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Abstract— On a fading channel with no channel state informa- In order to have Sl at the receiver, channel estimation
tion at the receiver, calculating true log-likelihood ratios (LLR) is techniques must be used. These techniques increase the com-
complicated. Existing work assume that the power of the addive plexity of the system, can cause a significant overhead, and

noise is known and use the expected value of the fading gain @ . . . .
linear function of the channel output to find approximate LLR s. are themselves subject to imperfections. For high throughp

In this work, we first assume that the power of the additive noge  Wireless applications, the receiver may not be able to kandl
is known and we find the optimum linear approximation of LLRs the extra complexity or overhead. This paper provides an
in the sense of maximum achievable transmission rate on the alternative solution which does not require channel egtima
channel. The maximum achievable rate under this linear LLR et nrovides better performance compared to the existing
calculation is almost equal to the maximum achievable rate nder luti that fixed fadi . timates in the d d
true LLR calculation. We also observe that this method appees S0 u.'ons a use Ixed fading gal!’I estimates in the epo er
to be the optimum in the sense of bit error rate performance tw. With no SI available at the receiver, LLRs are complicated
These results are then extended to the case that the noise paw functions of the channel output [9] and depend on the prébabi
is unknown at the receiver and a performance almost identica ity density function (pdf) of-. An approximate LLR, however,
to the case that the noise power is perfectly known is obtairte can be computed as a linear function of the channel output
[9]. The coefficient of this linear function depends on a fixed
I. INTRODUCTION estimater of the channel fading gain and a knowledgeogf

) ) ) o Previous work assume that, is known and use the expected
Iterative decoding has received much attention in the pagfiye of » for # [4], [8]. While the expected value of the

decade due to its exemplary performance. There have begfing gain is the minimum mean square error estimation of
many advances in iterative decoding techniques and it Fexs be it js not guaranteed that this choice provides the optimum
shown that using graphical codes such as low-density paribérformance in the decoder.
check (LDPC) codes [1] and turbo codes [2] associated with|, 54 general setup (which includes famous fading channel
iterative decoding, the Shannon limit on many channels,(e.ghodels such as uncorrelated Rayleigh and Rician fading
additive white Gaussian noise channel) can be approacl]u_ed Efﬁannels), we propose the following question: Assume tieat t
Therefore, these codes have also been proposed for wirelggfof 1 is known at the receiver, but the channel fading gain
fading channels [4]. is not. Also assume that LLRs are to be computed as linear
Application of LDPC codes on Rayleigh fading channglnctions of the channel output. What linear approximation
is pioneered in [4], where a detailed study of performanggovides the optimum decoding performance?
and code design is conducted. This work is later extended'rhis question is studied in this paper and the f0||owing
to complex fading channels [5], to Rician fading channels [6contributions are made: (1) Wher is known, we find a linear
and also to Rayleigh block fading channels [7]. The applticat | | R approximation which allows for the maximum achievable
of turbo codes on Rayleigh fading channels is also studieddBde rate on the channel. We prove that the optimum linear
(8]. approximation is unique and we observe that, on a Rayleigh
For soft iterative decoding, log-likelihood ratios (LLRs)ading channel, it closely approaches the capacity under tr
at the output of the channel are calculated. The procasgsR calculation. This solution can significantly outpemor
of computing LLRs depends on whether or not a perfeCLR calculation based on the expected valueroiWe also
knowledge of the channel parameters exists at the receivsign irregular LDPC codes which approach this maximum
The capacity of the fading channel is also affected with thghievable rate. (2) When neithernor o, is known at the
availability of channel parameters at the receiver [8]. receiver, we propose a linear LLR calculation techniquecivhi
An uncorrelated fading channel can be modeled with guarantees the convergence of the decoder over the widest
fading gainr and an additive Gaussian noise~ N (0,02). possible range ofr,. The performance of this solution is
Whenr is known at the receiver as a perfect side informaticdmost identical to the case that, is perfectly known. We
(S), LLRs are linear functions of the channel output [4]aEk design appropriate irregular LDPC codes for this case too.
LLR computation depends on a perfect knowledgerpfat This paper is organized as follows. Sectidn Il reviews some
the receiver. preliminaries and studies the proposed approaches. 88fiio
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studies the problem when, is known to the receiver. Sectionwhere 52 represents the receiver’s estimate of the Gaussian
[Vlextends our results to the case thgtis unknown. Section noise variance?> and+ represents a fixed receiver’s estimate
[Vl concludes the paper. of the fading gain-. Here,a = 20% This linear representation

of LLR is consistent with the results in [9] which states that
the LLR can be approximated by a linear functionyofThis

A. System model approach is also consistent with existing work which assume
ato, is known and uses expected valuerdfE[r]) as+ [4].

The conditional pdf of is

Il. PRELIMINARIES AND APPROACHES

Consider the following channel model. The output of thg1
channel is given by

~2 7 ~/A2)2
y=r-z+n, @) i) = —On o[ _=27/60)7)
| | | p(llr) 2o s P 87207 /54 @)
wherez € {—1,1} represents the input signal amdis the

Gaussian noise with zero mean and variangeAlsor > 0is  To get the unconditional pdf df (7) should be averaged over

the channel gain which has an arbitrary pdf) and changes the density ofr. For example, for the normalized Rayleigh
independently from one channel use to another. Uncorcelatading channel we have

fading channels fall into this system model whenepresents ) )
the channel fading gain. p(A){ ) = _248% exp (_A_P) X
Y ao, V2w a?ol
A? ., AV2m - A
exp (—20[20%1 ) + o0 [ erfc (— aa?l\/il) (8)

n

B. LLR definition and distributions

For soft decoding, LLRs are usually computed and used.
Analysis of some iterative decoders is based on the pdf of
LLRs under the assumption that the all-zero codeward=( whereA — '
+1) is transmitted [10]. ) 205 +1 _

For the model in[{L), the conditional pdf gfis given by If n = on and# = E[r], i.e., a =2

distribution in [4, Eq. 16].
y—z- 7’)2>

1
p(ylz,r) = m exp (— 952
K " The capacity of a binary-input memoryless symmetric chan-

which represents a Gaussian distribution with meam and : :
. ) | (BMSC b th 1) of the LLR by [11
variances?. We are interested to compute the channel LLRY ( ) can be given via the pgll) of the y 1]

2
I

This pdf is parameterized by, anda.
Blrl, @) reduces to the

v

(2) c. capacity

and their pdf. B VN e _
1) Ideal SI: When we have ideal SI, the channel fading gair(lj =1-Eiflogy (1 +e7)] =1~ /,OO log, (1+ e )p(l)dl.
r is known for each received bit. Also, the receiver knows the 9)
noise power. Therefore, the LLR is given by [4] The above relation is only valid for BMSCs where the LLR pdf
is consistent (i.e.p(—1) = e~'p(1)). The channel capacity’
1 = log M — iy o (3) can be computed in two cases: with ideal SI or no SI. In each
Pz =—-1ly,r) o} case, their corresponding LLR distribution should be used i
which is a linear function o). ). Inthe absence of Sl at the receiver, the quantity catedl
2) No SI: When no side information is available at thdy putting p({) in (@) called C is not the channel capacity
receiver, the channel LLR is since! is a linear approximation and not the true LLR. Also,
sincep(l) is not consistent(' does not represent the highest
1= 1ng, (4) achievable transmission rate under linear LLR calculatbn
Pz =—1ly) (6). However, we observe that by maximiziagwith respect
which can be a complicated function @f in general. For to «, p(l) nearly becomes a consistent distribution and
instance, on a normalized Rayleigh channel (i) = predicts the maximum transmission rate under this gptimum
zrefrz) we have linear LLR calculation quite accurately. This maximurhis

extremely close t@ in the absence of Sl (see FIg. 2).
| — 1o 2w/ V21 200)) 5
TSy (14 202)) ) b. LDPC codes decoding and analysis

2 Some of the results of this paper are shown through analysis
where®(z) = 1+ \/mze* erfe(—z) anderfc() represents the 54 design of LDPC codes. Therefore, a quick review of LDPC
complementary error function [9]. This LLR is a complicateflyqas seems relevant. We WS& (A(z), p(z)) to denote an
function of y and hard to be calculated in the decoder. Als@samble of LDPC codes of length with variable and check
Calculat!ng the LLR pdf IS dlfflCU't.- ATO Slmpllfy the LLR node degree distribution’s(x) andp(:v) respectively [1o]
calculation, motivated by [3), we writeas Many different message-passing algorithms can be used for

i 2 . 6 the decoding of LDPC codes. In this work, our focus will be
- Ey r=oy ©) on thesum-productlgorithm [12].



For the channel model of](1), thecoding threshold of two arguments can also be provided to justify this choicg. (1
an ensemble of LDPC codes is defined as the maximum noMELA provides the maximun€' and thus the maximum gap
standard deviation,, for which the bit error probability of the between the code rate and the capacity’. Thus one expects
message-passing decoder gets arbitrarily small when ttie cemproved BER performance. (2) Sinéés not the true LLR,
length is growing [10], [13] if and only i,, < o. Thiso}, underany linear LLR calculationt; < C. Under a good linear
depends on whether Sl is available at the receiver or not. approximation, pdf of is close to that oftrue LLRs and thds

The most exact LDPC code analysis is density evolutiors, close toC'. Hence, a minimized'—C' (through maximizing
which takes the pdf of the channel LLRs and tracks th€) indicates a good LLR approximation.
evolution of the pdf of the decoder’s extrinsic messages inAs mentioned, our simulation results show that MCLA
each iteration [10], [13]. Formulation of this method inséal indeed improves the performance compared to existing work
form is too complex, hence, some numerical approximatiobased on choosing= E[r]. Moreover, though not rigorously
are often used [3]. proved, MCLA appears to be the optimum choice in terms of
BER performance too. Thus, our proposed method is based
on maximizingé over 7 for fixed ,, ando,,, and we define
It is well known that carefully designed irregular LDPC ) A
codes can approach the capacity of many channel models Topt = argmax C'. (10)
(e.g., see [3]). Two code design processes associatedwpth ' The following theorem suggests that findirg,: can be
measures of performance can_be defined one as maximizjpg, . very efficiently.

e eshold of e code over s degree dabulonsrie _Theorem LFora eds, ands,. hre eists  urique
, e _i
over its degree distributions given the channel LLR pdf. WFﬁCh maximizes' = 1 — E;flog, (1 + ¢ ™).

E. Code design

Proof:

I1l. OPTIMUM LINEAR LLR CALCULATION A _i — 20y
. o C=1-Eyllog,(1+e )] =1-Eyllogy (1 +¢ ")
As mentioned before, when no Sl is available at the re-

ceiver, one can calculate the LLRs linearly v[d (6) as an

2 2
approximation to [(#). The objective is to find the optimal % = -E, {d—Q (log2 (1 +e_52%y))]
linear approximation. Different measures of optimalitynca di di
be considered. Existing work assumes thatis known and w\2 — 2y
chooses' = E[r]. This choice off is optimum in the sense of - (0_2) e

minimum mean square errél|r — #|2]. In this work, we find Ey 2,
the linear approximation which gives a nearly consistenRLL (1 +e ) In2

pdf and results in the maximum achievable transmission rate

on the channel. We call this linear approximatio@ximum- The above expression is negative since the term inside the
capacitylinear-approximation (MCLA). expected value is always negative. Therefdres a concave

Different linear approximations result in different LLRfunction of# and there exists a unique maximumsin= 7op:.
distributions fori. Each LLR distribution defines a corre-This theorem is valid for any distribution of> 0. L
spondingC’ according to[(). Thus, the problem of finding the Maximizing C, therefore, is a straightforward task because
MCLA is simplified to finding a linear approximation whoseit is a one-variable convex-optimization problem and can
corresponding LLR distribution maximizes the capadity be solved very efficiently by simple numerical techniques.

Maximizing C' requires a knowledge of,, and pdf ofr. Different C' curves are depicted in Fil 1 for someand the
These are needed for finding the pdficzind thus optimizing cases, = o,,. Notice thatr,,. is not very sensitive te,,.
its corresponding capacity. So, we first assume that theserig. [d shows that we can get very close to the channel
pieces of information are available. Later we generalize ogapacity under MCLA. Simulations show that = E[r]
results to the case that, is unknown. Whery,, is known, can result in significant performance loss especially when
without loss of generality we sét, = o, in (@) and we find the capacity or the code rate increases. This performance
the optimum choice of. Notice that with7 one can adjustt  loss is about 0.24 dB in 0.5 bits/channel use to 0.92 dB in
and thus the pdf of as needed. 0.75 bits/channel use.

MCLA maximizes a bound on the achievable transmission The following two examples support our above mentioned
rate. To show that this optimization is meaningful in preeti results. In Example 1, we design an irregular LDPC code
we design irregular LDPC codes that approach this maximizedhich approaches the capacity that is maximized by MCLA.
capacity. More interestingly, we observe that the optimtice Example 2 shows improved BER performance under MCLA.
is extremely close t@' based on true LLR calculation. Example 1:Consider an uncorrelated normalized Rayleigh

MCLA is also expected to result in improved performanckading channel witho,, = 0.7436. The channel capacity is
in iterative decoders. That is, for a fixed code, computinREL 0.5 bits/channel use in the absence of SI @hd= 0.4999
according to MCLA should improve BER performance. Ouusing#,,: = 0.6594 (compare withE[r] = 0.8862). We design
simulation results will support this claim, but the followd a code based on rate maximization under MCLA. We assume
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Fig. 1. C for differento,, and# on a normalized Rayleigh fading channel.Fig- 3. Comparison of BER for &'%°%%(z?,2%) LDPC code in different
The curves are concave and the maximizing point is uniqueeder, the ¢ases on a normalized Rayleigh fading channel. The perfurenaf MCLA
maximizing point is not much sensitive te,. remains almost the same regardless of whethgiis known or not.

0.9
IV. NOISE POWER UNKNOWN AT THE RECEIVER

—&— Channel capacity in the absence of ST

0.8

Under MCLA, the pdf of/ is a linear transformation of
, the pdf of y. In fact, aopr = 2’;"3‘ would give the linear
transformation whose associated capacity (given[By (9)) is
1 maximum. Whery,, is unknown, the distribution of is not
known at the receiver. Therefore, finding the optimum linear
transform is somewhat meaningless. However, for anpne
can findaepe. Thus, oo is @ function ofo,. It is also obvious
from Theorem 1, thatv,: is unique for eacty,,. Thus, cgpe
1 will be denoted asvop:(0,,) afterwards.
‘ ‘ ‘ ‘ ‘ ‘ Sinceo,, is unknown,aept(0,,) is also unknown. However,
*Z% -4 -2 0 2 4 6 8 one can findv such that a given code has the widest range of
EJN, (dB) .
convergence over changes®f. This way, we ensure that the
Fig. 2. Comparison between the highest achievable trasamisate in the COde is robust to the changes in the noise power (e.g. when the
case of true LLR calculation and on a normalized Rayleigh fading channel.code is used in different channels with different noise psyve
Itis assumed thaf, = on. The basic idea for finding such is to maximize the
achievable transmission rate at the highest noise standard
deviation that the code can tolerate under MCLA. To do this,
a fixed p(z) = 2% and a maximum variable node degrée for a given code, we must find the largest, referred to as
of 30. Under MCLA and 11-bit decoding, and allowing &, such that the code still converges to zero error rate when
maximum of 300 iterations, the optimized code is given inLRs are obtained using1(6) with = acp(c};). Finding o}
Tablel] (Codel). The rate of the designed code is 0.4889. Téwn be done efficiently through a binary search, but at each
designed code has almost approacteand also the capacity stage of the search,,: must be updated accordingly.
of the channel with no SI. This choice ofa gives the widest convergence range over
Example 2:To show that MCLA also improves the BERo,,, because it is the optimumin the worst channel condition.
of the code, a%%%(z2 2°) LDPC code is simulated on anWhen the channel condition improves, this choicexos no
uncorrelated normalized Rayleigh fading channel.[Hig.@&wsh longer optimum. But we expect that even with a sub-optimal
the BER of the code with and without Sl at the receiver. Whem, convergence is achieved due to improvement in the channel
Sl is not available andr, is known, two cases have beercondition. This can also be justified recalling thgg: (and
plotted. One is whers,, = 0,, and7 = E[r] and the other hencea) is not very sensitive ta,,. Our simulation results
is under MCLA (i.e.,6,, = 0, and? = 7opt). The decoding on LDPC codes will confirm that this choice of provides
threshold of the code is 4.06 dB with = E[r] and no SI, the widest convergence range.
3.82 dB under MCLA, and 3.06 dB with perfect SI. The figure In order to measure the performance we do as follows. For
shows considerable BER improvement under MCLA. We hawarious o, and different values oty (including aopt (o)),
chosen a (3,6)-regular LDPC code since most of its resulte find the required number of density evolution iteratioms t
exist in the literature. If a higher rate code (e.5.= 3/4) is achieve a target message error-rate (MEgRpr a given LDPC
used, the performance improvement increases. code. We use the required number of iteratidng,) as a

—e— (' under MCLA, 7 = fop;

0.7

0.6

Capacity and C' (bits/channel use)




e Codel Code2
250 — With ST
o o, unlknown, @ — 2 X2, X3 0.1916, 0.2244] 0.1943, 0.2341
9 s A1, s 0.0057, 0.0109| 0.0064, 0.0113
— —xp— 0, unknown, o =5
5 e ee A6, A7 0.0427, 0.1187| 0.0340, 0.0994
@ 200 —— 0, unknown, @ = ayy (07) = 2.9634 ||
i - o o e o As, Ao 0.0297, 0.0121| 0.0474, 0.0205
: o ’ A10, A1l 0.0147, 0.0000| 0.0119, 0.0171
@ Witk St A1s, A20 0.0157, 0.0314| 0.0228, 0.0627
5 1507 A29, A30 0.0382, 0.2649| 0.0680, 0.1715
5 ) 1.0000 1.0000
5 100k Rate 0.4889 0.5000
E ok 0.7436 0.7274
E E,/No* (dB) 2.57 2.76
p=4
3 o TABLE |
E‘j GOODLDPCCODES DESIGNED UNDERVICLA. CODEL IS A RATE
0 1 1 1 I MAXIMIZED AND CODE2 IS A THRESHOLD MAXIMIZED CODE.
3 3.5 5 55

4.5
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Fig. 4. Comparison between the performancesC6f(z2,z%) on a
normalized Rayleigh fading channel with or without Sl usitifferent «. . . .
were able to obtain a performance almost identical to the

previous case, where the additive noise power was known.

comparison measure and to identify the range of convergenceor applications that channel estimation results in sigaift

In Fig. @, different values ofx are used and’*(p,) is Overheads or suffers from severe imperfections, our prgos
plotted for different values of,, for C>°(x2,2°). It is seen solution can be of interest.
that by usinga = aep: (07 = 0.6442) = 2.9634, the code While we verified some of our results through study and
has the widest convergence range. Interestingly, while tlesign of LDPC codes on Rayleigh channel, our approach for
choice ofa is not optimum for all values of,,, the resulted maximizing the achievable transmission rate and convesen
*(p:) is always very close to the curve based on knawn range of the decoder is general. The only reason for using
under MCLA. This observation can also be made from Fig. BDPC codes is that, they can approach theoretical limits and
The threshold of this code is at 3.06 dB with SI and is dhus verify some of our asymptotic results.
3.82 dB with no Sl under MCLA. Thus, the gap between these
thresholds is 0.76 dB. At this code rate, existence of Sllitgsu
in about 0.74 dB improvement [4], [8]. Thus, MCLA shows a
minor extra gap (0.02 dB) compared to true LLR calculation[2]

When o,, is unknown, one can design an LDPC code
with a given rate which under MCLA provides the widests
convergence region, i.e., has the largest decoding thicessho
This procedure has to be done carefully, becaugg is a
function of 7, which is initially unknown. We omit the details 4
of this code design procedure in the interest of availabdesp
but one designed code is reported in Tdble | (Code2). Again,
11-bit decoding under MCLA is used, the maximum numbe 5] K. Fu and A. Anastasopoulos, “Performance analysis oPfDcodes
of iterations allowed is 300 andl, = 30. The threshold of the for time-selective complex fading channels,"@LOBECOM'02 vol. 2,
designed code is 2.76 dB. This code has the largest decodi[%? Nov. 2002, pp. 1279-1283.

. J. Lin and W. Wu, “Performance analysis of LDPC codes ogidri
threshold among all the codes with the rate 0.5. fading channels,Higher Education Press and Springer-Ver)a2006.

[7] J. Xiaowei, A. W. Eckford, and T. E. Fuja, “Design of goaahl-density
parity-check codes for block fading channels, NWLCOM 2004 vol. 2,
2004, pp. 1054-1059.

8] E. K. Hall, “Performance and design of Turbo codes on Rayl fading
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