick model[9]
for which the self averaging property of the free energy was
first shown by Shcherbina and Pastur in [10]. The exponential
concentration results for the free energy have appeared only
recently and this has been achieved by Guerra and Toninelli
by an “interpolation method” [8]. However, in the present
case, the situation is more complicated and it is not clear how
to apply Guerra and Toninelli’s method1. The concentration
properties stated in the following theorems are not expected
to be optimal.

Theorem 1:[concentration of the capacity.] There exists an
integerN1 and a strictly positive constantα1 such that for all
N > N1 and all t > 0,

P[|C(s) − ES[C(s)]| ≥ t] ≤ 3e−α1t2N

One can takeα1 = σ4/(16β(64β + 32 + σ2)).

We also prove the slightly more general, and obviously
related, concentration result for the free energy itself,

Theorem 2:[concentration of free energy.] There exists an
integerN2 and a strictly positive constantα2 such that for all
N ≥ N2 and all t > 0,

P[K−1| lnZ(y, s) − EY,S[lnZ(y, s)]| ≥ t] ≤ 3e−α2t2
√

N

One can takeα2 = σ4β2/(32(2
√

β + σ)2).

We wish to argue here that theorem 2 suggests a method
for proving the concentration of the bit error rate. Given the
observed output signal, the optimal bit estimate is defined
through the marginalp(xk | y, s) of (1)

x̂k = argmaxxk={±1}p(xk | y, s)

1As already stated we use other tools which by the way can also be applied
to the Sherrington-Kirkpatrick model.

The bit error rate is the overlap with the inputx0,

1

2
(1 − 1

K

K
∑

k=1

x0,kx̂k) (4)

The connection with statistical mechanics comes from the
remark thatx̂k = sign〈xk〉 where 〈−〉 is the average with
respect to the Gibbs measure (1). The “magnetization”〈xk〉
can be obtained from the free energy by adding first an
infinitesimal “external magnetic field” to the exponent in (1),
namelyh

∑K
k=1 x0

kxk, and then differentiating the free energy,

K
∑

k=1

x0
k〈xk〉 = lim

h→0

d

dh
lnZ(y, s)

Similarly one can use “real replicas” (copies of the Gibbs
measure) to obtain by differentiation of the replicated free
energy

∑K
k=1(x

0
k〈xk〉)n and eventually reconstruct (4). Then

by rather standard arguments the (easily verifiable) convexity
of the free energy with respect toh should enable one to
deduce concentration of (4) from that of the free energy.
However the completion of this last point requires also a
uniform (with respect to system size) control of the derivative
of the free energy precisely ath = 0, which at present is still
lacking. We hope to come back to these considerations in the
future.

II. PROBABILISTIC TOOLS

Our proofs rely on a general concentration theorem for
suitableLipschitz functions of many Gaussian random vari-
ables [5], [6] and this is why we need Gaussian signature
sequences. In the version that we use here we need functions
that areLipschitz with respect to the Euclidean distance. More
precisely we say that a functionf : R

M → R is a Lipschitz
function with constantLM if for all (u, v) ∈ R

M × R
M

|f(u) − f(v)| ≤ LM‖u − v‖

When another distance is used the function will still be
Lipschitz but one has to carefully keep track of the possibly
qualitatively differentM dependence.

Theorem 3:[5] Let U1, ..., UM be M independent identi-
cally distributed Gaussian random variables with distribution
N (0, v2) and letf : R

M → R be Lipschitz with respect to
the Euclidean distance, with constantLM . Thenf satisfies

P[|f(u1, ..., uM ) − E[f(u1, ..., uM )]| ≥ t] ≤ 2e
− t2

2v2L2
M

In our application it will not be possible to apply directly
this theorem because the relevant function is Lipschitz only
on a subsetG ⊂ R

M . It turns out that the measure of the
complementGc is negligible asM → +∞. For the “good
part” of the function supported onG we will use the following
result of McShane and Whitney

Theorem 4:[7] Let f : G → R, be Lipschitz overG ⊂ R
M

with constantLM . Then there exists an extensiong : R
M → R



such thatg|G = f which is Lipschitz with the same constant
over the whole ofRM .

From these two theorems we can prove the

Lemma 1:Let f andg be as in theorem 4. Assume0 ∈ G
and E[f(u)2] ≤ C2, f(0)2 ≤ C2 for some positive number
C. Then for

t

2
≥ 3(C + v

√
M)

√

P(Gc)

we have

P[|f(u) − E[f(u)]| ≥ t] ≤ 2e
− t2

8v2L2
M + P [Gc]

Proof: We drop theu dependence to lighten the notation.
Notice that0 ∈ G implies f(0) = g(0). Thus g(0)2 ≤ C2.
Also, sinceg is Lipschitz on the whole ofRM

E[g2] ≤ 2(g(0)2 + E[(g − g(0))2])

≤ 2(C2 + LME[‖u2‖)
= 2(C2 + Mv2LM )

Furthermore onG we haveg = f , so by the Cauchy-Schwartz
inequality

|E[g − f ]| = |E[(g − f)1Gc ]|
≤ (E[g2]1/2 + E[f2]1/2)

√

P[Gc]

≤ (C +
√

2(C2 + Mv2LM )1/2)
√

P[Gc]

≤ 3(C + v
√

MLM )
√

P[Gc] ≤ t

2
Moreover

P[|f − Ef | ≥ t] = P[|g − Ef | ≥ t | U ∈ G]P[G]

+ P[|f − Ef | ≥ t | U ∈ Gc]P[Gc]

≤ P[|g − Eg| ≥ t − |Eg − Ef |] + P[Gc]

The result of the lemma then follows from

P[|g − Eg| ≥ t − |Eg − Ef |] ≤ P[|g − Eg| ≥ t

2
]

and the application of theorem 3.

In order to prove theorems 1 and 2 it will be sufficient to find
suitable setsG with measure nearly equal to one (asM →
+∞), on which the capacity and free energy have a Lipschitz
constantLM → 0.

III. PROOFS OF THEOREMS1 AND 2

For the proofs, it is convenient to reformulate the statements
of the theorems as follows. Let1 be theK dimensional vector
(1, ..., 1), s0 be theK × N matrix with elementssikx0

k, and
consider the partition function

Z ′(n, s0) =
∑

x

e−
1

2σ2
‖N−1/2s0(x−1)−σn‖2

(5)

where we recall thatn = (n1, ..., nN) are independent Gaus-
sian variablesN (0, 1). Notice that due to the invariance of the
distribution ofsik under the transformationsik → x0

ksik,

EN,S[ln Z ′(n, s0)] = EN,S[lnZ ′(n, s)]

The statement of theorems 1 and 2 are equivalent to

P[K−1|2−K
∑

x0

EN [lnZ ′(n, s0)]−EN,S[ln Z ′(n, s)]| ≥ t]

≤ 3e−α1t2N (6)

and

P[K−1| lnZ ′(n, s0) − EN,S[lnZ ′(n, s)]| ≥ t] ≤ 3e−α2t2
√

N

(7)
To see this use the change of variabley = N−1/2sx0 + σn
followed by xk → xkx0

k in the partition function summation
(2).

A. Proof of (6)

Let B be a positive constant to be chosen later and define

G = {s | for all x, x0, ‖s0(x − 1)‖2 ≤ BN}

Lemma 2:We have the following estimate for the mea-
sure ofGc,

P(Gc) ≤ 3K2
N
2 e−

B
16β

Proof: First notice that for any givenx,

1√
K

K
∑

k=1

s0
ik(xk − 1), i = 1, ..., N

are independent Gaussian random variables with zero mean
and variance smaller than4. Thus the identity

∫

dx
e−

x2

2a2

√
2πa2

e
x2

16 =
(

1 − a2

8

)− 1

2

implies (becausea ≤ 4)

E[e
1

16K ‖s0(x−1)‖2

] ≤ 2
N
2

Then from the Markov inequality, for anyx

P(‖s0(x − 1)‖2 ≥ BN) ≤ 2
N
2 e−

BN
16K = 2

N
2 e−

B
16β

The result of the lemma then follows from the union bound.

We will apply lemma 2 to

f(s) =
1

K2−K

∑

x0

EN [lnZ ′(n, s0)]

for a suitable choice ofB. In the application the matrixs is
to be thought as a vector withKN components and norm

‖s‖ =

( N
∑

i=1

K
∑

k=1

s2
ik

)
1

2

Clearly 0 ∈ G and f(0)2 = ( 1
K EN [ 12‖n‖2])2 = 1/4β2.

Also it is evident thatlnZ ′(n, s0) ≤ K ln 2. On the other
hand restricting the sum in the partition function tox = 1 we
have

EN [lnZ ′(n, s0)] ≥ − 1

2σ2
EN [σ2‖n‖2] = −N

2



Therefore we have

ES[f(s)2] ≤ max(
1

4β2
, (ln 2)2) = C2

Let us now compute the Lipschitz constant.

Lemma 3:K−1
EN [2−K

∑

x0 lnZ ′(n, s0)] is Lipschitz on
G, with constant

LN = σ−2
√

βK−1(
√

B +
√

Nσ)

Proof: The exponent of the partition function is2

H(n, s0, x) =
1

2σ2
‖N−1/2s0(x − 1) − σn‖2 (8)

In the appendix we show that

|H(n, s0, x) − H(n, t0, x)| ≤ σ−22
√

β(
√

B + ‖n‖)‖s− t‖)
(9)

Using this inequality together with

H(n, s0, x) ≥ H(n, t0, x) − |H(n, s0, x) − H(n, t0, x)|
we have for(s, t) ∈ G × G

ln

∑

x exp(−H(n, s0, x))
∑

x exp(−H(n, t0, x))

≤ ln

∑

x exp(|H(n, s0, x) − H(n, t0, x)| − H(n, t0, x))
∑

x exp(−H(n, t0, x))

≤ σ−22
√

β(
√

B + ‖n‖)‖s− t‖
Therefore taking the expectation over the noise, we get

|
∑

x0

2−K
EN [lnZ ′(n, s0)] −

∑

x0

2−K
EN [lnZ ′(n, t0)]|

≤ σ−22
√

β(
√

B + σE[‖n‖])‖s− t‖
≤ σ−22

√

β(
√

B + σE[‖n‖2]1/2)‖s− t‖
which yields the Lipschitz constant of the lemma.

Finally (6) follows from lemmas 1, 2 and 3 with the
choiceB = 32β(2K + N). We obtainα1 = 1/(8KL2

N) ≥
σ4/(16β(64β + 32 + σ2)).

B. Proof of (7)

This case is more cumbersome but the ideas are the same.
We choose the setG as

G =
{

s, n | max
i

|ni| ≤
√

A and for all x, ‖s0(x−1)‖2 ≤ BN
}

where as beforeA andB will be chosen appropriately later on.
For Gaussian noiseP[|ni| ≥

√
A] ≤ 4e−

A
4 therefore from the

union boundP(maxi |ni| ≥
√

A) ≤ 4Ne−
A
4 . Using lemma 2

we obtain an estimate for the measure ofGc,

P[Gc] ≤ 4Ne−
A
4 + 2K+ N

2 e−
B

16β

The goal is to apply lemma 1 tof(n, s) = lnZ ′(n, s0)
defined onR

K × R
NK .

2a Hamiltonian

Clearly(0, 0) ∈ G, f(0, 0) = ln 2 and by the same argument
as before we haveE[f(n, s)2] ≤ max( 1

4β2 , (ln 2)2) = C2. It
remains to compute the Lipschitz constant.

Lemma 4:The free energyK−1 lnZ ′(n, s0) is Lipschitz on
G with constant

LN = σ−2(2
√

β + σ)K−1(σ
√

NA +
√

B)

Proof: For the same Hamiltonian (8) we show in the
appendix,

|H(n, s0, x) − H(n, t0, x)|
≤ σ−22(2

√

β + σ)(σ
√

NA +
√

B)‖(n, s) − (m, t)‖ (10)

Then proceeding in the same way as in the proof of lemma 3
we get

| lnZ ′(n, s0) − lnZ ′(m, t0)|
≤ σ−2(2

√

β + σ)(σ
√

NA +
√

B)‖(n, s) − (m, t)‖

We can now conclude the proof of (7) by collecting the
previous results and choosingA =

√
N/σ2 andB = 32β(K+

N). This givesα2 = 1/(8
√

NL2
N ) ≥ σ4β2/(32(2

√
β + σ)2).

IV. CONCLUDING REMARKS

In this contribution we have shown that the capacity of the
CDMA system with Gaussian signature sequences and binary
inputs satisfies a concentration property. We expect that the
powerful probabilistic tools used here have applications for
other similar situations in communication systems. The main
open problem is the analogous property for the bit error rate.

Essentially the same technique applies to a class of other
signature distributions satisfying a log-Sobolev inequality but
unfortunately we have not yet been able to cover the important
case of binary signature sequences. Interestingly if we change
the sign of the exponent in(1) and(2), the problem becomes
very much related to the Hopfield model for neural networks
and in that case we can prove concentration results even for
binary S because the corresponding distributions have convex
level sets [6].

After submission of this paper we have been able to prove
the self averaging for the case of binary signature sequences,
namely thatP[|C(s)−ES[C(s)]| ≥ t] = O

(

1
Nt2

)

and similarly
for the free energy. The proofs will be presented elsewhere.

V. A PPENDIX

A. Relation between capacity and free energy

Replacing (1) in the conditional entropy

H(X|Y , s) = −EY

[

∑

x

p(x|y, s) ln p(x|y, s)
]

= EY

[

∑

x

p(x|y, s) lnZ(y, s)
]

+ EY

[

∑

x

p(x|y, s)
1

2σ2
‖N− 1

2 sx − y‖2

]



The last term on the right hand side can be computed exactly.
Indeed,

EY

[

∑

x

p(x|y, s)
1

2σ2
‖N− 1

2 sx − y‖2

]

=
1

2K

∫

dy
Z(y, s)

(
√

2πσ2)N

∑

x

p(x|y, s)
1

2σ2
‖N− 1

2 sx − y‖2

=
1

2K

∑

x

∫

dy
1

(
√

2πσ2)N
e−

1

2σ2
‖N−

1

2 sx−y‖2

× 1

2σ2
‖N− 1

2 sx − y‖2

= N
1

2
= K

1

2β

Therefore the relation between Shannon’s conditional entropy
and the free energy is

H(X | Y , s) = EY [ln Z(y, s)] +
K

2β

This is equivalent to the announced relation (3).

B. Proof of (10)

Let n, m be two noise realizations ands, t two spreading
sequences all belonging to the appropriate setG. Lety = x−1.
First we expand the Euclidean norms

‖N− 1

2 s0y − σn‖2 − ‖N− 1

2 t0y − σm‖2

= σ2‖n‖2 − σ2‖m‖2 + N−1(‖s0y‖2 − ‖t0y‖2)

+ σ2N− 1

2 (nt · s0y − mt · t0y)

= σ2(n − m)t · (n + m) + N−1(s0y − t0y)t · (s0y + t0y)

+ 2σN− 1

2 (n − m)t · s0y + 2σN− 1

2 mt · (s0y − t0y)

We estimate each of the four terms on the right hand side of
the last equality. By Cauchy-Schwartz the first term is bounded
by

‖n − m‖‖n + m‖ ≤
√

Nmaxi(|ni| + |mi|)‖n − m‖
≤ 2

√
NA‖n − m‖

Using Cauchy-Schwartz and‖(s0 − t0)y‖ ≤ ‖s0 − t0‖‖y‖
where‖s0 − t0‖ = ‖s− t‖ is the (Hilbert-Schmidt) norm,

‖s− t‖ =

( N
∑

i=1

K
∑

l=1

(sil − til)
2

)1/2

we obtain for the second term the estimate

N−1‖s− t‖‖y‖(‖s0y‖ + ‖t0y‖) ≤ N−1‖s− t‖2
√

K2
√

BN

= 4
√

βB‖s− t‖

Similarly the third term is bounded by,

2N− 1

2 ‖n − m‖‖s0y‖ ≤ 2N− 1

2 ‖n − m‖
√

BN

= 2
√

B‖n − m‖

and the fourth one by

2N− 1

2 ‖m‖‖s− t‖‖y‖ ≤ 2N− 1

2

√
NA‖s− t‖2

√
K

= 4
√

βNA‖s− t‖
Collecting all four estimates we obtain

‖N− 1

2 s0(x − 1) − σn‖2 − ‖N− 1

2 t0(x − 1) − σm‖2

≤ 2σ(σ
√

NA +
√

B)‖n − m‖ + 4
√

β(σ
√

NA +
√

B)‖s− t‖
≤ 2(2

√

β + σ)(σ
√

NA +
√

B)‖(n, s) − (m, t)‖
where the last norm is the Euclidean norm inR

N × R
NK .

C. Proof of (9)

Let s and t be two spreading sequences both belonging to
the appropriateG. Let y = x − 1. Following similar steps as
in the previous paragraph withn = m the result can be read
off

‖N− 1

2 s0y − σn‖2 − ‖N− 1

2 t0y − σn‖2

≤ 4
√

β(
√

B + σ‖n‖)‖s− t‖
ACKNOWLEDGEMENT

We would like to thank Olivier Lévèque and Rüdiger
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