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Abstract—In this paper, we present an analytical
analysis of the convergence of raptor codes under
joint decoding over the binary input additive white
noise channel (BIAWGNC), and derive an optimization
method. We use Information Content evolution under
Gaussian approximation, and focus on a new decoding
scheme that proves to be more efficient: the joint de-
coding of the two code components of the raptor code.
In our general model, the classical tandem decoding
scheme appears to be a subcase, and thus, the design
of LT codes is also possible.
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I. Introduction

Fountain codes were originally introduced [1] to trans-
mit efficiently over an erasure channel with unknown
erasure probability. They are of great interest for multicast
or peer to peer applications, and when no feedback channel
is available.
LT codes are the first class of efficient fountain codes,

introduced by Luby [2]. An LT code produces a potentially
limitless number of independent output symbols according
to an output degree distribution. LT codes are proved to be
asymptotically capacity achieving on the Binary Erasure
Channel (BEC) [2], [3]. High performance is achieved by
designing good output degree distributions. In order to
obtain arbitrary small decoding failure probability, the
average degree of the output symbols has to grow at least
logarithmically with k, the number of input symbols. Thus,
performance is achieved at a decoding cost growing in
O(k log(k)). This complexity is too high to ensure linear
encoding and decoding time which is a desired property
for practical codes.
Raptor codes are a class of fountain codes introduced

by Shokrollahi in [3] as an extention of LT codes. A
raptor code is the concatenation of an LT code and an
outer code, called precode. The precode is a very high
rate error correcting block code. Thus, the condition of
recovering each and every input symbol with arbitrarily
high probability can be relaxed: the LT code needs to
recover a large enough proportion of input symbols, and
the precode is in charge of recovering the fraction of
input symbols unrecovered by the LT code. This enables
the design of degree distributions of constant mean i.e.
linear encoding and decoding time. In [4], the author
independently presented the idea of precoding to obtain

linear decoding time codes. Recently in [5], the results over
the BEC of [3] were extended to general binary memoryless
symmetric channels.

In all the previously proposed approaches, the LT code
and the precode are decoded separately. In this paper, we
consider another decoding scheme: the joint decoding of
the two code components. The main idea behind joint
decoding is that the precode can help the LT code to
converge, by providing extrinsic information. By taking
into account the information provided by the precode,
the optimization problem of an LT code becomes less
constrained, and for a given precode, the total achievable
rate of the raptor code becomes closer to the channel
capacity.

In this paper, we develop the asymptotic analysis of the
joint decoder, and propose an optimization method for the
design of efficient degree distributions. For this purpose,
we use a fully analytical approach: information content
(IC) evolution under Gaussian approximation (GA). We
introduce the extrinsic transfer function of the precode
into the equations, which leads to a new model that takes
into account the information provided by the precode. In
our analysis, the classical separate decoder appears to be a
sub-case of the joint decoder, by assuming that no extrinsic
information is passed from the precode to the LT code.

The remainder of this paper is organized as follows: In
section II, we descibe the system that we consider and
give the notations used in the paper. In section III, we
study the asymptotic performance of raptor codes on the
BIAWGNC, state the optimization problem for the design
of output degree distributions, and analyze the main
design parameters. In section IV, we show experimental
results.

II. System description and notations

A. LT codes and raptor codes

We call input symbols the set of information symbols to
be transmitted and output symbols the symbols produced
by an LT code from the input symbols. An LT code is
described by its output degree distribution. To generate an
output symbol, a degree d is sampled from that distri-
bution, independently from the past samples. The output
symbol is then formed as the binary sum of a uniformly
randomly chosen subset of size d of the input symbols: the
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Fig. 1. Description of a raptor code: Tanner graph of an LT code
+ precode. The black squares represent the parity check nodes and
the circles represent variable nodes associated with input symbols or
output symbols.

d input symbols and the output symbols verify a parity
check equation.

Let Ω1,Ω2, . . . ,Ωdc
be the distribution weights on

1, 2, . . . , dc so that Ωd denotes the probability of choos-
ing the value d under this distribution. We denote the
output degree distribution using its generator polynomial:
Ω(x) =

∑dc

i=1 Ωix
i, which is associated with the corre-

sponding edge degree distribution ω(x) =
∑dc

i=1 ωix
i−1 =

Ω′(x)/Ω′(1).

Because input symbols are chosen uniformly at random,
their node degree distribution is binomial, and can be
approximated by a Poisson distribution with parameter
α [3]. Thus, we have the polynomial that describes the
input symbols degree distribution defined as:

I(x) = eα(x−1)

Moreover, the associated input edge degree distribution
ι(x) =

∑dv

i=1 ιix
i−1 = I ′(x)/I ′(1) also equals eα(x−1). Both

distributions are of mean α.

Input symbols are not transmitted over the channel. At
the receiver side, we have noisy observations of the output
symbols, and belief propagation (BP) decoding is used to
recover iteratively the input symbols.

A raptor code is an LT code concatenated with an outer
code called “precode”. The input symbols of the LT code
are then formed by a codeword of the precode.

Although fountain codes are rateless, we can define the
a posteriori rate R of an LT code as follows:

RLT =
Nb input symbols

Nb output symbols needed for successfull decoding

=
Ω′(1)

α
(1)

As for LDPC codes, a raptor code can be represented
by a Tanner graph. A Tanner graph is a bipartite rep-
resentation of a system composed of data nodes and
function nodes. Here, the data nodes represent input or
output symbols and the function nodes represent how their
adjacent data nodes interact through parity checks. The
edges on the graph carry probability messages that come
in or out of the data nodes. The Tanner graph of a raptor
code is given in Fig. 1.

B. Tandem and joint decoding of a raptor code

The classical“Tandem decoding”(TD) consists of decod-
ing the LT code first and then using the extrinsic informa-
tion about the input symbols as a priori information for
the precode.

For “Joint decoding” (JD), one decoding iteration con-
sists of alternating Nlt decoding iterations on the LT
code, and Np decoding iterations on the precode. Thus,
both code components of the raptor code provide extrinsic
information to each other. In the sequel, we shall only
consider the case where Nlt = Np = 1, and where the
precode is an LDPC code. In this particular case, the
raptor code can be described by a single Tanner graph
with two kinds of parity check nodes : check nodes of
the precode, referred to as “static check nodes” and parity
check nodes of the LT code, later referred to as “dynamic
check nodes”.

Because the precode provides extrinsic information to
the LT code, we need to introduce the extrinsic transfer
function of the precode, denoted by x 7→ T (x), into the IC
evolution equations.

III. Asymptotic analysis and design of raptor

codes for the BIAWGNC

In this section, we derive the asymptotic analysis of a
raptor under JD. Thus we assume that extrinsic informa-
tion is exchanged between the precode and the fountain
at each decoding iteration. The analysis will be presented
from the fountain point of view, and we will track the
evolution of the IC of the messages that are related
to the fountain part of the Tanner graph. Indeed, our
objective is to optimize the distribution of the fountain
part of the raptor code, namely ω(x), taking into account
the contribution of the precode through its IC transfer
function.

For our study, we use IC evolution under GA and tree-
like assumption. This allows us to keep a fully analytical
and monodimensionnal approach, without the need for
Monte Carlo simulations as done in [5], thus leading to a
more computationnally efficient optimization. IC evolution
is a concurrent tool of mean evolution under GA [6], that
has been proved to be more accurate and robust for the
optimization of LDPC/IRA codes [7].

The messages on the decoding graph are the log density
ratios (LDR) of the probability weights. They are modeled
by a random variable which is assumed to be Gaussian
distributed with mean m and variance σ2 = 2m [6]. Thus,
the density of the messages is symmetric [8]. For a message
sampled from such a symmetric Gaussian distribution, the
IC associated to the message is x = J(m) [7], where J(.)
is defined by:

J(m) = 1− 1√
4πm

∫

R

log2(1+ e−ν) exp

(

− (ν −m)2

4m

)

dν

(2)



A. Asymptotic analysis of raptor codes

1) Information content evolution: When the precode is
an LDPC code with node and check edge distributions
λ(x) and ρ(x), its IC transfer function [9] is given by:

T (x) =

dc
∑

i=2

λiJ

(

iJ−1
(

1−
dv
∑

j=2

ρjJ
(

(j − 1)J−1(1− x)
)

)

)

(3)

We denote x
(l)
u (resp. x

(l)
v ) the IC associated to messages

on an edge connecting a dynamic check node to an input
symbol (resp. an input symbol to a dynamic check node) at

the lth decoding iteration. We denote by x
(l)
ext the extrinsic

information passed by the LT code to the precode, at the
lth decoding iteration. As the input symbols are of average
degree α, we have:

x
(l)
ext = J

(

αJ−1(x(l)
u )

)

The extrinsic information passed by the precode to the
LT code is then T (x

(l)
ext). When accounting for the transfer

function of the precode, the IC update rules for the IC in
the Tanner graph can be written as follows:

x(l)
v =

dc
∑

i=1

ιiJ
(

(i − 1)J−1(x(l−1)
u ) + J−1

(

T (x
(l−1)
ext )

)

)

(4)

1− x(l)
u =

dv
∑

j=1

ωjJ
(

(j − 1)J−1(1− x(l)
v ) + f0

)

(5)

with:

f0 = J−1
(

1− J
( 2

σ2

))

Replacing (4) in (5) gives (6), that describes the evo-
lution through one joint decoding iteration of the IC
of the LDRs at the output of the dynamic checknodes
(fountain part): x

(l)
u = F (x

(l−1)
u , σ2). Note that for a given

distribution ι(x), this expression is linear with respect to
the coefficients of ω(x), which is the distribution that we
intend to optimize.
We point out that (6) is general since it reduces to

the classical TD case by setting the extrinsic transfer
function to x 7→ T (x) = 0 ∀x ∈ [0; 1], thus assuming
that no information is propagated from the precode to the
fountain.
2) Fixed point caracterization: In an IC evolution anal-

ysis, the convergence is guaranteed by F (x, σ2) > x. Con-
vergence continues toward a fixed point of x 7→ F (x, σ2).
Unfortunately, there are no trivial solutions for the fixed
point of (6). However, using a functionnal analysis, an
upper bound on the fixed point can be given. Replacing
xu by 1 and using the fact that T (1) = 1 in (6), we obtain:

lim
x→1

F (x, σ2) = J
( 2

σ2

)

= x0 (7)

which means that, because x 7→ F (x, σ2) is an increasing
function, the fixed point is necessarily less or equal than

x0, which is the capacity of a BIAWGNC with parameter
σ2. Thus, the IC is upper bounded through the decoding
iterations by x0. This gives some insights on the asymp-
totic behavior at the decoding convergence point: the BP
decoding of the LT part of a raptor code is limited on a
BIAWGNC by the capacity of the channel.
This result is not really surprising and can be inter-

preted as follows: the output nodes of degree one have a
constant contribution on each check node. As the iterative
decoding process goes on, the IC of the messages at the
output of the dynamic check nodes is limited by the
channel observations.
3) Starting condition: We now derive a condition for the

beginning of the decoding process: at the first iteration,
x
(0)
u = 0. Therefore, according to (4), x

(1)
v = 0. Reporting

this in (6) gives:

x(1)
u = F (0, σ2) = ω1J

(

2

σ2

)

The decoding process can begin iff x
(1)
u > ε, for some

arbitrary ε > 0, which gives:

ω1 >
ε

J
(

2
σ2

) (8)

Therefore, one must have ω1 > 0 for the decoding
process to begin, and ε appears to be a design parameter
that will constrain the optimization problem, ensuring
that ω1 6= 0. In practice, the value of ε can be chosen
arbitrarily small. Indeed, it has been proved [5] that for
a sequence of capacity achieving distributions ω(n)(x),

limn→∞ ω
(n)
1 = 0.

Remark: as an illustration we point out that, for the
“Ideal Soliton Distribution” introduced by Luby [2], Ω1 =
1/k, which is the smallest proportion possible with k input
symbols.
4) Lower bound on the edge proportion of degree 2 output

symbols: For an output degree distribution that is to be
capacity achieving, we have:

ω2 >
1

(α− 1)e−f0/4
(9)

We only give a sketch of the proof. Let µ be defined by
µ = J−1(1 − x). By derivating x 7→ F (x, σ2) defined in
(6), and using the approximation of the derivative of J(µ)
for large µ given in [7], we get:

lim
x→0

F ′(x, σ2) = ω2(α− 1)e−f0/4

Moreover, for a capacity achieving degree distribution,
ω1 = 0 [5], which means that F (0, σ2) = 0. Then,
the convergence condition F (x, σ2) > x implies that
limx→0 F

′(x, σ2) > 1, which gives the result.
Remark: the IC evolution method leads to a slightly

different result than the one obtained with mean evolution
[5]. The same phenomenon has been observed for the
derivation of the stability condition, for the optimization
of LDPC codes.



x(l)
u = F (x(l−1)

u , σ2) = 1−
dv
∑

j=1

ωjJ

(

(j − 1)J−1
(

1−
dc
∑

i=1

ιiJ
(

(i − 1)J−1(x(l−1)
u ) + J−1

(

T (x
(l−1)
ext )

))

)

+ f0

)

(6)

B. Design of output degree distributions

In this section, we explicit the optimization problem for
the design of output degree distributions, and give some
complementary results that we used for the choice of the
design parameters.
1) Optimization problem statement: The optimization

of an output distribution consists of maximizing the rate
of the corresponding LT code, i.e. maximizing Ω′(1) =
∑

iΩii, which is equivalent to minimizing
∑

i ωi/i. More-
over, according to the previous section, several constraints
must be satisfied. As ω(x) is a probability distribution, its
coefficients must sum up to 1. We call this the proportion
constraint [C1]. Moreover, the convergence implies that
F (x, σ2) > x. However, this inequality cannot hold for
each and every value of x: the analysis in section III-A.2
shows that the fixed point of F (x, σ2) is smaller than
x0 = J

(

2
σ2

)

. Therefore, we must fix a margin δ > 0
away from x0. By discretizing [0;x0 − δ] and requiring
inequality to hold on the discretization points, we obtain
a set of inequalities that need to be satisfied: they define
the convergence constraint [C2]. The starting condition
(8) must also be satisfied and defines the constraint [C3].
Moreover, the edge proportion of output symbols must
fullfill (10), defining the stability constraint [C4]. Finally,
x 7→ T (x) is defined according to (3) for an LDPC code,
or could be estimated with Monte Carlo simulations if
another component code is used as a precode.
For a given value of α, the cost function and the con-

straints are linear with respect to the unknown coefficients
ωi. Therefore, the optimization of an output degree distri-
bution can be written as a linear optimization problem
that can be solved with linear programming. For a given
α, the optimization problem can be stated as follows:

ωopt(x) = argmin
ω(x)

∑

j

ωj

j
(10)

subject to the constraints:

[C1]
∑

i ωi = 1
[C2] F (x, σ2) > x ∀x ∈ [0;x0 − δ] for some δ > 0
[C3] F (0, σ2) > ε for some ε > 0
[C4] F ′(0, σ2) > 1

2) Lower bound on α: The average degree of input
symbols α is the main design parameter. At the output
of an LT code, the IC of messages sent from the LT code
to the precode is given by:

xext = J
(

αJ−1(x(∞)
u )

)

(11)

Moreover, let xp be the IC threshold above which the
decoding of the precode is successfull. Then successfull
decoding of the raptor code is obtained if xext > xp. Using

equation (11), and recalling that x
(∞)
u < x0 we get a lower

bound on α:

α ≥ σ2J−1(xp)

2
= αmin (12)

This bound can be used to limit the search space on
α. Indeed, for increasing values of α, we optimize output
degree distributions as explained in the previous section.
It appears that there is a value for α that maximizes the
corresponding rate of the LT code.
3) Parameter δ: The convergence of the LT code should

be such that at some point of the decoding process, xext

becomes larger than the precode’s threshold xp. For a
given value of α ≥ αmin, δ is such that J

(

αJ−1(x0−δ)
)

≥
xp i.e.

δ ≤ x0 − J

(

σ2J−1(xp)

2

)

(13)

C. Considerations on the choice of a precode

In this section, we discuss some important points con-
cerning the choice of the precode, which give another
justification to why JD should be preferred over TD in
the perspective of designing efficient raptor codes. Let Rt

be the rate of the raptor code which is the concatenation
of an LT code of rate RLT , and a precode of rate Rp. We
have:

Rt = RpRLT = Rp
Ω′(1)

α
(14)

For a channel with capacity C, we have RLT < C for
LT codes optimized for the TD scheme. Thus, Rp appears
to be a burden in terms of the total rate of the raptor
code. Fortunately, the optimization problem becomes less
constrained in a JD scheme, because the precode provides
extrinsic information to the LT code, and the optimization
for JD leads to RLT > C, allowing the use of lower rate
precodes than in the TD scheme.
The use of lower rate precodes can be motivated by

the fact that the design of very high rate LDPC codes
is a difficult problem. Even though the optimization of
irregularity profiles can give codes with good thresholds,
the actual design of such codes remains difficult, because
their underlying graph is highly connected. The higher the
rate, the more difficult it is to design a graph with “few
enough” short cycles.
In the context of JD, our optimization procedure ad-

dresses naturally the problem of the overall rate distribu-
tion and its repartition between the fountain code and the
precode.

IV. Experimental results

We define the overhead of a fountain code as ǫ =
(

Rt

C

)

−1 − 1. Thus, an overhead of 0 means that capacity



is achieved. An overhead of 0.1 means that the rate of
the raptor code is 10% away from the capacity. In our
simulations, the performance of a raptor code is evaluated
by Bit Error Rate (BER) versus overhead.

A. LT codes

First, we use our model to design LT codes. We recall
that this is possible by defining the extrinsic transfer as a
null function.
We design an output degree distribution ΩA(x), with

parameters δ = 0.04 and α = 21. The optimization was
made for a BIAWGNC of capacity C = 0.5, in order to
compare ourselves to the distribution proposed in [5, p
2044], referred to as ΩE(x). As we only test the LT code,
we did not use any precode. The simulations were set to
k = 65000 input symbols, and 300 decoding iterations, on
a channel of capacity C = 0.5 (σ = 0.9787).
In Fig 2, we report the BER versus overhead for LT

codes defined by ΩA(x) and ΩE(x). Our method appears
to be as efficient as the one proposed in [5], but it is
computationnally more efficient, since it does not require
Monte Carlo simulations.
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Fig. 2. BER versus overhead for LT codes defined by the distribution
ΩA(x) optimized for a BIAWGNC of capacity C = 0.5. We compare
our distribution to the one proposed in [5, p 2044], denoted by ΩE(x),
with k = 65000 input bits

B. TD versus JD

We now compare JD and TD schemes. We used a regular
(3,60) LDPC precode of length N = 65000, generated
randomly. We compare the distribution ΩE(x) proposed
in [5, p 2044] in both TD and JD decoding schemes, to
a distribution ΩB(x) that we optimized for JD with our
method. For the distribution ΩE(x) there is very little
difference between TD and JD decoding schemes. This can
be explained by the fact that the distribution has not been
optimized to take into account the information provided
by the precode. For our distribution ΩB(x), performance
is improved. The effect of the precode is to help the

convergence of the LT code, which we can interpreted
as follows: the BER decreases with a slope, whereas for
ΩE(x), there is clearly a threshold behavior.
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Fig. 3. BER versus overhead for a raptor code defined with a regular
(3,60) LDPC precode. We compare ΩB(x), a distribution that we
optimized for joint decoding, to ΩE(x) proposed in [5] under TD
(blue squares) and under JD (black stars)

V. Conclusion

We presented the analytical analysis of raptor codes
with IC evolution under GA, stated the optimization
problem for the design of output degree distributions well
adapted to joint decoding, and analyzed the main design
parameters. Our model also allows to design efficient LT
codes. Experimental results show that JD is more efficient
than the classical TD decoding scheme.
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