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Abstract— We prove the concentration of the capacity, in the the usual random matrix techniques do not work but the
large system limit, for a code division multiple access sysm conjecture is again supported by the recent work of Monianar
over an additive white Gaussian noise channel, with Gaussia 5,4 Tse [2] who proved that Tanaka’s formula is rigorous

signature sequences andinary input symbols. The probabilistic . .
tools that are used are quite powerful and could have applidéoons at least for regimes of parameters &nd o) without phase

in many other similar situations. transitions (the bit error rate has no jumps). The extension
such proofs to regimes with phase transitions (the bit eats
|. INTRODUCTION AND MAIN RESULTS is discontinuous) is to the best of our knowledge still open.

We consider the following setting for randomly spread However, for the case of binary inputs, these works do not
code division multiple access (CDMA) communication on aadress the underlying question of the concentration of/asie
additive white Gaussian noise (AWGN) chann€lusers send quantities such as the capacity and the bit error rate. Let
binary information symbolsz = (z1,...,zx)", zx € {£1}, us mention that in the case of a Gaussian input signal, the
through a single AWGN channel. Each user has a signatwencentration can be deduced from general theorems on the
sequences;, = (six, ..., snk)" assumed to be known to theconcentration of the spectral density for random matribes,
receiver. At each time interval=1, ..., N the received signal this approach breaks down for binary inputs.
is < Y4y sikTk + ni wheren = (ny,...,ny)" are inde- | this contribution we provide all the details of a proof of
pendent identically distributed Gaussian variahl€é$0,02) concentration for the capacity thanks to powerful prokistid
and o is the noise amplitude. The scaling factofv/N is tools developed by Talagrand [5], [6]. The mathematical
introduced so that the energy of each user per information binderpinning of this result is in fact the concentration of a
is normalized to 1. Here we take, as generated randomly“free energy” which we also prove. We also indicate why the
from independent identically distributed standard Gaarssi considerations about the free energy could conceivabball
N(0,1) and denote the correspondifigx N random matrix to attack the more difficult problem of the concentration of
ass. The received vectoy = (y1,...,yn)! can be expressedthe bit error rate.

as 1 In the seque| - || always denotes an appropriate Euclidean
=—=Sr+tn norm.
Y VN . .
From general arguments the maximum of the mutual in-

If all users communicate at the same rétghe capacity is formation is attained for a uniform input distributigriz) =
the maximum achievable such rate 9-K

1
= — N 1
06 = gmax XL ]9 C(s)=In2~ LH(X|Y.9
A priori this quantity depends on the realisation of the @md
matrix s. The main result in this contribution is a proof thatvhere the conditional entropy is the average (o¥eonly)
in the large system limi{ X and N — +oco with K/N = 3 Shannon entropy of the posterior distribution
fixed) C'(s) concentrates on its medx[C(s)].

Tanaka [1] has derived analytical expressions, in the large efﬁw—%sl,g“z
system limit, forEs[C(s)] and the bit error rate, thanks to p(z|y,s) = (1)
the formal “replica trick” of statistical mechanics. Thduthe a Z(y,9)

replica method is not rigorous it is generally conjectured t

yield an exact result. In the case Gfaussian inputshis can With the normalization factor

be explicitly verified by comparing the expressions reggiti )
from the replica method and the rigorous random matrix Z(y,s) = Ze*#”w%&*%l
calculations [4],[3]. In the present case willinary inputs B z
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The average oveY is carried out with the distribution The bit error rate is the overlap with the inpug,
plyls) = pylz° s)pa’) L, IN, ”
20 5( K ;xo,kﬂfk) 4)

_1
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wherez? is to be interpreted as an input signal.

Although in this contribution we do not use any specifi
notion from statistical mechanics, it is insightful to vié®) as
the Gibbs measure of a “spin glass” whesee {—1,+1} are

The connection with statistical mechanics comes from the
remark thati, = sign(x;) where (—) is the average with
respect to the Gibbs measure (1). The “magnetization’)

gan be obtained from the free energy by adding first an
infinitesimal “external magnetic field” to the exponent in,(1
namelyh Zszl x9xy, and then differentiating the free energy,

the spin varaibles, and (given) realizations the “quenched K d
disorder”. The normalization factor (2) is called the “piéon E 2 (xy) = lim — In Z(y, s)

P : P " : h—0 dh =
function” andln Z(y, s) is the “free energy”. In the appendix k=1

we deduce a relationship between the capacity and the a’eréﬂnilarly one can use *

: real replicas” (copies of the Gibbs
free energy of the spin glass, namely

measure) to obtain by differentiation of the replicatedefre
C(s) =2 — 1 iEy I Z(y,5)] 3) energy>" 1 (29 (x4))™ and eventually reconstruct (4). Then
26 K — = by rather standard arguments the (easily verifiable) catwex
Let us mention that the “underlying graph” of the spin glasef the free energy with respect tb should enable one to
is the complete graphwith K vertices, because if the normdeduce concentration of (4) from that of the free energy.
in (1) is expanded all pairs;z; are present. The situation isHowever the completion of this last point requires also a
thus similar to the classic Sherrington-Kirkpatrick mo@@] uniform (with respect to system size) control of the dereat
for which the self averaging property of the free energy wa¥f the free energy precisely at= 0, which at present is still
first shown by Shcherbina and Pastur in [10]. The exponentlafking. We hope to come back to these considerations in the
concentration results for the free energy have appeareg ofiture.
recently and this has been achieved by Guerra and Toninelli
by an “interpolation method” [8]. However, in the present
case, the situation is more complicated and it is not clear ho Our proofs rely on a general concentration theorem for
to apply Guerra and Toninelli's methbdThe concentration suitable Lipschitz functions of many Gaussian random vari-
properties stated in the following theorems are not exgkctables [5], [6] and this is why we need Gaussian signature
to be optimal. sequences. In the version that we use here we need functions
that areLipschitz with respect to the Euclidean distanktore
precisely we say that a functiofi: RM — R is a Lipschitz
function with constant., if for all (u,v) € RM x RM

Il. PROBABILISTIC TOOLS

Theorem 1:[concentration of the capacifylhere exists an
integer N; and a strictly positive constant; such that for all
N > N; and allt > 0,

P[|C(s) — Es[C(9)]] > 1] < Be~t*N |f(u) = f(0)] < Larllu — o

One can takev; = /(166(643 + 32 + 02)). When another distance is used the function will still be
Lipschitz but one has to carefully keep track of the possibly
We also prove the slightly more general, and obviouslyyalitatively different)\/ dependence.
related, concentration result for the free energy itself,
Theorem 3:[5] Let Uy, ...,Upy be M independent identi-

~ Theorem 2:[concentration of free enerdyThere exists an cq)ly distributed Gaussian random variables with distiitou
integer N and a strictly positive constant, such that for all Ar(o, »2) and letf : RM — R be Lipschitz with respect to

N > Ny and allt > 0, the Euclidean distance, with constait,;. Then f satisfies
P[K~'|In Z(y,s) — Eyslln Z(y,9)]| > 1] < 3¢ VN "

One can takev, = 0%3%/(32(2/B + 0)?). PIS (s oy une) — Bl (un, o uan)l] 2 4] < 2e 275

In our application it will not be possible to apply directly

we W.'Sh to argue here _that the"re'.“ 2 suggests a metl}ﬂﬁs theorem because the relevant function is Lipschitz onl
for proving the concentration of the bit error rate. Giver thOn a subset? c RM . It turns out that the measure of the

ohbservrtledhoutput _signal, the op;imlal bit estimate is deﬁn%%mplementh is negligible asM — +oo. For the “good
through the marginab(zy. | y,s) of (1) part” of the function supported off we will use the following
&y = argmax, _1yp(@k | ¥, S) result of McShane and Whitney

. ) ; ; M
1As already stated we use other tools which by the way can asapplied _Theorem afr]Letf:G — R{ be Lipschitz _OV€G CR
to the Sherrington-Kirkpatrick model. with constantl ;. Then there exists an extensipn R — R



such thaty|¢ = f which is Lipschitz with the same constanfThe statement of theorems 1 and 2 are equivalent to

over the whole ofRM,
PK 275 "Ey[In Z'(n,s")|~Ey sln Z'(n, 9)]| > 1]
From these two theorems we can prove the

Lemma 1:Let f andg be as in theorem 4. Assurfes G < Bem N (6)
andE[f(u)?] < C?, f(0)? < C? for some positive number
and
C. Then for =
to P[K | 1nZ'(n, &) — Ey s[ln Z'(n, 9)]| > 1] < 3e=2°VN
5 3(C + vV M)\/P(G) [ |InZ'(n,s’) ~,s[ln Z'(n, 9)]| > t] < 3e @
we have To see this use the change of variale= N~/?s¢; + on
e followed by z;, — xkxg in the partition function summation
Pllf (w) — E[f(w)]] > 1] < 2¢ 5 + P[G"] (2.

Proof: We drop thex dependence to lighten the notationA. Proof of (6)

Notice _thatO €G imp_lies £(0) = g(0). Thusg(0)* < C>. Let B be a positive constant to be chosen later and define
Also, sinceg is Lipschitz on the whole oRM
G ={s|forall z,2°, || (z — 1)|> < BN}

Elg°] < 2(g(0)* + E[(g — 9(0))?])

2 2
< 2(C” + LuE[||lu”) Lemma 2:We have the following estimate for the mea-
=2(C? + Mv?*Lyy) sure of G¢, .
c Ko¥ o—1o5
Furthermore orG we haveg = f, so by the Cauchy-Schwartz P(G*) <372% e 1o
inequality Proof: First notice that for any givem,
| | = E[(g — f)lce K
o] | 1/2 | 1/2 Lz:so(a:k—l) i=1,...N
< (E[g)"/? + E[f*]'/%)v/P[G] Vi &St s o
2 2 1/2 5 =
<(C+ \/_(C +Mv L)) VPIG] are independent Gaussian random variables with zero mean
< 3(C + vV MLy )/P[G] < t and variance smaller thah Thus the identity
<3 )
Moreover e 242 o5 ( _a_Q),%
Pllf —Ef| 2] = Pllg—Ef| >t | U € GIP[G] ama s
+P|f —Ef| >t|U € GIP[G] implies (because < 4)
< P[lg — Eg| >t — [Eg — Ef|] + P[G"] Eletr ¥ @-DI] < ¥
The result of the lemma then follows from Then from the Markov inequality, for any
t B
Pllg —Eg| > ¢ — [Bg —Ef[] < P[lg — Eg| > 7] P(||S(z — 1)||2 > BN) < 2% e 1ok = 2% ¢ o8
and the application of theorem 3. B The result of the lemma then follows from the union bound.

In order to prove theorems 1 and 2 it will be sufficient to find u

suitable setss¥ with measure nearly equal to one (& — We will apply lemma 2 to
+00), on which the capacity and free energy have a Lipschitz 1
KoK Z Eﬂ[ln Z/(ﬂ’ SO)]
0

constantL,; — 0. f(s) =

[1l. PROOFS OF THEOREMSL AND 2 z

For the proofs, it is convenient to reformulate the stategmerfOr @ suitable choice of3. In the application the matris is

of the theorems as follows. Létbe theK dimensional vector t0 be thought as a vector with N components and norm
(1,..,1), s be theK x N matrix with elementss;;z?, and

consider the partition function sl = (ZZ m)
1 /20 (e 1) —onll? i=1 k=1
9) = T eIV e oul 5)
- Clearly 0 € G and f(0)? =

- (En(5lnl®)? = 1/46%
where we recall that = (n nx) are independent Gaus Also it is evident thatln Z’'(n,s") < KIn2. On the other

&= 1y -
sian variables\V/(0, 1). Notice that due to the invariance of thenanéj restricting the sum in the partition functiondto= 1 we
distribution of s;;, under the transformatios;;, — x%sik, ) N
Ey.slln Z'(n, )] = Ey slln Z'(n, 9)] En[nZ'(n,8")] > —5—5Ex[0*|n]*] = -5



Therefore we have Clearly(0,0) € G, f(0,0) = In 2 and by the same argument
) ) as before we hav&(f(n, )] < max(gg, (In2)%) = C2. It
Es[f(9)?] < max(462 ,(In2)%) =C remains to compute the Lipschitz constant.

Let us now compute the Lipschitz constant. Lemma 4:The free energys ~! In Z’(n, $) is Lipschitz on

G with constant
Lemma 3: K 'Ex[27% Y InZ'(n,s")] is Lipschitz on
G, with constant h 0 2(2\/B+ 0)K ' (cVNA +VB)

Ly =0 2/BK' (VB +VNo) Proof: For the same Hamiltonian (8) we show in the
appendix,

1 [H(n, 5", z) — H(n, 1", 2)|
Hn,2) = 55N -D-onl* @) <5-220/5+0)(0VNA+ VB)||(nS) — (m.1)] (10)

Proof: The exponent of the partition functior?is

In the appendix we show that Then proceeding in the same way as in the proof of lemma 3
H(n,&,z) — H(n, ', 2)| < 0722(/BVE + [n])lls—t])) ' 9
) o _ _ ) |InZ'(n,s”) —1In Z' (m, %)
Using this inequality together with < 0*2(2\/B+ U)(Uer \/E)H(ﬂ, s) — (m, 1)
H(n,s,z) > H(n,t% z) — |H(n,s,z) — H(n,t° z)| -
we have for(s,t) e G x G We can now conclude the proof of (7) by collecting the
@ previous results and choosiag= v'N /o2 andB = 323(K +
2, (- H(n, S, 2)) N). This givesas = 1/(8VNL%) > 0*52/(32(2VF + 0)?).

n
exp(—H(n,t°, x
El p( (_ _)) IV. CONCLUDING REMARKS

0 0
n 2, xp(|H (z, $.z) -~ Hntz)| - Hn.t,2)) In this contribution we have shown that the capacity of the
B > g exp(—H(n,1°, z)) CDMA system with Gaussian signature sequences and binary
<o 22/B(VB + |n|)|Is—t| inputs satisfies a concentration property. We expect that th
powerful probabilistic tools used here have applicatioos f
Therefore taking the expectation over the noise, we get  other similar situations in communication systems. Thermai

K . K 1.0 open problem is the analogous property for the bit error.rate
|20:2 En[nZz (. )] - 2022 B [In Z"(n, ©)]] Essentially the same technique applies to a class of other
£ £ signature distributions satisfying a log-Sobolev inegydut
< 0722\/B(VB + oE[[n[l]) s t| unfortunately we have not yet been able to cover the impbrtan
< 07 22/B(VB + oE[|n)*]'?)||Is - t| case of binary signature sequences. Interestingly if wagha
the sign of the exponent ifl) and(2), the problem becomes
which yields the Lipschitz constant of the lemma. B very much related to the Hopfield model for neural networks

Finally (6) follows from lemmas 1, 2 and 3 with theand in that case we can prove concentration results even for
choice B = 323(2K + N). We obtaino;l — 1/(8KL%) > binary S because the corresponding distributions have convex

1/(166(648 + 32 + 02)). ~  level sets [6].
o"/(165(645 ) After submission of this paper we have been able to prove
B. Proof of (7) the self averaging for the case of binary signature sequgnce
This case is more cumbersome but the ideas are the saftnely thaP(|C(s)—Es[C(s)]| > ] = O (y7=) and similarly
We choose the s&f as for the free energy. The proofs will be presented elsewhere.
G = {S,Q | max |n;| < V/A and for all z, ||$°(z—1)||? < BN} V. APPENDIX

A. Relation between capacity and free energy

where as beforel and B will be chosen appropriately later on. Replacing (1) in the conditional entropy

For Gaussian noise||n;| > VA| < 4e~ therefore from the
union boundP(max; |n,;| > vA) < 4Ne~%. Using lemma 2 H(XIY.9) — —F { 2l ) Inp(z s]
we obtain an estimate for the measuredst, S x| 2 plaly,9)nplaly, 9

. _A | oK4N B -
P[G°] < 4Ne™ % + 2K+ 2 ¢ 1o =Ey [Zp(m, s)In Z(y, s)]
The goal is to apply lemma 1 tg(n,s) = InZ'(n,s’) z
defined onRX x RVK, 1 _1 9
+Ey[zr:p(£lg,5)ggllN sz —y

23 Hamiltonian



The last term on the right hand side can be computed exactdnd the fourth one by

Indeed,

; / 1 — i IN sy
= — e 202 Y
7 2| Wiy
1 1 )
X —= ST —
szl N " Ese -y
NS S |
2 T

Therefore the relation between Shannon’s conditionalogytr
and the free energy is

LK
2p

This is equivalent to the announced relation (3).

H(X |Y,s) =Ey[n Z(y,s)]

B. Proof of (10)

Let n, m be two noise realizations arglt two spreading
sequences all belonging to the appropriatesdtety = z—1.
First we expand the Euclidean norms

INT2s"y — on® = [N~2t% — om|”

= o?|n|* — o®|lm|?* + N7H(|Sy[* — [[t°y[*)
+ 02N "3 (nt - sy —m' - t%)

_ 02(2 o m)t . (ﬂ‘l’ﬂ) + Nfl(sog o tog)t X (SOQ_’_tOg)
+ ZO'N_%(Q —m)" -y + 20N " 2m - (s"y — t%)

We estimate each of the four terms on the right hand side of
the last equality. By Cauchy-Schwartz the first term is bathd [3]

by

I —m|l|n+m| < vVNmax;(|n| + [m])||ln — m||
<2VNA|n—m|

Using Cauchy-Schwartz anfi(s” — t%)y| < |[$* — t°]|ly||
where||s” —t%| = ||s— t|| is the (Hilbert-Schmidt) norm,

N K 1/2
st = (33 (o~ )
=1 1=1
we obtain for the second term the estimate
N s=tlyl (1]l + It°l) < N~'Is—t|2v K2V BN
=4/ BB|s— 1]
Similarly the third term is bounded by,

ON"%||n — ml|||Sy|| < 2N~ %||n — m||[VBN
= 2VB|ln — m||

2N ||m[[|s— tl|[ly]| < 2N "2 VNA[ls— t|2VE
= 4/BNA||s—t|
Collecting all four estimates we obtain
INT2(@ 1) —on* — [N"*t°( ~ 1) — om|*
< 20(6VNA+VB)|n —m| +4/B(oVNA+ VB)||s—t||
<2(2V/B+0)(oVNA+VB)||(n,9) — (m,1)]
where the last norm is the Euclidean normRA” x RVK,

C. Proof of (9)

Let sandt be two spreading sequences both belonging to
the appropriaté-. Let y = x — 1. Following similar steps as
in the previous paragraph with = m the result can be read
off

IN“2y — on|® — [N~ 5t% — onl|?
< 4/B(B +a|n|)|s—t|
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