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Abstract— Recent research has shown that network coding can
be used in content distribution systems to improve the speed of
downloads and the robustness of the systems. However, such
systems are very vulnerable to attacks by malicious nodes, and
we need to have a signature scheme that allows nodes to check the
validity of a packet without decoding. In this paper, we propose
such a signature scheme for network coding. Our scheme makes
use of the linearity property of the packets in a coded system, and
allows nodes to check the integrity of the packets received easily.
We show that the proposed scheme is secure, and its overhead
is negligible for large files.

I. I NTRODUCTION

Network coding was first introduced in [1] as an alternative
to the traditional routing networks, and it has been shown that
random linear coding can be used to improve the throughput
for multicast and even unicast transmissions [2], [3], [4].
More recently, several researchers explored the use of network
coding in content distribution and distributed storage systems
[5], [6]. Traditionally, the solutions for content distribution
are based on a client-server model, where a central server
sends the entire file to each client that requests it. This
kind of approach becomes inefficient when the file size is
large or when there are many clients, as it takes up a large
amount of bandwidth and server resources. In recent years,
peer-to-peer (P2P) networks have emerged as an alternative
to traditional content distribution solutions to deliver large
files. A P2P network has a fully distributed architecture, and
the peers in the network form a cooperative network that
shares the resources, such as storage, CPU, and bandwidth,
of all the computers in the network. This architecture offers a
cost-effective and scalable way to distribute software updates,
videos, and other large files to a large number of users.

The best example of a P2P cooperative architecture is the
BitTorrent system [7], which splits large files into small blocks,
and after a node downloads a block from the original server
or from another peer, it becomes a server for that particular
block. Although BitTorrent has become extremely popular
for distribution of large files over the Internet, it may suffer
from a number of inefficiencies which decrease its overall

performance. For example, scheduling is a key problem in
BitTorrent: it is difficult to efficiently select which block(s) to
download first and from where. If a rare block is only found
on peers with slow connections, this would create a bottleneck
for all the downloaders. Severalad hoc strategies are used in
BitTorrent to ensure that different blocks are equally spread
in the system as the system evolves. References [5], [6]
propose the use of network coding to increase the efficiency
of content distribution in a P2P cooperative architecture.The
main idea of this approach is the following (see Fig. 1). The
server breaks the file to be distributed into small blocks, and
whenever a peer requests a file, the server sends a random
linear combination of all the blocks. As in BitTorrent, a peer
acts as a server to the blocks it has obtained. However, in a
linear coding scheme, any output from a peer node is also
a random linear combination of all the blocks it has already
received. A peer node can reconstruct the whole file when
it has received enough degrees of freedom to decode all the
blocks. This scheme is completely distributed, and eliminates
the need for a scheduler, as any block transmitted contains
partial information of all the blocks that the sender possesses.
It has been shown both mathematically [5] and through live
trials [8] that the random linear coding scheme significantly
reduces the downloading time and improves the robustness of
the system.

A major concern for any network coding system is the
protection against malicious nodes. Take the above content
distribution system for example. If a node in the P2P network
behaves maliciously, it can create a polluted block with
valid coding coefficients, and then sends it out. Here, coding
coefficients refer to the random linear coefficients used to
generate this block. If there is no mechanism for a peer to
check the integrity of a received block, a receiver of this
polluted block would not be able to decode anything for the
file at all, even if all the other blocks it has received are valid.
To make things worse, the receiver would mix this polluted
block with other blocks and send them out to other peers, and
the pollution can quickly propagate to the whole network. This
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Fig. 1. Content distribution with network coding. Assume thefile being
distributed is broken into three blocks,P1, P2, andP3. Any packet being
transmitted is a random linear combination of all the blocks the sender has.
For example, the packet sent from the source to peer A is a combination of
P1, P2, andP3, whereas the packet sent from peer A to D is a combination
of blocksA1 andA2. A peer is able to decode the whole file when it receives
3 linearly independent blocks.

makes coding based content distribution even more vulnerable
than the traditional P2P networks, such as BitTorrent. Similar
security problems arise in all systems that use network coding,
such as multicast networks. Several attempts were made to
address this problem. Hoet al introduced Byzantine modi-
fication detection in multicast network with random network
coding [9]. They added a simple polynomial hash value into
each packet, and a receiver node can detect the presence of
a Byzantine attacker with high probability, given that the
attacker is unable to design and supply modified packets
with complete knowledge of other packets received by other
nodes. Jaggiet al [10] proposed a distributed network coding
scheme for multicast network that is resilient in the presence
of Byzantine adversaries. They view the adversarial nodes as
a second source, and judiciously add redundancy at the real
source to help the receivers distill out the source information
from the received mixtures. References [5], [11] proposed
to use homomorphic hash functions in content distribution
systems to detect polluted packets, and [12] suggested the use
of a Secure Random Checksum (SRC) which requires less
computation than the homomorphic hash function. However,
[12] requires a secure channel to transmit the SRCs to all
the nodes in the network. Charleset al [13] proposed a
signature scheme for network coding that does not require such
a secure channel for transmitting hash values and associated
digital signatures of received and transmitted blocks. This
signature scheme is based on Weil pairing on elliptic curves
and provides authentication of the data in addition to pollution
detection, but the computation complexity of this solutionis
quite high. Moreover, the security offered by elliptic curves
that admit Weil pairing is still a topic of debate in the scientific
community.

In this paper, we propose a new signature scheme that is
not based on elliptic curves, and is designed specifically for
random linear coded systems. In this scheme, we view all

blocks of the file as vectors, as in any network coding scheme,
and make use of the fact that all valid vectors transmitted in
the network should belong to the subspace spanned by the
original set of vectors from the file. We design a signature
that can be used to easily check the membership of a received
vector in the given subspace, and at the same time, it is hard
for a node to generate a vector that is not in that subspace but
passes the signature test. We show that this signature scheme
is secure, and that the overhead for the scheme is negligible
for large files.

The rest of this paper is organized as follows. In Section II,
we describe the setup of the problem, and introduce notations
that will be used throughout this paper. We present the new
signature scheme in Section III and prove that it is secure.
Overheads and other aspects of the scheme are discussed in
Section IV, and finally, the paper is concluded in Section V.

II. PROBLEM SETUP

In this section, we introduce the framework for a random
linear coding based content distribution system. This frame-
work can also be easily modified to be used for distributed
storage systems. We model the network by a directed graph
Gd = (N,A), whereN is the set of nodes, andA is the set
of communication links. A source nodes ∈ N wishes to send
a large file to a set of client nodes,T ⊂ N . In this paper, we
refer to all the clients aspeers. The large file is divided intom
blocks, and any peer receives different blocks from the source
node or from other peers. In this framework, a peer is also
a server to blocks it has downloaded, and always sends out
random linear combinations of all the blocks it has obtainedso
far to other peers. When a peer has received enough degrees
of freedom to decode the data, i.e., it has receivedm linearly
independent blocks, it can re-construct the whole file.

Specifically, we view them blocks of the file,v̄1, ..., v̄m,
as elements inn-dimensional vector spaceFn

p , where p is
a prime. The source node augments these vectors to create
vectorsv1, ...,vm, given by

vi = (0, ..., 1, ..., 0, v̄i1, ..., v̄in),

where the firstm elements are zero except that theith one is
1, andv̄ij ∈ Fp is the jth element inv̄i. Packets received by
the peers are linear combinations of the augmented vectors,

w =
m∑

i=1

βivi,

whereβi is the weight ofvi in w. We see that the additional
m elements in the front of the augmented vector keeps track
of the β values of the corresponding packet, i.e.,

w = (β1, ..., βm, w̄i1, ..., w̄in),

where (w̄i1, ..., w̄in) is the payload part of the packet, and
(β1, ..., βm) is the code vector that is used to decode the
packets.

As mentioned in the previous section, this kind of network
coding scheme is vulnerable to pollution attacks by malicious



nodes [14], [15], and the pollution can quickly spread to other
parts of the network if the peer just unwittingly mixes this pol-
luted packet into its outgoing packets. Unlike uncoded systems
where the source knows all the blocks being transmitted in the
network, and therefore, can sign each one of them, in a coded
system, each peer produces “new” packets, and standard digital
signature schemes do not apply here. In the next section, we
introduce a novel signature scheme for the coded system.

III. S IGNATURE SCHEME FOR NETWORK CODING

We note that the vectorsv1, ...,vm span a subspaceV of
F

m+n
p , and a received vectorw is a valid linear combination of

vectorsv1, ...,vm if and only if it belongs to the subspaceV .
This is the key observation for our signature scheme. In the
scheme described below, we present a system that is based
upon standard modulo arithmetic (in particular the hardness
of the Discrete Logarithm problem) and upon an invariant
signatureσ(V ) for the linear spanV . Each node verifies the
integrity of a received vectorw by checking the membership
of w in V based on the signatureσ(V ).

Our signature scheme is defined by the following ingredi-
ents, which are independent of the file(s) to be distributed:

• q: a large prime number such thatp is a divisor ofq− 1.
Note that standard techniques, such as that used in Digital
Signature Algorithm (DSA), apply to find suchq.

• g: a generator of the groupG of orderp in Fq. Since the
order of the multiplicative groupF∗

q is q − 1, which is a
multiple of p, we can always find a subgroup,G, with
orderp in F

∗

q .
• Private key:Kpr = {αi}i=1,...,m+n, a random set of

elements inF∗

p. Kpr is only known to the source.
• Public key: Kpu = {hi = gαi}i=1,...,m+n. Kpu is

signed by some standard signature scheme, e.g., DSA,
and published by the source.

To distribute a file in a secure manner, the signature scheme
works as follows.

1) Using the vectorsv1, ...,vm from the file, the source
finds a vectoru = (u1, ..., um+n) ∈ F

m+n
p orthogonal

to all vectors inV . Specifically, the source finds a non-
zero solution,u, to the equations

vi · u = 0, i = 1, ...,m.

2) The source computes vectorx = (u1/α1, u2/α2, ...,
um+n/αm+n).

3) The source signsx with some standard signature scheme
and publishesx. We refer to the vectorx as the
signature,σ(V ), of the file being distributed.

4) The client node verifies thatx is signed by the source.
5) When a node receives a vectorw and wants to verify

that w is in V , it computes

d =

m+n∏

i=1

hxiwi

i ,

and verifies thatd = 1.

To see thatd is equal to 1 for any validw, we have

d =

m+n∏

i=1

hxiwi

i

=

m+n∏

i=1

(gαi)uiwi/αi

=

m+n∏

i=1

guiwi

= g
P

m+n

i=1
(uiwi)

= 1,

where the last equality comes from the fact thatu is orthogonal
to all vectors inV .

Next, we show that the system described above is secure. In
essence, the theorem below shows that given a set of vectors
that satisfy the signature verification criterion, it is provably
as hard as the Discrete Logarithm problem to find new vectors
that also satisfy the verification criterion other than those that
are in the linear span of the vectors already known.
Definition 1. Let p be a prime number andG be a multi-
plicative cyclic group of orderp. Let k andn be two integers
such thatk < n, andΓ = {h1, ..., hn} be a set of generators
of G. Given a linear subspace,V , of rank k in F

n
p such that

for everyv ∈ V , the equalityΓv ,
∏n

i=1 hvi

i = 1 holds, we
define the(p, k, n)-Diffie-Hellman problem as the problem of
finding a vectorw ∈ F

n
p with Γ

w = 1 but w /∈ V .
By this definition, the problem of finding an invalid vector

that satisfies our signature verification criterion is a(p,m,m+
n)-Diffie-Hellman problem. Note that in general, the(p, n −
1, n)-Diffie-Hellman problem has no solution. This is because
if V has rankn − 1 and aw

′ exists such thatΓw
′

= 1
and w

′ /∈ V , then w′ + V spans the whole space, and any
vectorw ∈ F

n
p would satisfyΓw = 1. This is clearly not true,

therefore, no suchw′ exists.
Theorem 1. For anyk < n − 1, the (p, k, n)-Diffie-Hellman
problem is as hard as the Discrete Logarithm problem.

Proof: Assume that we have an efficient algorithm to
solve the(p, k, n)-Diffie-Hellman problem, and we wish to
compute the discrete algorithmlogg(z) for some z = gx,
where g is a generator of a cyclic groupG with order p.
We can choose two random vectorsr = (r1, ..., rn) and
s = (s1, ..., sn) in F

n
p , and constructΓ = {h1, ..., hn}, where

hi = zrigsi for i = 1, ..., n. We then findk linearly indepen-
dent (and otherwise random) solution vectorsv1, ...,vk to the
equations

v · r = 0 and v · s = 0.

Note that there existn−2 linearly independent solutions to the
above equations. LetV be the linear span of{v1, ...,vk}, it is
clear that any vectorv ∈ V satisfiesΓv = 1. Now, if we have
an algorithm for the(p, k, n)-Diffie-Hellman problem, we can
find a vectorw /∈ V such thatΓw = 1. This vector would
satisfy w · (xr + s) = 0. Sincer is statistically independent
from (xr+ s), with probability greater than1− 1/p, we have



w · r 6= 0. In this case, we can compute

logg(z) = x =
w · s

w · r
.

This means the ability to solve the(p, k, n)-Diffie-Hellman
problem implies the ability to solve the Discrete Logarithm
problem.

This proof is an adaptation of a proof that appeared in an
earlier publication by Bonehet. al [16].

IV. D ISCUSSION

Our signature scheme nicely makes use of the linearity
property of random linear network coding, and enables the
peers to check the integrity of packets without the requirement
for a secure channel, as in the case of hash function or SRC
schemes [5], [11], [12]. Also, the computation involved in the
signature generation and verification processes is very simple.

Next, we examine the overhead incurred by this signature
scheme. Let the file size beM and let the file be divided into
m blocks, each one of which is a vector inFn

p . The size of
each block isB = n log(p) and we haveM = mn log(p).
The size of each augmented vector (with coding vectors in
the front) isBa = (m + n) log(p), and thus, the overhead of
the coding vector ism/n times the file size. Note that this
is the overhead pertaining to the linear coding scheme, not
to our signature scheme, and any practical network coding
system would makem ≪ n. The initial setup of our signature
scheme involves the publishing of the public key,Kpu, which
has size(m+n) log(q). In typical cryptographic applications,
the size ofp is 20 bytes (160 bits), and the size ofq is 128
bytes (1024 bits), thus, the size ofKpu is approximately equal
to 6(m + n)/mn times the file size.

For distribution of each file, the incremental overhead of
our scheme consists of two parts: the public data,Kpu, and
the signature vector,x.

For the public key,Kpu, we note that it cannot be fully
reused for multiple files, as it is possible for a malicious node
to generate a invalid vector that satisfies the checkd = 1
using information obtained from previously downloaded files.
Specifically, letx1 be the signature of File 1, andw1 be a
valid received vector for File 1, we have

d =

m+n∏

i=1

hx1iw1i

i = 1.

If the source then distribute File 2 using the same public
key, Kpu, and a different signature,x2, a malicious node
can construct a vectorw2, wherew2i = x1iw1i/x2i, which
satisfies the signature check

d =

m+n∏

i=1

hx2iw2i

i =

m+n∏

i=1

hx1iw1i

i = 1.

However,w2 is not a valid linear combination of the vectors
of File 2. To prevent this from happening, we can publish a
public key for each file, and as mentioned above, the overhead
is about6(m + n)/mn times the file size, which is small as
long as6 ≪ m ≪ n. Note that if we republishKpu for every

new file, we can reuse the signature vectorx. Let u2 be a
vector that is orthogonal to all vectors in File 2, the source
can compute a new private key,Kpr = {α1, ..., αm+n}, given
by

αi = u2i/xi, i = 1, ...,m + n.

The source then publishes the new public key,Kpu = {hi =
gαi}i=1,...,m+n. In this way, we do not need to publish new
x vectors for the subsequent files.

Alternatively, for every new file, we can randomly pick an
integer i between 1 andm + n, select a new random value
for αi in the private key, and publish the newhi = gαi . The
overhead for this method is(m + n) times smaller than that
described in the previous paragraph, i.e., this overhead isonly
6/mn times the file size. As an example, if we have a file
of size 10MB, divided intom = 100 blocks, the value ofn
would be in the order of thousands, and thus, this overhead is
less than 0.01% of the file size. This method should provide
good security except in the case where we expect the vectorw

to have low variability, for example, has many zeros. Security
can be increased by changing more elements in the private key
for each new file.

However, if we only change one element in the public
key, for each new file distributed, we also have to publish
a new signaturex, which is computed from a vectoru that
is orthogonal to the subspaceV spanned by the file. Since
the V has dimensionm, it is sufficient to only replacem
elements inu to generate a vector orthogonal to the new file.
Since the firstm elements in the vectorsv1, ...,vm are always
linearly independent (they are the code vectors), it suffices to
just modify the entriesu1 to um. Assume that theith element
in the private key is the only one that has been changed for
the distribution of the new file, and thati is between 1 andm,
then we only need to publishx1 to xm for the new signature
vector. This part of the overhead has sizem log(p), and the
ratio between this overhead and the original file sizeN is 1/n.
Again, take a 10MB file for example, this overhead is less than
0.1% of the file size.

Therefore, after the initial setup, each additional file dis-
tributed only incurs a negligible amount of overhead using
our signature scheme.

Finally, we would like to point out that, under our assump-
tions that there is no secure side channel from the source to
all the peers and that the public key is available to all the
peers, our signature scheme has to be used on the original
file vectors not on hash functions. This is because to maintain
the security of the system, we need to use a one-way hash
function that is homomorphic, however, we are not aware
of any such hash function. Although [5] and [11] suggested
usage of homomorphic hash functions for network coding,
[5] assumed that the intermediate nodes do not know the
parameters used for generating the hash function, and [11]
assumed that a secure channel is available to transmit the hash
values of all the blocks from the source node to the peers.
Under our more relaxed assumptions, these hash functions
would not work.



V. CONCLUSIONS

Security problem is a main obstacle in the implementation
of content distribution networks using random linear network
coding. To tackle this problem, instead of trying to fit an
existing signature scheme to network coding based systems,
in this paper, we proposed a new signature scheme that is
made specifically for such systems. We introduced a signature
vector for each file distributed, and the signature can be used
to easily check the integrity of all the packets received forthis
file. We have shown that the proposed scheme is as hard as the
Discrete Logarithm problem, and the overhead of this scheme
is negligible for a large file.
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