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Abstract— New upper and lower bounds are given for joint
entropy of a collection of random variables, in both discrete
and continuous settings. These bounds generalize well-known
information theoretic inequalities due to Han. A number of
applications are suggested, including a new bound on the number
of independent sets of a graph that is of interest in discrete
mathematics, and a bound on the number of zero-error codes.

I. INTRODUCTION

Let X1, X2, . . . , Xn be a collection of random variables.
We assume that the joint distribution has a density f with
respect to some reference measure, and define the joint entropy
H(X1, X2, . . . , Xn) = −E[log f(X1, X2, . . . , Xn)]. There
are the familiar two canonical cases: (a) the random variables
are real-valued and possess a probability density function,
or (b) they are discrete. In the former case, H represents
the differential entropy, and in the latter case, H represents
the discrete entropy. Such distinctions do not matter in what
follows, and we simply call H the entropy in all cases.

Shannon’s chain rule says that

H(X, Y ) = H(X) + H(Y |X) (1)

where H(Y |X) = E[− log p(Y |X)] is the conditional entropy
of Y given X . This rule, which is just an expression of
the factorization of the joint distribution into a marginal and
a conditional, extends to the consideration of n variables;
indeed,

H(X1, . . . , Xn) =
n∑

i=1

H(Xi|X<i) (2)

where X<i is used to denote (Xj : j < i).
The main inequality we wish to present can be seen as

a generalization of Shannon’s chain rule. Since we wish to
consider various subsets of random variables, the following
notational conventions will be useful. Let [n] be the index set
{1, 2, . . . , n}. We are interested in a collection S of subsets
of [n]. For any set s ⊂ [n], Xs stands for the collection of
random variables (Xi : i ∈ s), with the indices taken in their
increasing order. For any index i in [n], define the degree of
i in S as r(i) = |{t ∈ S : i ∈ t}|.

First we present a weak form of our main inequality.

Proposition I:[WEAK FORM]For any collection S,∑
s∈S

H(Xs|Xsc)
r+(s)

≤ H(X[n]) ≤
∑
s∈S

H(Xs)
r−(s)

,

where r+(s) = maxi∈s r(i) is the maximum degree within s,
and and r−(s) = mini∈s r(i) is the minimum degree within
s.

Proposition I unifies a large number of inequalities in the
literature. Indeed,

1) Applying to the class S1 of singletons,
n∑

i=1

H(Xi|X[n]\i) ≤ H(X[n]) ≤
n∑

i=1

H(Xi). (3)

The upper bound represents the subadditivity of entropy
noticed by Shannon. The lower bound may be inter-
preted as the fact that the “erasure entropy” [1] of a
collection of random variables is not greater than their
entropy.

2) Applying to the class Sn−1 of all sets of n−1 elements,

1
n− 1

n∑
i=1

H(X[n]\i|Xi) ≤ H(X[n])

≤ 1
n− 1

n∑
i=1

H(X[n]\i).

(4)

This is Han’s inequality [2], [3], in its prototypical form.
3) Let r+ = maxi∈[n] r(i) and r− = maxi∈[n] r(i) be the

minimal and maximal degrees with respect to S. Using
r− ≤ r−(s) and r+ ≤ r+(s), we have

1
r+

∑
s∈S

H(Xs|Xsc) ≤ H(X[n]) ≤
1
r−

∑
s∈S

H(Xs).

The upper bound is Shearer’s lemma [4], known in the
combinatorics literature [5]. The lower bound is new.

In Section II, we present and prove our main inequality,
which strengthens Proposition I. This inequality is developed
in two forms, which we call the fractional form and the degree
form. In Section III, we apply the degree form of the inequality
to obtain a new upper bound on the number of independent
sets of an arbitrary graph. Section IV generalizes this bound
to estimate the number of zero-error codes. In Section V, a
duality between upper and lower bounds for joint entropy is
presented. Section VI studies the special case of the collections
Sm consisting of all sets of m elements, and recovers results
of Han and Fujishige. Finally Section VII presents a version
of our main inequality for relative entropy.



II. THE FRACTIONAL AND DEGREE FORMS

The main inequality introduced in this work is the following
generalization of Shannon’s chain rule. A different form of
this result was recently proved (in a more involved manner)
by Friedgut [6].

Theorem I:[STRONG FRACTIONAL FORM] Let S be any
collection of subsets of [n]. A function α : S → R+, is
called a fractional covering, if for each i ∈ [n], we have∑

s∈S:i∈s α(s) ≥ 1. Similarly, β : S → R+ is a fractional
packing, if for each i ∈ [n], we have

∑
s∈S:i∈S β(s) ≤ 1. For

any fractional packing β and any fractional covering α,∑
S∈S

β(s)H(Xs|Xsc\>s) ≤ H(X[n]) ≤
∑
S∈S

α(s)H(Xs|X<s) .

Proof: By Shannon’s chain rule for entropy,

H(Xs|X<s) =
∑
j∈s

H(Xj |X<j∩s, X<s). (5)

Thus∑
s∈S

α(s)H(Xs|X<s)
(a)
=

∑
s∈S

α(s)
∑
j∈s

H(Xj |X<j∩s, X<s)

(b)

≥
∑
s∈S

α(s)
∑
j∈s

H(Xj |X<j)

(c)
=

∑
j∈[n]

H(Xj |X<j)
∑
s∈S

α(s)1{j∈s}

(d)

≥
∑
j∈[n]

H(Xj |X<j)

(a)
= H(X[n]),

where (a) follows by the chain rule for entropy (5), (b)
follows since extra conditioning reduces entropy, (c) follows
by interchanging sums, and (d) follows by the definition of
a fractional covering. The lower bound is proved in a similar
fashion.

We now use the fractional form of the main inequality,
namely Theorem I, to prove the degree form of the inequality
below.

Theorem II:[STRONG DEGREE FORM] Let S be any collec-
tion of subsets of [n], such that every index i appears in at
least one element of S. Then∑
s∈S

H(Xs|Xsc\>s)
r+(s)

≤ H(X[n]) ≤
∑
s∈S

H(Xs|X<s)
r−(s)

.

Proof: The numbers α(s) = 1
r−(s) provide a fractional

covering, which we call the degree covering. Indeed, as long
as there is at least one set s in the collection S that contains
i, we have∑

s∈S,s3i

1
r−(s)

=
∑
s∈S

1{i∈s}
r−(s)

≥
∑
s∈S

1{i∈s}
r(i)

= 1.

Similarly, the numbers β(s) = 1
r+(s) provide a fractional

packing, which we call the degree packing. Applying Theorem
I with the degree covering and degree packing for S, we obtain
Theorem II.

Remark: This also proves Proposition I. Indeed, since con-
ditioning reduces entropy, Proposition I is just the loose form
of Theorem II obtained by dropping the conditioning on < s
in the upper bound, and including conditioning on > s in the
lower bound.

Remark: Theorem II is actually equivalent to Theorem I. To
see why Theorem II implies Theorem I, note that the sets
in the collection S need not be distinct, and writing down
Theorem II with arbitrary number of repetitions of the sets
in S gives a version of Theorem I with rational coefficients.
An approximation argument can then be used to complete the
implication. This proof is similar to the one alluded to by
Friedgut [6] for the version without ordering.

The strong degree form of the inequality generalizes Shan-
non’s chain rule. In order to see this, simply choose the
collection S to be S1, the collection of all singletons. For
this collection, Theorem II says

n∑
i=1

H(Xi|X[n]\≥i) ≤ H(X[n]) ≤
n∑

i=1

H(Xi|X<i),

which is precisely Shannon’s chain rule, since the upper and
lower bounds are identical. Note in contrast the looseness of
the upper and lower bounds in (3), which are tight if and only
if the random variables Xi are independent.

III. COUNTING INDEPENDENT SETS

A graph G = (V,E) consists of a finite vertex set V
and a collection E of two-element subsets of V called edges
(allowing repetition, i.e., self-loops). Two vertices are said to
be adjacent, if there is an edge containing both of them. An
independent set of G is a subset VI of V such that no two
vertices in VI are adjacent.

Shearer’s lemma, and more generally, entropy-based argu-
ments, have proved very useful in combinatorics. Shearer’s
lemma was (implicitly) introduced in [4], and Kahn [7]
stated an extension using the more familiar entropy notation.
Recent applications of Shearer’s lemma to difficult problems
in combinatorics include [8], [7], [9], and [10]. Radhakrishnan
[5] provides a nice survey of entropy ideas used for counting
and various applications. The general strategy of entropy-based
proofs in counting the number of objects in a class C of objects
is to consider a randomly drawn object X from the class, note
that its entropy is H(X) = log |C|, and to estimate H(X)
using Shearer’s lemma and further manipulation.

Below, we follow this approach, utilizing Theorem II instead
of Shearer’s lemma, to bound the number of independent sets
of an arbitrary graph. Our bound extends the following recent
result of Kahn, which he proved using Shearer’s lemma. For
a d-regular graph G (namely, one in which each vertex has



the same degree d) on n vertices, the number of independent
sets is bounded by∏

v∈V

2(pa(v)+1) 1
d ≤ 2

N
2 + N

d ,

where pa(v) denotes the number of neighbors of v that precede
it with respect to an arbitrary total order ≺a on V . We remove
the assumption of regularity in the result below.

Theorem III:[INDEPENDENT SETS] Let G = (V,E) be an
arbitrary graph on N vertices. Let ≺ denote the ordering on
V according to decreasing order of degrees of the vertices,
breaking ties arbitrarily. Let p(v) denote the number of neigh-
bors of v which precede v, under the ≺ ordering. Then

|I(G)| ≤
∏
v∈V

2(p(v)+1) 1
d(v) .

Proof: Let X be an independent set of G, chosen
uniformly at random from I(G). The random independent set
X can be represented by n indicator variables correspond-
ing to the vertices, i.e., X = (X(1), X(2), . . . , X(n)) =
(X1, X2, . . . , Xn), where

Xi =
{

1 if i ∈ X
0 otherwise .

Let ≺ denote the ordering on vertices according to the
decreasing order of their degrees. For each i ∈ V , let

P (i) = {j ∈ V : {i, j} ∈ E and j ≺ i} ,

and define p(i) = |P (i)|. Consider the collection S to be the
collection of P (i), and in addition, p(i) copies of singleton
sets {i}, for each i. Then observe that each i is covered by
d(i) sets in §, i.e., that the degree of i in the collection §
is r(i) = d(i). Indeed, each i appears in d(i) − p(i) sets of
the form, P (j), corresponding to each j such that i ≺ j and
{i, j} ∈ E, and once in each of the p(i) singleton sets {i}.

By the upper bound in Theorem II applied to this collection
S, we have

H(X) ≤
∑
i∈V

1
minj∈P (i) d(j)

H
(
XP (i)|X≺P (i)

)
+

∑
i∈V

p(i)
d(i)

H(Xi|X≺i)

≤
∑
i∈V

( 1
d(i)

H(XP (i)) +
p(i)
d(i)

H(Xi|XP (i))
)
,

by relaxing the conditioning and by the fact that the chosen
ordering makes j ∈ P (i) imply d(j) ≥ d(i).

Let q denote the probability mass function of XP (i). In
other words, q(xP (i)) = Pr{XP (i) = xP (i)} for each xP (i) ∈
Ri, where Ri = {xP (i) : x[n] represents an independent set}.

Then

H(X) ≤
∑
i∈V

1
d(i)

∑
xP (i)∈Ri

(
q(xP (i)) log

1
q(xP (i))

+ p(i)q(xP (i))H(Xi|XP (i) = xP (i))
)

=
∑
i∈V

1
d(i)

∑
xP (i)∈Ri

q(xP (i)) log
H(Xi|XP (i) = xP (i))p(i)

q(xP (i))

Now we may bound H(Xi|XP (i) = xP (i)) by the log
cardinality of the range of Xi given that XP (i) = xP (i). There
are only 2 cases: (i) if xP (i) 6= 0P (i), then Xi must be 0 since
X is an independent set and vertex i is adjacent to each vertex
in P (i), whereas (ii) if xP (i) = 0P (i), then Xi can be either
0 or 1. Thus, setting q0 = 1− q̄0 = q(0P (i)),

H(X) ≤
∑
i∈V

1
d(i)

[
q0 log

2p(i)

q0
+ q̄0 log

1
q̄0

]
≤

∑
i∈V

1
d(i)

log(2p(i) + 1)

using Jensen’s inequality in the last step. The proof is com-
pleted by noting that H(X) = log |I(G)|.

IV. AN APPLICATION TO ZERO-ERROR CODES

Given a graph F = (V (F ), E(F )), the set Hom(G, F ) of
homomorphisms from G to F is defined as

Hom(G, F ) = {x : V → V (F ) s.t.
uv ∈ E ⇒ x(u)x(v) ∈ E(F )}.

Let Ka,b denote the complete bipartite graph between parts of
sizes a and b respectively.

The proof for the bound on independent sets given above
extends to also provide an upper bound on the number of
homomorphisms from an arbitrary graph G to an arbitrary
graph F , as stated in Theorem IV below. The proof details
are in [11].

Theorem IV:[GRAPH HOMOMORPHISMS] For any N -vertex
graph G and any graph F ,

|Hom(G, F )| ≤
∏
v∈V

|Hom(Kp(v),p(v), F )|
1

d(v) ,

where p(v) denotes the number of neighbors of v preceding
v in any ordering induced by decreasing degrees.

By choosing appropriate graphs F , various corollaries can
be obtained, including the independent set result of Theorem
III, and a bound on the number of k-colorings of an arbitrary
graph.

In [12], it is noted that zero-error source-channel codes are
precisely graph homomorphisms from a source confusability
graph GU to a channel characteristic graph GX . Thus, The-
orem IV may also be interpreted as giving a bound on the
number of zero-error source channel codes that exist for a
given source-channel pair.



V. DUALITY

Consider the main entropy inequality, Theorem I, in its
weaker version ignoring < s and > s, for simplicity. That
is,∑

s∈S
β(s)H(Xs|Xsc) ≤ H(X[n]) ≤

∑
s∈S

α(s)H(Xs). (6)

We observe that there is a duality between the upper and lower
bounds, relating the gaps in the inequalities.

For a collection S, with α (and β) denoting an arbitrary
fractional covering (and packing, respectively) of S, let

GapL(S, β) = H(X[n])−
∑
s∈S

β(s)H(Xs|Xsc)

and GapU (S, α) =
∑
s∈S

α(s)H(Xs)−H(X[n]).

Theorem IV:[DUALITY OF GAPS] Define the complimentary
collection to S as S̄ = {sc : s ∈ S}. Then

GapU (S, α) =
(∑
s∈S

α(s)− 1
)

GapL(S̄, β̄) ,

where β̄ is a fractional packing using the complementary
collection S̄ defined as, β̄(sc) = α(s)P

s∈S α(s)−1 .

Proof: This is a straightforward computation involving
the various log likelihoods. Indeed,

GapU (S, α) = E

[
log P (X[n])−

∑
s∈S

α(s) log P (Xs)
]

= E

[
log

P (X[n])∏
s∈S P (Xs)α(s)

]
= E

[
log

∏
s∈S

{
P (X[n])
P (Xs)

}α(s)

− log P (X[n])(
P

s∈S α(s)−1)

]
=

( ∑
s∈S

α(s)− 1
)[

H(X[n])−
∑
s∈S

β̄(sc)H(Xsc |Xs)
]
,

which proves the claim. It is easy to check that β̄ is indeed
a fractional packing of S̄, using the fact that α is a fractional
covering of S.

In particular, the upper bound for H(X[n]) with respect to
a collection S is equivalent to the lower bound for H(X[n])
with respect to the complimentary collection S̄, implying that
the collection of upper bounds for all collections is equivalent
to the collection of lower bounds for all collections!

VI. THE COLLECTIONS OF k-SETS

The gaps in the inequalities are particularly interesting when
they are considered in the degree form of Proposition I. For
simplicity, we restrict our attention to r-regular collections S,
i.e., collections in which each index has the same degree r.

Suppose

gL(S) = H(X[n])−
1
r

∑
s∈S

H(Xs|Xsc)

and gU (S) =
1
r

∑
s∈S

H(Xs)−H(X[n])

are the gaps associated with Proposition I applied to S.

Corollary I:[DUALITY FOR REGULAR COLLECTIONS] For a
r-regular collection S,

gL(S̄)
gU (S)

=
r

|S| − r
.

The special collections Sk, k = 1, 2, . . . , n, consisting of
all k-sets or sets of size k, are of particular interest. Indeed,
Han’s theorem [2] implies Proposition I for these collections.
We note that Fujishige [13], building on terminology of Han,
called the quantity gU (Sk) a “total correlation”, and gL(Sk) a
“dual total correlation”. Applied to the collection Sk, Corollary
I implies that

gL(Sn−k)
gU (Sk)

=
k

n− k
.

This recovers an observation made in [13]. Further connections
with [13] are explored in [11].

Han also demonstrated a monotonicity property of the
total correlations (and the dual total correlations). Since this
complements the duality result, we state it below and note that
it follows from Han’s inequality (4) (cf., [14]).

Theorem V:[HAN’S MONOTONICITY] Both gL(Sk) and
gU (Sk) are monotonically decreasing in k.

Remark: [14] gives a nice interpretation of this fact. Let

h
(U)
k =

1(
n
k

) ∑
s:|s|=k

H(Xs)
k

denote the joint entropy per element for subsets of size k

averaged over all k-element subsets. Since g
(U)
k = nh

(U)
k −

H(X[n]), Theorem V asserts that h
(U)
k is decreasing in k.

Suppose we have n sensors collecting data relevant to the
task at hand. Suppose due to experimental conditions, at any
time, we only have access to a random subset of m sensor
measurements out of n. On average, are we getting more
information as m increases? [14] notes that the answer to this
and related questions is contained in Han’s theorem.

Remark: [14] also uses Han’s theorem to demonstrate de-
terminantal inequalities including the Hadamard and Szasz
inequalities. In a similar manner, the more general entropy
inequality of Theorem I implies the following more general
determinantal inequality by considering multivariate normal
distributions. Let K be a positive definite n × n matrix and
let S be a collection of subsets of [n]. Let K(s) denote the
submatrix corresponding to the rows and columns indexed by



elements of s. Then for any α∗ that is both a fractional packing
and a fractional covering,∏

s∈S

( |K|
|K(sc)|

)α∗(s)

≤ |K| ≤
∏
s∈S

|K(s)|α
∗(s).

Further details are in [11].

VII. AN INEQUALITY FOR RELATIVE ENTROPY

Now suppose P is a joint distribution on n random variables
taking values in chosen spaces, such that P is absolutely
continuous with respect to the product measure Q. Let p and
q denote the densities of these measures with respect to a
common reference measure (which may be taken to be Q
itself). Let us use pXs to denote the marginal density of
Xs when X[n] is distributed according to P . Recall also the
definition of the relative entropy

D(pXs‖qXs) = EP

[
log

p(Xs)
q(Xs)

]
and the conditional relative entropy

D(pXs|Xt‖qXs|Xt |P ) = EpXt
D(pXs|Xt‖qXs|Xt).

We have the following result, the proof of which we omit
for brevity and may be found in [11].

Theorem VI:[BOUNDING RELATIVE ENTROPY] For any col-
lection S of subsets of [n], and any σ-finite product measure
Q,∑
s∈S

β(s)D(pXs|Xsc\>s‖qXs |P ) ≥ D(pX[n]‖qX[n])

≥
∑
s∈S

α(s)D(pXs|X<s‖qXs |P ).

Note that the discrete and continuous cases of Theorem I
can be seen as special cases of Theorem VI by choosing Q to
be counting measure and Lebesgue measure respectively.

To get a sense of what Theorem VI means, we note that it
implies

D(pX[n]‖qX[n]) ≤
∑
s∈S

D(pXs‖qXs)
r−(s)

, (7)

which has a hypothesis testing interpretation. Suppose P and
Q are two competing hypotheses for the joint distribution of
X[n]. By Stein’s lemma [15], [3], the best error exponent for
a hypothesis test between P and Q based on a large number
N of i.i.d. observations of the random vector X[n] is given
by D(pX[n]‖qX[n]). One may ask the following question: If
one has partial access to all observations (for instance, one
observes only Xs out of each X[n]), then how much is our
capacity to distinguish between the two hypotheses P and
Q worsened? Theorem VI can be interpreted as giving us
estimates that relate our capacity to distinguish between the
two hypotheses given all the data to our capacity to distinguish
between the two hypotheses given various subsets of the data.

VIII. CONCLUSIONS

The main entropy inequalities we present in Theorems I and
II are of interest in their own right, but we also demonstrated
their usefulness by applying them to obtain new combinatorial
results. Further details can be found in the full paper [11],
where we also explore connections to the new entropy power
inequalities developed in [16], [17], as well as to multi-user
information theory, submodular function theory and game
theory. We believe that the information inequalities developed
here will continue to find applications in information theory
and related fields.
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