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Abstract

A guessing wiretapper’s performance on a Shannon cipher system is analyzed for a source with memory. Close relationships
between guessing functions and length functions are first established. Subsequently, asymptotically optimal encryption and attack
strategies are identified and their performances analyzed for sources with memory. The performance metrics are exponents
of guessing moments and probability of large deviations. The metrics are then characterized for unifilar sources. Universal
asymptotically optimal encryption and attack strategies are also identified for unifilar sources. Guessing in the increasing order
of Lempel-Ziv coding lengths is proposed for finite-state sources, and shown to be asymptotically optimal. Finally, competitive
optimality properties of guessing in the increasing order of description lengths and Lempel-Ziv coding lengths are demonstrated.

Index Terms

cipher systems, compression, cryptography, guessing, Lempel-Ziv code, length function, minimum description length, sources
with memory, source coding, unifilar, universal source coding

I. INTRODUCTION

We consider the classical Shannon cipher system [1]. LetXn = (X1, · · · , Xn) be a message where each letter takes
values on a finite setX. This message should be communicated securely from a transmitter to a receiver, both of which have
access to a common secure keyUk of k purely random bits independent ofXn. The transmitter computes the cryptogram
Y = fn(X

n, Uk) and sends it to the receiver over a public channel. The cryptogram may be of variable length. The function
fn is invertible givenUk. The receiver, knowingY andUk, computesXn = f−1

n (Y, Uk). The functionsfn and f−1
n are

published. An attacker (wiretapper) has access to the cryptogramY , knowsfn andf−1
n , and attempts to identifyXn without

knowledge ofUk. The attacker can use knowledge of the statistics ofXn. We assume that the attacker has a test mechanism
that tells him whether a guesŝXn is correct or not. For example, the attacker may wish to attack an encrypted password
or personal information to gain access to, say, a computer account, or a bank account via internet, or a classified database
[2]. In these situations, successful entry into the system or a failure provides the natural test mechanism. We assume that
the attacker is allowed an unlimited number of guesses. Given the probability mass function (PMF) ofXn, the functionfn,
and the cryptogramY , the attacker can determine the posterior probabilities ofthe messagePXn|Y (· | y). His best guessing
strategy having observedY = y is then to guess in the decreasing order of these posterior probabilitiesPXn|Y (· | y). The key
rate for the system isk/n = R which represents the number of bits of key used to communicate one message letter.

Merhav and Arikan [2] study discrete memoryless sources (DMS) in the above setting and characterize the best attainable
moments of the number of guesses that the attacker has to submit before success. In particular, they show that for a DMS with
the governing single letter PMFP on X, the value of the optimal guessing exponent is given by

E(R, ρ) = max
Q

[ρmin{H(Q), R} −D(Q ‖ P )] ,

where the maximization is over all PMFsQ on X, H(Q) is the Shannon entropy of the PMFQ, andD(Q ‖ P ) is the
Kullback-Leibler divergence betweenQ and P . They also show thatE(R, ρ) equalsρR for R < H(P ), and equals the
constantρH1/(1+ρ)(P ) for R > H(Pρ). When R < H(P ), the key rate is not sufficiently large, and an exhaustive key-
search attack is asymptotically optimal. WhenR > H(Pρ), the randomness introduced by the key is near perfect, and the
cryptogram is useless to the attacker. The attacker submitsguesses based directly on the message statistics, andρH1/(1+ρ)(P )
is known to be the optimal guessing exponent in this scenario[3], whereH1/(1+ρ)(P ) is the Rényi entropy of the DMSP . For
H(P ) < R < H(Pρ), the optimal strategy makes use of both the key and the message statistics.Pρ is the PMF of an auxiliary
DMS given by (47). Merhav and Arikan [2] also determine the best achievable performance based on the large deviations of
the number of guesses for success, and show that it equals theFenchel-Legendre transform ofE(R, ρ) as a function ofρ.

Secret messages typically come from the natural languages which can be well-modeled as sources with memory, for e.g., a
Markov source of an appropriate order. In this paper, we extend the results of Merhav and Arikan [2] to sources with memory.
As a first step towards this, we first consider the perfect secrecy scenario (for e.g., those analogous toR ≥ H(Pρ) in the DMS
case), and identify a tight relationship between the numberof guesses for success and a lossless source coding length function.
Specifically, we sandwich the number of guesses on either side by a suitable length function. Arikan’s result [3] that thebest
value of the guessing exponent for memoryless sources is theRényi entropy of an appropriate order immediately followsby
recognizing that it is the least value of an average exponential coding length problem proposed and solved by Campbell [4]. Our
approach based on length functions has the benefit of showingthat guessing in the increasing order of lengths of compressed
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strings can yield a good attack strategy for sources with memory. In particular, guessing in the increasing order of Lempel-Ziv
code lengths [5] for finite-state sources and increasing description lengths for unifilar sources [6] are asymptotically optimal
in a sense made precise in the sequel.

Next, we establish similar connections between guessing and source compression for the key-constrained scenarios (i.e.,
those analogous toR < H(Pρ) in the memoryless case). We then study guessing exponents for the cipher system on sources
with memory, and then specialize our results to show that allconclusions of Merhav and Arikan in [2] for memoryless sources
extend to unifilar sources. We also consider the large deviations performance of the number of guesses and show that attacks
based on the Lempel-Ziv coding lengths and minimum description lengths are asymptotically optimal for finite-state andunifilar
sources, respectively. We then establish competitive optimality results for guessing based on these two length functions.

The paper is organized as follows. In Section II we study guessing under perfect secrecy and establish the relationship between
guessing and source compression. In Section III, we study the key-rate constrained system, establish optimal strategies for both
parties for sources with memory, and study the relationshipbetween guessing and a new source coding problem. In Section
IV, we characterize the performance for unifilar sources. InSection V, we study the large deviations performance and establish
the optimality properties of guessing based on Lempel-Ziv and minimum description lengths. Section VI summarizes the paper
and presents some open problems.

II. GUESSING UNDER PERFECT SECRECY AND SOURCE COMPRESSION

Let us first consider the following ideal setting wherek = nR ≥ n log |X|. Enumerate all the sequences inXn from 0 to
|X|n − 1 and let the functionfn be the bit-wise XOR of the key bits and the bits representing the index of the message.
The cryptogram is the message whose index is the output offn. The decryption function is also clear - simply XOR the bits
representing the cryptogram with the key bits. Such an encryption renders the cryptogram completely useless to an attacker
who does not have knowledge of the key. The attacker’s optimal strategy is to guess the message in the decreasing order of
message probabilities. In case the attacker does not have access to the message probabilities, a robust strategy is needed. We
first relate the problem of guessing to one of source compression. As we will see soon, robust source compression strategies
lead to robust guessing strategies.

For ease of exposition, and because we have perfect encryption, let us assume that the message space is simplyX. The
extension to strings of lengthn is straightforward.

A guessing function
G : X → {1, 2, · · · , |X|}

is a bijection that denotes the order in which the elements ofX are guessed. IfG(x) = i, then theith guess isx. A length
function

L : X → N

is one that satisfies Kraft’s inequality
∑

x∈X

2−L(x) ≤ 1. (1)

To each guessing functionG, we associate a PMFQG on X and a length functionLG as follows.
Definition 1: Given a guessing functionG, we sayQG defined by

QG(x) = c−1 ·G(x)−1, ∀x ∈ X, (2)

is the PMF onX associated withG. The quantityc in (2) is the normalization constant. We sayLG defined by

LG(x) = ⌈− logQG(x)⌉ , ∀x ∈ X, (3)

is the length function associated withG.
Observe that

c =
∑

a∈X

G(a)−1 =

|X|
∑

i=1

1

i
≤ 1 + ln |X|, (4)

and therefore the PMF in (2) is well-defined. We record the intimate relationship between these associated quantities inthe
following result.

Proposition 2: Given a guessing functionG, the associated quantities satisfy

c−1 ·QG(x)
−1 = G(x) ≤ QG(x)

−1, (5)

LG(x)− 1− log c ≤ logG(x) ≤ LG(x). (6)

Proof: The first equality in (5) follows from the definition in (2), and the second inequality from the fact thatc ≥ 1.
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The upper bound in (6) follows from the upper bound in (5) and from (3). The lower bound in (6) follows from

logG(x) = log
(

c−1 ·QG(x)
−1
)

= − logQG(x)− log c

≥ (⌈− logQG(x)⌉ − 1)− log c

= LG(x) − 1− log c.

We now associate a guessing functionGL to each length functionL.
Definition 3: Given a length functionL, we define the associated guessing functionGL to be the one that guesses in the

increasing order ofL-lengths. Messages with the sameL-length are ordered using an arbitrary fixed rule, say the lexicographic
order onX. We also define the associated PMFQL on X to be

QL(x) =
2−L(x)

∑

a∈X
2−L(a)

. (7)

Proposition 4: For a length functionL, the associated PMF and the guessing function satisfy the following:
1) GL guesses messages in the decreasing order ofQL-probabilities;
2)

logGL(x) ≤ logQL(x)
−1 ≤ L(x). (8)

Proof: The first statement is clear from the definition ofGL and from (7).
Letting 1{E} denote the indicator function of an eventE, we have as a consequence of statement 1) that

GL(x) ≤
∑

a∈X

1 {QL(a) ≥ QL(x)}

≤
∑

a∈X

QL(a)

QL(x)

= QL(x)
−1, (9)

which proves the left inequality in (8). This inequality wasknown to Wyner [7].
The last inequality in (8) follows from (7) and Kraft’s inequality (1) as follows:

QL(x)
−1 = 2L(x) ·

∑

a∈X

2−L(a) ≤ 2L(x).

Let {L(x) ≥ B} denote the set{x ∈ X | L(x) ≥ B}. We then have the following easy to verify corollary to Propositions
2 and 4.

Corollary 5: For a givenG, its associated length functionLG, and anyB ≥ 1, we have

{LG(x) ≥ B + 1 + log c}
⊆
{

G(x) ≥ 2B
}

⊆ {LG(x) ≥ B} . (10)

Analogously, for a givenL, its associated guessing functionGL, and anyB ≥ 1, we have

{GL(x) ≥ 2B} ⊆ {L(x) ≥ B}. (11)

The inequalities between the associates in (6) and (8) indicate the direct relationship between guessing moments and
Campbell’s coding problem [4], and that the Rényi entropies are the optimal growth exponents for guessing moments. See(14)
below. They also establish a simple and new result: the minimum expected value of the logarithm of the number of guesses
is close to the Shannon entropy.

We now demonstrate other relationships between guessing moments and average exponential coding lengths which will be
useful in establishing universality properties.

Proposition 6: Let L be any length function onX, GL the guessing function associated withL, P a PMF onX, ρ ∈ (0,∞),
L∗ the length function that minimizesE

[

2ρL
∗(X)

]

, where the expectation is with respect toP , G∗ the guessing function that
proceeds in the decreasing order ofP -probabilities and therefore the one that minimizesE [G∗(X)ρ], andc as in (4). Then

E [GL(X)ρ]

E [G∗(X)ρ]
≤ E

[

2ρL(X)
]

E
[

2ρL∗(X)
] · 2ρ(1+log c). (12)
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Analogously, letG be any guessing function, andLG its associated length function. Then

E [G(X)ρ]

E [G∗(X)ρ]
≥ E

[

2ρLG(X)
]

E
[

2ρL∗(X)
] · 2−ρ(1+log c). (13)

Also,
∣

∣

∣

∣

1

ρ
logE [G∗(X)ρ]− 1

ρ
logE

[

2ρL
∗(X)

]

∣

∣

∣

∣

≤ 1 + log c. (14)

Proof: Observe that

E
[

2ρL(X)
]

≥ E [GL(X)ρ] (15)

≥ E [G∗(X)ρ]

≥ E
[

2ρLG∗(X)
]

2−ρ(1+log c) (16)

≥ E
[

2ρL
∗(X)

]

2−ρ(1+log c), (17)

where (15) follows from (8), and (16) from the left inequality in (6). The result in (12) immediately follows. A similar argument
shows (13). Finally, (14) follows from the inequalities leading to (17) by settingL = L∗.

Thus if we have a length function whose performance is close to optimal, then its associated guessing function is close to
guessing optimal. The converse is true as well. Moreover, the optimal guessing exponent is within1 + log c of the optimal
coding exponent for the length function.

Let us now consider strings of lengthn. Let Xn denote the set of messages and considern → ∞. It is now easy to see that
universality in the average exponential coding rate sense implies existence of a universal guessing strategy that achieves the
optimal exponent for guessing. For each source in the class,let Pn be its restriction to strings of lengthn and letL∗

n denote an
optimal length function that attains the minimum valueE

[

2ρL
∗

n(X
n)
]

among all length functions, the expectation being with
respect toPn. On the other hand, letLn be a sequence of length functions for the class of sources that does not depend on
the actual source within the class. Suppose further that thelength sequenceLn is asymptotically optimal, i.e.,

lim
n→∞

1

nρ
logE

[

2ρLn(X
n)
]

= lim
n→∞

1

nρ
logE

[

2ρL
∗

n(X
n)
]

,

for every source belonging to the class.Ln is thus “univeral” for (i.e., asymptotically optimal for all sources in) the class. An
application of (12) by denotingc in (12) ascn followed by the observation(1 + log cn)/n → 0 shows that the sequence of
guessing strategiesGLn

is asymptotically optimal for the class, i.e.,

lim
n→∞

1

nρ
logE [GLn

(Xn)ρ]

= lim
n→∞

1

nρ
logE [G∗(Xn)ρ] .

Arikan and Merhav [8] provide a universal guessing strategyfor the class of discrete memoryless sources (DMS). For the
class of unifilar sources with a known number of states, the minimum description length encoding is asymptotically optimal
for Campbell’s coding length problem (see Merhav [6]). It follows as a consequence of the above argument that guessing in
the increasing order of description lengths is asymptotically optimal. (See also the development in Section IV). The left side
of (12) is the extra factor in the expected number of guesses (relative to the optimal value) due to lack of knowledge of the
specific source in class. Our prior work [9] characterizes this loss as a function of the uncertainty class.

III. G UESSING WITH KEY-RATE CONSTRAINTS AND SOURCE COMPRESSION

We continue to consider strings of lengthn. Let Xn be a message andUk the secure key of purely random bits independent
of Xn. Recall that the transmitter computes the cryptogramY = fn(X

n, Uk) and sends it to the receiver over a public channel.
Given a PMF ofXn, the functionfn, and the cryptogramY , the attacker’s optimal strategy is to guess in the decreasing
order of posterior probabilitiesPXn|Y (· | y). Let us denote this optimal attack strategy asGfn . The key rate for the system is
k/n = R < log |X|. If the attacker does not know the source statistics, a robust guessing strategy is needed. The following is
a first step in this direction.

Proposition 7: Let Ln be an arbitrary length function onXn. There is a guessing listG such that for any encryption function
fn, we have

G(xn | y) ≤ 2min
{

2nR, 2Ln(x
n)
}

.
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Proof: We use a technique of Merhav and Arikan [2]. LetGLn
denote the associated guessing function that proceeds

in the increasing order of the lengths and completely ignores the cryptogram. LetGLn
proceed in the orderxn

1 , x
n
2 , · · · . By

Proposition 2, we need at most2Ln(x
n) guesses to identifyxn.

Consider the alternative exhaustive key-search attack defined by the following guessing list:

f−1
n

(

y, uk
1

)

, f−1
n

(

y, uk
2

)

, · · · ,

whereuk
1 , u

k
2 , · · · is an arbitrary ordering of the keys. This strategy identifies xn in at most2nR guesses.

Finally, letG(· | y) be the list that alternates between the two lists, skipping those already guessed, i.e., the one that proceeds
in the order

{

xn
1 , f

−1
n

(

y, uk
1

)

, xn
2 , f

−1
n

(

y, uk
2

)

, · · ·
}

. (18)

Clearly, for everyxn, we need at most twice the minimum of the two original lists.

We now look at a weak converse to the above in the expected sense. Our proof also suggests an asymptotically optimal
encryption strategy for sources with memory.

Proposition 8: Fix n ∈ N, ρ > 0, and letcn denote the constant in (4) as a function ofn with Xn replacingX. There is an
encryption functionfn and a length functionLn such that every guessing strategyG(· | y) (and in particularGfn ) satisfies

E [G(Xn | Y )ρ]

≥ 1

(2cn)ρ(2 + ρ)
E
[(

min
{

2Ln(X
n), 2nR

})ρ]

.

Proof: The proof is an extension of Merhav and Arikan’s proof of [2, Th. 1] to sources with memory. The idea is to
identify an encryption mechanism that maps messages of roughly equal probability to each other.

Let Pn be any PMF onXn. Enumerate the elements ofXn in the decreasing order of their probabilities. For convenience,
let M = 2nR. If M does not divide|X|n, append a few dummy messages of zero probability to make the number of messages
N a multiple ofM . Index the messages from 0 toN − 1. Henceforth, we identify a message by its index.

Divide the messages into groups ofM so that messagem belongs to groupTj , wherej = ⌊m/M⌋, and ⌊·⌋ is the floor
function. Enumerate the key streams from 0 toM − 1, so that0 ≤ u ≤ M − 1. The functionfn is now defined as follows.
For m = jM + i set

fn(jM + i, u)
∆
= jM + (i⊕ u) ,

where i ⊕ u is the bit-wise XOR operation. Thus messages in groupTj are encrypted to messages in the same group. The
index i identifying the specific message in groupTj , i.e., the lastnR bits of m, are encrypted via bit-wise XOR with the key
stream. Givenu and the cryptogram, decryption is clear – perform bit-wise XOR with u on the lastnR bits of y.

Given a cryptogramy, the only information that the attacker gleans is that the message belongs to the group determined by
y. Indeed, ify ∈ Tj

Pn {Y = y} =
1

M
Pn {Xn ∈ Tj}

and therefore

Pn {Xn = m | Y = y} =

{

Pn{X
n=m}

Pn{Xn∈Tj}
, ⌊m/M⌋ = j,

0, otherwise,

decreases withm for m ∈ Tj, and is 0 form /∈ Tj . The attacker’s best strategyGfn(· | y) is therefore to restrict his guesses
to Tj and guess in the orderjM, jM + 1, · · · , jM +M − 1. Thus, whenxn = jM + i, the optimal attack strategy requires
i+ 1 guesses.
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We now analyze the performance of this attack strategy as follows.

E [Gfn(X
n|Y )ρ]

=

N/M−1
∑

j=0

M−1
∑

i=0

Pn{Xn = jM + i}(i+ 1)ρ

≥
N/M−1
∑

j=0

M−1
∑

i=0

Pn{Xn = (j + 1)M − 1}(i+ 1)ρ (19)

≥
N/M−1
∑

j=0

Pn{Xn = (j + 1)M − 1}M
1+ρ

1 + ρ
(20)

≥ 1

1 + ρ

N/M−1
∑

j=0

M−1
∑

i=0

Pn{Xn = (j + 1)M + i}Mρ

(21)

=
1

1 + ρ

N−1
∑

m=M

Pn{Xn = m}Mρ (22)

where (19) follows because the arrangement in the decreasing order of probabilities implies that

Pn{Xn = jM + i} ≥ Pn{Xn = (j + 1)M − 1}

for i = 0, · · · ,M − 1. Inequality (20) follows because

M−1
∑

i=0

(i+ 1)ρ =

M
∑

i=1

iρ ≥
∫ M

0

zρ dz =
M1+ρ

1 + ρ
,

(21) follows because by the decreasing probability arrangement

Pn{Xn = (j + 1)M − 1} ≥ 1

M

M−1
∑

i=0

Pn{Xn = (j + 1)M + i}.

Thus (22) implies that

N−1
∑

m=0

Pn{Xn = m} (min{m+ 1,M})ρ

=

M−1
∑

m=0

Pn{Xn = m}(m+ 1)ρ +

N−1
∑

m=M

Pn{X = m}Mρ

≤ E [Gfn(X
n|Y )ρ] + (1 + ρ)E [Gfn(X

n|Y )ρ]

= (2 + ρ)E [Gfn(X
n|Y )ρ] , (23)

SetGP to be the guessing function that guesses in the decreasing order ofP -probabilities without regard toY , i.e.,GP (m) =
m+ 1. Let LGP

be the associated length function. Now use (23) and (6) to get

E [Gfn(X
n|Y )ρ]

≥ 1

2 + ρ
E [(min {GP (X

n),M})ρ]

≥ 1

2 + ρ
E

[

(

min

{

2LGP
(Xn)

2cn
,M

})ρ
]

≥ 1

(2cn)ρ(2 + ρ)
E
[(

min
{

2LGP
(Xn),M

})ρ]

.

SinceGfn is the strategy that minimizesE [G(Xn | Y )ρ] , the proof is complete.
For a givenρ > 0, key rateR > 0, encryption functionfn, define

En(R, ρ)
∆
= sup

fn

1

n
logE [Gfn(X

n | Y )ρ] .
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Propositions 7 and 8 naturally suggest the following codingproblem: identify

En,l(R, ρ)
∆
= min

Ln

1

n
logE

[(

min
{

2Ln(X
n), 2nR

})ρ]

. (24)

Analogous to (14), we can relateEn(R, ρ) andEn,l(R, ρ) for a specified key rateR. The following is a corollary to Propositions
7 and 8.

Corollary 9: For a givenR, ρ > 0, we have

|En,l(R, ρ)− En(R, ρ)| ≤ log(22ρcρn(2 + ρ))

n
.

Proof: Let L∗
n be the length function that achievesEn,l(R, ρ). By Proposition 7, and after taking expectations, we have

the guessing strategyG(· | y) that satisfies

E
[(

min
{

2L
∗

n(X
n), 2nR

})ρ]

≥ sup
fn

1

2ρ
E [G(Xn | Y )ρ]

≥ sup
fn

1

2ρ
E [Gfn(X

n | Y )ρ]

≥ 1

22ρcρn(2 + ρ)
E
[(

min
{

2Ln(X
n), 2nR

})ρ]

for a particularfn andLn guaranteed by Proposition 8

≥ 1

22ρcρn(2 + ρ)
E
[(

min
{

2L
∗

n(X
n), 2nR

})ρ]

.

Take logarithms and normalize byn to get the bound.
The magnitude of the difference betweenEn(R, ρ) andEn,l(R, ρ) vanishes asn → ∞. Thus, the problem of finding the

optimal guessing exponent is the same as that of finding the optimal exponent for a coding problem. WhenR ≥ log |X|, the
coding problem in (24) reduces to the one considered by Campbell in [4]. Proposition 7 shows that the optimal length function
attaining the minimum in (24) yields an asymptotically optimal attack strategy on the cipher system. Moreover, the encryption
strategy in Proposition 8 is asymptotically optimal.

The following Proposition upper bounds the guessing effortneeded to identify the correct message for sources with memory.
A sharper result analogous to the DMS case is shown later for unifilar sources.

Proposition 10: For a givenR, ρ > 0, we have

lim sup
n→∞

En(R, ρ) ≤ min

{

ρR, lim sup
n→∞

En(ρ)

}

, (25)

where
En(ρ)

∆
= min

Ln

1

n
logE

[

2ρLn(X
n)
]

.

Proof: By Corollary 9, it is sufficient to show that the sequenceEn,l(R, ρ) is upperbounded by the sequence on the right
side of (25). LetL∗

n be the length function that minimizesE
[

2ρLn(X
n)
]

. Observe thatmin
{

2ρnR, x
}

is a concave function
of x for a fixedρ andR. Jensen’s inequality then yields

E
[

min
{

2ρnR, 2ρL
∗

n(X
n)
}]

≤ min
{

2ρnR,E
[

2ρL
∗

n(X
n)
]}

.

Take logarithms, normalize byn, and use the definition ofEn,l(ρ,R) to get

En,l(R, ρ) ≤ 1

n
log
(

min
{

2ρnR,E
[

2ρL
∗

n(X
n)
]})

= min

{

ρR,
1

n
logE

[

2ρL
∗

n(X
n)
]

}

.

Now take the limsup asn → ∞ to complete the proof.
Our results thus far are applicable to a rather general classof sources with memory. In the next section, we specialize our

results to the important class of unifilar sources. If the source is a DMS with defining PMFP , then the second term within
the min in (25) is known to beρH1/(1+ρ)(P ), whereH1/(1+ρ)(P ) is Rényi’s entropy of order1/(1 + ρ) for the source. For
unifilar sources, we soon show that the limsup can be replacedby a limit which equalsρ times a generalization of the Rényi
entropy for such a source.
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IV. U NIFILAR SOURCES

In this section, we generalize the DMS results of Merhav and Arikan [2] to unifilar sources. We first make some definitions
largely following Merhav’s notation in [6].

Let xn = (x1, · · · , xn) be a string taking values inXn. The stringxn needs to be guessed. Letsn = (s1, · · · , sn) be another
sequence taking values inSn where|S| < ∞. Let s0 ∈ S be a fixed initial state. A probabilistic sourcePn is finite-statewith
|S| states [6] if the probability of observing the sequence pair(xn, sn) is given by

Pn(x
n, sn) =

n
∏

i=1

P (xi, si | si−1),

whereP (xi, si | si−1) is the joint probability of letterxi and statesi given the previous statesi−1. The dependence ofPn on
the initial states0 is implicit. Typically, the letter sequencexn is observable and the state sequencesn is not. LetH denote
the entropy-rate of a finite-state source, i.e.,

H
∆
= − lim

n→∞
n−1

∑

xn∈Xn

Pn(x
n) logPn(x

n).

A finite-state source isunifilar [10, p.187] if the statesi is given by a deterministic mappingφ : X× S → S as

si = φ(xi, si−1),

and the mappingx 7→ φ(x, s) is one-to-one1 for eachs ∈ S. Given s0 and the sequencexn, the state sequence is uniquely
determined. Moreover, givens0 and the state sequencesn, xn is uniquely determined. An important example of a unifilar
source is akth order Markov source wheresi = (xi, xi−1, · · · , xi−k+1).

Fix xn ∈ Xn. For s ∈ S, x ∈ X, let

Qxn(x, s) =
1

n

n
∑

i=1

1{xi = x, si−1 = s},

where1{A} is the indicator function of the eventA. Qxn is thus an empirical PMF onS× X. Let

Qxn(s) =
∑

x∈X

Qxn(x, s).

The use ofQxn for both the joint and the marginal PMFs is an abuse of notation. The context should make the meaning clear.
Let

qxn(x | s) =
{

Qxn(x, s)/Qxn(s), Qxn(s) > 0,
0, Qxn(s) = 0

denote the empirical letter probability given the state. (Given thatφ is one-to-one, this actually defines a transition probability
matrix on the state space). Denote the empirical conditional entropy as

H(Qxn) = −
∑

s∈S

∑

x∈X

Qxn(x, s) log qxn(x|s),

and the conditional Kullback-Leibler divergence between the empirical conditional PMF and the one-step transition matrix
P (x|s) as

D(Qxn ‖ P ) =
∑

s∈S

∑

x∈X

Qxn(x, s) log
qxn(x | s)
P (x | s) .

Given that we are dealing with multiple random variables,H(Q) andD(Q ‖ P ) usually stand for joint entropy and Kullback-
Leibler divergence of a pair of joint distributions. We however alert the reader that they stand for conditional values in our
notation.

Let us further define the typeTxn of a sequencexn as follows:

Txn = {an ∈ Xn | Qan = Qxn} .
For the unifilar source under consideration, it is easy to seethat

Pn(x
n) = 2−n(H(Qxn )+D(Qxn‖P )), (26)

i.e., all elements of the same type have the same probability. Moreover, for a fixed typeQxn , if we setP (x | s) = qxn(x | s)
and observe that for the resulting unifilar source matched toxn, we have1 ≥ Pn{Txn} = |Txn |Pn(x

n), we easily deduce
from (26) that

|Txn | ≤ 2nH(Qxn ). (27)

1The definition in [6] does not restrictφ to be one-to-one.
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Consequently, for any unifilarPn,

Pn{Txn} ≤ 2−nD(Qxn‖P ). (28)

Using the fact that the mappingx 7→ φ(x, s) is one-to-one for eachs, it is possible to get the following useful lower bounds
on the size and probability of a type for unifilar sources.

Lemma 11:(Merhav [6, Lemma 1], Gutman [11, Lemma 1]) For a unifilar source, there exists a sequenceε(n) =
Θ(n−1 logn) such that

∣

∣

∣

∣

1

n
logPn {Txn}+D(Qxn ‖ P )

∣

∣

∣

∣

≤ ε(n) (29)

for everyxn ∈ Xn.
Consequently, we also have ([6, eqn. (17)]):

∣

∣

∣

∣

1

n
log |Txn | −H(Qxn)

∣

∣

∣

∣

≤ ε(n). (30)

Let us now define in a fashion analogous to the DMS case

E(R, ρ)
∆
= max

Q
[ρh(Q,R)−D(Q ‖ P )] (31)

whereh(Q,R) = min{H(Q), R}, Q is a joint PMF onS × X with letter probabilities given the state identified byq(x | s),
andH(Q) is the conditional entropy

H(Q) = −
∑

s∈S

∑

x∈X

Q(x, s) log q(x | s).

P (x|s) is the conditional PMF that defines the unifilar source. The string s0 is irrelevant in the definition ofE(R, ρ).
We now state and prove a generalization of the Merhav and Arikan result [2, Th. 1].
Theorem 12:For any unifilar source, anyρ > 0,

lim
n→∞

En(R, ρ) = E(R, ρ).

Proof: We show that the limiting value ofEn,l(R, ρ) exists for the corresponding coding problem and equalsE(R, ρ).
Corollary 9 then implies thatEn(R, ρ) for the guessing problem has the same limiting value.

Let Ln be a minimal length function that attainsEn,l(R, ρ). Arrange the elements ofXn in the decreasing order of their
probabilities. Furthermore, ensure that all sequences belonging to the same type occur together. Enumerate the sequences from
0 to |X|n − 1. Henceforth we refer to a message by its index.

We claim that we may assumeLn is a nondecreasing function of the message index. Suppose this is not the case. Letj be the
first index where the nondecreasing property is violated, i.e.Ln(i) ≤ Ln(i+1) for i = 1, · · · , j − 1, andLn(j) > Ln(j +1).
Identify the smallest indexj∗ that satisfiesLn(j

∗) > Ln(j + 1). Modify the lengths as follows: setL′
n(j

∗) = Ln(j + 1),
thenL′

n(i + 1) = Ln(i) for i = j∗, · · · , j, and leave the rest unchanged. Call the new set of lengthsLn. In effect, we have
“bubbled”Ln(j+1) towards the smaller indices to the nearest location that does not violate the nondecreasing condition. The

new set of lengths will have the same or lowerE
[

(

min{2Ln(X
n

, 2nR}
)ρ
]

. By the optimality of the original set of lengths,
the new lengths are also optimal. Furthermore, as a consequence of the modification, the location of the first index where
Ln(i) � Ln(i + 1) has strictly increased. Continue the process until it terminates; it will after a finite number of steps. The
resultingLn is nondecreasing and optimal.

Next, observe that

2Ln(i) ≥ i+ 1 (32)

because the length functions are such that the sequences areuniquely decipherable. Another way to see (32) is to observethat
index i is thei+1st guess when guessing in the increasing order ofLn as prescribed by the indices, and therefore (8) implies
(32).
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We then have the following sequence of inequalities
∑

an∈Xn

Pn(a
n)
(

min
{

2Ln(a
n), 2nR

})ρ

≥ Pn(x
n)

∑

an∈Txn

(

min
{

2Ln(a
n), 2nR

})ρ

(33)

≥ Pn(x
n)

i0(Txn )+|Txn |−1
∑

i=i0(Txn )

(

min
{

i+ 1, 2nR
})ρ

(34)

≥ Pn(x
n)

|Txn |
∑

i=1

(

min
{

i, 2nR
})ρ

(35)

≥ Pn(x
n)

∫ |Txn |

0

(

min
{

y, 2nR
})ρ

dy

≥ Pn(x
n)|Txn | 1

1 + ρ

(

min
{

|Txn |, 2nR
})ρ

(36)

≥ P{Txn} 1

1 + ρ

(

min
{

2nH(Qxn )−nε(n), 2nR
})ρ

(37)

≥ 2−2nε(n)

1 + ρ
2n(ρmin{H(Qxn ),R}−D(Qxn‖P )), (38)

where (33) follows by restricting the sum to sequences in type Txn , (34) follows because of (32) and by settingi0(Txn) as
the starting index of typeTxn . We can do this because our ordering clustered all sequencesof the same type. Inequality (35)
holds because every term under the summation is lower bounded by the corresponding term on the right side. Inequality (36)
follows because of the following. For simplicity, let|Txn | = N and2nR = M . WhenN ≤ M ,

1

N

∫ N

0

yρ dy =
Nρ

1 + ρ
,

and whenN > M ,

1

N

∫ N

0

(min {y,M})ρ dy

=
1

N

∫ M

0

yρ dy +
1

N

∫ N

M

Mρ dy

=
M

N

Mρ

1 + ρ
+

(

1− M

N

)

Mρ

≥ Mρ

1 + ρ
.

Inequality (37) follows from (30) and (38) follows from (29).
The typeTxn in (38) is arbitrary. Moreover,D(Q ‖ P ) andH(Q) are continuous functions ofQ, and the set of rational

empirical functions{Qxn} become dense in the class of unifilar sources with|S| states and|X| alphabets, asn → ∞. From
(38) and the above facts, we getlim infn→∞ En,l(R, ρ) ≥ E(R, ρ).

To show the other direction, we define a universal encoding for the class of unifilar sources on state spaceS with alphabetX.
Given a sequencexn, encode each one of the|S|(|X| − 1) source parameters{qxn(x | s)} estimated fromxn. Each parameter
requireslog(n + 1) bits. Then usenH(Qxn) bits to encode the index ofxn within the typeTxn . The resulting description
length can be set to

L∗
n(x

n) = nH(Qxn) + |S|(|X| − 1) log(n+ 1),

where we have ignored constants arising from integral length constraints. We call this strategy the minimum description length
coding andL∗

n the minimum description lengths.
L∗
n depends onxn only through its typeTxn . Moreover, there are at most(n + 1)|S|(|X|−1) types. Using these facts, (27),

and (28), we get

E
[(

min
{

2L
∗

n(X
n), 2nR

})ρ]

(39)

≤ (n+ 1)(1+ρ)|S|(|X|−1) (40)

· max
Txn⊆Xn

P{Txn}min
{

2nρH(Qxn ), 2nρR
}

(41)

≤ (n+ 1)(1+ρ)|S|(|X|−1)2nE(R,ρ). (42)
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Take logarithms and normalize byn to get

lim sup
n→∞

En,l(R, ρ) ≤ E(R, ρ).

This completes the proof.
The minimum description length coding works without knowledge of the true source parameters. Knowledge of the transition

function φ is sufficient. In the context of guessing, the optimal attackstrategy does not depend on knowledge of the source
parameters. Interlacing the exhaustive key-search attackwith the attack based on increasing description lengths is asymptotically
optimal. Incidentally, the encryption strategy of Merhav and Arikan [2, Th. 1] uses only type information for encoding,and
is applicable to unifilar sources. The same arguments in the proof of [2, Th. 1] go to show that their encryption strategy is
asymptotically optimal for unifilar sources.

Let us define the quantity
E(ρ)

∆
= max

Q
[ρH(Q)−D(Q ‖ P )] . (43)

Observe thatE(ρ) = E(R, ρ) for R ≥ log |X|, i.e., E(ρ) determines the guessing exponent under perfect encryption. The
following result identifies useful properties of these functions.

Proposition 13:E(ρ) is a convex function ofρ. E(ρ,R) is a convex function ofρ and a concave function ofR.
Proof: Equation (43) is a maximum of affine functions ofρ and is therefore convex inρ. The same is the case for

E(R, ρ). To see the concavity ofE(R, ρ) in R, write (31) as done in [2, Sec. IV] as

E(R, ρ)

= max
Q

[

ρ min
0≤θ≤ρ

[θH(Q) + (ρ− θ)R]−D(Q ‖ P )

]

= max
Q

min
0≤θ≤ρ

[θH(Q) + (ρ− θ)R −D(Q ‖ P )]

= min
0≤θ≤ρ

max
Q

[θH(Q) + (ρ− θ)R −D(Q ‖ P )] (44)

= min
0≤θ≤ρ

[E(θ) + (ρ− θ)R)] . (45)

The maximization and minimization interchange in (44) is justified because the term within square brackets, sum of a scaled
conditional entropy and the negative of a conditional divergence, is indeed concave inQ and affine inθ. Since (45) is a
minimum of affine functions inR, it is concave inR.

It is easy to see the following fact for a unifilar source:

lim
n→∞

1

n
log

(

∑

xn∈Xn

Pn(x
n)1/(1+ρ)

)1+ρ

= E(ρ). (46)

That the left side in (46) is at least as large as the right sidefollows from the proof in [6, Appendix B] and the observation
that ρH(Q) −D(Q ‖ P ) is continuous inQ and that the set of rational empirical PMFsQxn is dense in the set of unifilar
sources with state spaceS and alphabetX, asn → ∞. The other direction is an easy application of the method of types. The
initial state which is implicit inPn does not affect the value of the limit (as one naturally expects in this Markov case). In the
memoryless case, i.e., whensi = xi, andP (x|s) is independent ofs, this quantity converges toE(ρ) = ρH1/(1+ρ)(P ) where
H1/(1+ρ)(P ) is the Rényi entropy of the DMSP on X.

Analogous to a DMS case, we can characterize the behavior ofE(R, ρ) as a function ofR for a particular sourceP .
Proposition 14: For a givenρ > 0 and a unifilar source, letE′(ρ) exist. Then

E(R, ρ) =







ρR, R < H,
(ρ− θ0)R + E(θ0), H ≤ R ≤ E′(ρ),
E(ρ), R > E′(ρ)

whereθ0 ∈ [0, ρ] in the second case.
Proof: Indeed, from (45) it is clear by the continuity of the term within square brackets that for all values ofR,

E(R, ρ) = (ρ− θ0)R+ E(θ0) for someθ0 ∈ [0, ρ], and the second case is directly proved.
SupposeR < H . Then we may chooseQ = P in (31) to getE(R, ρ) ≥ ρR. However, (25) indicates thatE(R, ρ) ≤ ρR,

which leads us to conclude thatE(R, ρ) = ρR whenR < H .
Next observe thatE(R, ρ) ≤ E(ρ) is direct for all values ofR, and in particular forR > E′(ρ). To show the reverse

direction, (45) yields

E(R, ρ) = min
0≤θ≤ρ

[E(θ) + (ρ− θ)R]

= E(ρ) + min
0≤θ≤ρ

(ρ− θ)

(

R− E(ρ)− E(θ)

ρ− θ

)

.
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The proof will be complete if we can show that the term within parentheses is nonnegative for0 ≤ θ ≤ ρ. This holds because
of the following. By the convexity ofE(θ), the largest value of(E(ρ)−E(θ))/(ρ− θ) for the given range ofθ is E′(ρ) (see
for example, Royden [12, Lemma 5.5.16]), and this is upper bounded byR.

For a DMS, Merhav and Arikan [2] show thatE′(ρ) = H(Pρ), wherePρ is the PMF given by

Pρ(x) =
P (x)1/(1+ρ)

∑

a∈X
P (a)1/(1+ρ)

. (47)

They also show thatθ0 is the unique solution toR = H(Pθ).

V. L ARGE DEVIATIONS PERFORMANCE

A. General Sources With Memory

We now study the problem of large deviations in guessing and its relation to source compression. Our goal is to extend
the large deviations results of Merhav and Arikan [2] to sources with memory using the tight relationship between guessing
functions and length functions. We begin with the followinggeneral result.

Proposition 15: 1) WhenB > R > 0, there is an attack strategy that satisfies

sup
fn

Pn

{

G(Xn | Y ) ≥ 2nB
}

= 0

for all sufficiently largen.
2) WhenB ≤ R, there is an attack strategy that satisfies

sup
fn

Pn

{

G(Xn | Y ) ≥ 2nB
}

≤ min
Ln

Pn {Ln(X
n) ≥ nB − 1} .

3) WhenB < R, there is an encryption functionfn such that

Pn

{

Gfn(X
n | Y ) ≥ 2nB

}

≥ 1

3
·min

Ln

Pn {Ln(X
n) ≥ nB + 1 + log cn} .

Remarks: WhenB = R, the large deviations behavior of guessing and coding may differ. If we define

Fn(R,B)
∆
= inf

fn

[

− 1

n
logPn

{

Gfn(X
n|Y ) ≥ 2nB

}

]

(48)

and

Fn,l(B)
∆
= max

Ln

[

− 1

n
logPn

{

Ln(X
n) ≥ 2nB

}

]

, (49)

thenFn(R,B) = ∞ for all sufficiently largen if R < B. WhenR > B, Fn(R,B) is bounded betweenFn,l(B − 1/n) and
Fn,l(B + (1 + log cn)/n)) ignoring vanishing terms.

Proof: Observe first that for any encryption function, the strategy(18) requires at most2nR+1 guesses. IfB > R,
2nB > 2nR+1 for all sufficiently largen, and therefore

sup
fn

Pn

{

G(Xn|Y ) ≥ 2nB
}

= 0.

When B ≤ R, the same strategy with an optimalLn that minimizesPn{Ln(X
n) ≥ nB − 1} requiresG(xn | y) ≤

2min
{

2L(xn), 2nR
}

guesses. Hence
{

G(xn | y) ≥ 2nB
}

⊆ {Ln(x
n) ≥ nB − 1}

and therefore

Pn{G(Xn | Y ) ≥ 2nB} ≤ Pn{Ln(X
n) ≥ nB − 1}.

Since this is true for any encryption functionfn, the second statement follows. The attackG(· | y) given by (18) interlaces
guesses in the increasing order of theLn that attains the minimum inminLn

Pn {Ln(X
n) ≥ nB − 1} with the exhaustive

key-search strategy.
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Next, let B < R and consider the encryption strategy given in the proof of Proposition 8 withN = M⌈|X|n/M⌉ (with
dummy messages possibly appended) andM = 2nR. Let GPn

denote guessing in the increasing order ofPn-probabilities.
Once again we refer to messages by their indices. For the optimal guessing strategyGfn , we have

Pn

{

Gfn(X
n | Y ) ≥ 2nB

}

=

N/M−1
∑

j=0

M−1
∑

i=2nB−1

Pn {Xn = jM + i}

≥
N/M−1
∑

j=0

Pn {Xn = (j + 1)M − 1}
(

M − 2nB
)

≥
N/M−1
∑

j=0

M−1
∑

i=0

Pn {Xn = (j + 1)M + i} M − 2nB

M

=

(

1− 2nB

M

) N−1
∑

m=M

Pn {Xn = m}

≥ 1

2

N−1
∑

m=M

Pn {Xn = m} ,

where the last inequality follows becauseB < R. (WhenB = R, the lower bound is 0 and this technique does not work).
Also, rather trivially,

Pn

{

Gfn(X
n | Y ) ≥ 2nB

}

≥
M−1
∑

m=2nB−1

Pn {Xn = m} .

Putting these together, we get

N−1
∑

m=2nB−1

Pn {Xn = m} = Pn

{

GPn
(Xn) ≥ 2nB

}

≤ 3Pn

{

Gfn(X
n | Y ) ≥ 2nB

}

.

Since{LGPn
(xn) ≥ nB + 1 + log cn} ⊆ {GPn

(xn) ≥ 2nB}, we get

Pn{Gfn(X
n | Y ) ≥ 2nB}

≥ 1

3
· Pn{LGPn

(Xn) ≥ nB + 1 + log cn}

≥ 1

3
·min

Ln

Pn{Ln(X
n) ≥ nB + 1 + log cn},

and this concludes the proof.

B. Unifilar Sources

In this subsection, we specialize the result of Proposition15 to unifilar sources.
Corollary 16: For a unifilar source,

F (R,B)
∆
= lim

n→∞
Fn(R,B) =

{

∞, B > R,
F (B), B < R,

where
F (B)

∆
= min

Q:H(Q)≥B
D(Q ‖ P )

is the source coding error exponent for the unifilar source.
Proof: This follows straightforwardly from the remarks immediately following Proposition 15 if we can show that

limn→∞ Fn,l(B) = F (B) and thatF (B) is continuous in(0, log |X|). This was proved by Merhav in [6, Sec. III].
We remark that the optimal attack strategy does not depend onthe source parameters. Guessing in the increasing order

description lengths, interlaced with the exhaustive key-search attack is an asymptotically optimal attack. Furthermore, as is the
case for guessing moments, the encryption strategy of Merhav and Arikan [2, Th. 2] is easily verified to be an asymptotically
optimal encryption strategy for unifilar sources whenB < R.
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E(R, ρ) andF (R,B) for unifilar sources are related via the Fenchel-Legendre transform, i.e.,

E(R, ρ) = sup
B>0

[ρB − F (R,B)]

and
F (R,B) = sup

ρ>0
[ρB − E(R, ρ)] .

The proof is identical to that of [2, Th. 3] where this result is proved for DMSs.

C. Finite-State Sources

We now consider the larger class of finite state sources. The Lempel-Ziv coding strategy [5] asymptotically achieves the
entropy rate of a finite-state source without knowledge of the source parameters. It is therefore natural to consider itsuse in
attacking a cipher system that attempts to securely transmit a message put out by a finite-state source. Our next goal is to
show that guessing in the increasing order of Lempel-Ziv coding lengths has an interesting universality property.

Let ULZ : Xn → N be the length function for the Lempel-Ziv code [5]. The following theorem due to Merhav [6] indicates
that the Lempel-Ziv algorithm is asymptotically optimal inachieving the minimum probability of buffer overflow.

Theorem 17 (Merhav [6]):For any length functionLn, every finite-state sourcePn, everyBn ∈ (nH, n log |X|) whereH
is the entropy-rate of the sourcePn, and all sufficiently largen,

Pn{ULZ(X
n) ≥ Bn + nε(n)}

≤ (1 + δ(n)) · Pn{Ln(X
n) ≥ Bn} (50)

whereε(n) = Θ(1/
√
logn) is a positive sequence that depends on|X| and |S|, andδ(n) = n22−nε(n).

Remark: Merhav’s result [6, Th. 1] assumes thatBn = nB for a constantB ∈ (H, log |X|), but the proof is valid for any
sequenceBn ∈ (nH, n log |X|).

Let GLZ be the short-hand notation for the more cumbersomeGULZ
, the guessing function associated withULZ . Let cn

be as given in (4) withXn replacingX. Furthermore, for the key-constrained cipher system, letGLZ(· | y) denote the attack
of guessing in the order prescribed byGLZ interlaced with the exhaustive key-search attack. ObservethatGLZ(· | y) needs
knowledge offn.

Theorem 18:For any guessing functionGn, every finite-state sourcePn, everyB ∈ (H, log |X|) whereH is the entropy-rate
of the sourcePn, and all sufficiently largen,

Pn

{

n−1 logGLZ(X
n) ≥ B + ε(n) + γ(n)

}

≤ (1 + δ(n)) · Pn

{

n−1 logGn(X
n) ≥ B

}

(51)

whereε(n) andδ(n) are the sequences in (50), andγ(n) = (1 + log cn)/n = Θ(n−1 logn).
For the key-rate constrained cipher system, letB < R. Then for any encryption function, we have

Pn

{

n−1 logGLZ(X
n | Y ) ≥ B + 1/n+ ε(n) + γ(n)

}

≤ 3(1 + δ(n)) · sup
fn

Pn

{

n−1 logGfn(X
n | Y ) ≥ B

}

(52)

for all sufficiently largen.
Remark: Thus the Lempel-Ziv coding strategy provides an asymptotically optimal universal attack strategy for the class of

finite-state sources, in the sense of attaining the limitingvalue of (48), if the limit exists.
Proof: Observe that

(1 + δ(n))Pn

{

Gn(X
n) ≥ 2nB

}

≥ (1 + δ(n))Pn {LGn
(Xn) ≥ nB + 1 + log cn} (53)

≥ Pn {ULZ(X
n) ≥ nB + 1 + log cn + nε(n)} (54)

≥ Pn

{

GLZ(X
n) ≥ 2nB+nε(n)+nγ(n)

}

, (55)

where (53) follows from the first inclusion in (10), and (54) from (50). The last inequality (55) follows from (11). This proves
the first part.

To show the second part, we use Proposition 15.3 and Theorem 17 as follows: for all sufficiently largen,

3(1 + δ(n)) sup
fn

Pn

{

Gfn(X
n | Y ) ≥ 2nB

}

≥ (1 + δ(n))Pn {Ln(X
n) ≥ nB + nγ(n)}

≥ Pn {ULZ(X
n) ≥ nB + nγ(n) + nε(n)}

≥ Pn

{

GLZ(X
n | Y ) ≥ 2nB+1+nγ(n)+nε(n)

}
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where the last inequality holds for any arbitrary encryption function withGLZ(· | y) being the interlaced attack strategy.
Observe thatε(n) + γ(n) = Θ(1/

√
log n). For unifilar sources, a result analogous to Theorem 18 can beshown with

ε(n) + γ(n) = Θ(n−1 logn). Guessing for this class of sources proceeds in the order of increasing description lengths. This
conclusion follows from a result analogous to Theorem 17 on the asymptotic optimality of minimum description coding (see
Merhav [6, Sec. III]).

D. Competitive Optimality

We now demonstrate a competitive optimality property forGLZ . From [6, eqn. (28)] extended to finite-state sources, we
have for any competing codeLn

Pn{ULZ(X
n) > Ln(X

n) + nε(n)}
≤ Pn{ULZ(X

n) < Ln(X
n) + nε(n)} (56)

whereε(n) = Θ((log logn)/(logn)). From (8) and (6), we get

ULZ(x
n) ≥ logGLZ(x

n)

and
logG(xn) ≥ LG(x

n)− 1− log cn,

respectively. We therefore conclude that

{logGLZ(x
n) > logG(xn) + n(ε(n) + γ(n))}

⊆ {ULZ(x
n) > LG(x

n) + nε(n)}
and that

{ULZ(x
n) < LG(x

n) + nε(n)}
⊆ {logGLZ(x

n) < logG(xn) + n(ε(n) + γ(n))}.
From these two inclusions and (56), we easily deduce the following result.

Theorem 19:For any finite-state source and any competing guessing function G, we have

Pn{logGLZ(X
n) > logG(Xn) + nε′(n)}

≤ Pn{logGLZ(X
n) < logG(Xn) + nε′(n)}

whereε′(n) = ε(n) + γ(n).
For unifilar sources, the above sequence of arguments for minimum description length coding and [6, eqn. (28)] imply that

we may takeε′(n) = Θ(n−1 logn).

VI. CONCLUDING REMARKS

In this paper, we studied two measures of cryptographic security based on guessing, for sources with memory. The first one
was based on guessing moments and the second on large deviations performance of the number of guesses. We identified an
asymptotically optimal encryption strategy that orders the messages in the decreasing order of their probabilities, enumerates
them, and then encrypts as many least-significant bits as there are key bits. We also identified an optimal attack strategybased
on a length function that attains the optimal value for a source coding problem. Both these strategies need knowledge of the
message probabilities.

We then specialized our results to the case of unifilar sources, gave formulas for computing the two measures of performance,
and argued that the optimal encryption strategy as well as the optimal attack strategy depended on the source parametersonly
through the number of states and letters, i.e., the optimal encryption and attack strategies are universal for this class.

We also showed that an attack strategy based on the Lempel-Ziv coding lengths is asymptotically optimal for the class
of finite state sources. Finally, we provided competitive optimality results for guessing in the order of increasing description
lengths and Lempel-Ziv lengths.

We end this paper with a short list of related open problems.
• Consider a modification to the encryption technique of Proposition 8 where the messages are enumerated in the increasing

order of their Lempel-Ziv lengths instead of message probabilities. Does this ordering lead to an asymptotically optimal
encryption strategy? Such a strategy would not depend on thespecific knowledge of source parameters.

• It would be of interest to see if the results on guessing moments for unifilar sources can be extended to finite-state sources.
• The large deviations behavior of guessing whenB = R is not well-understood and might be worth investigating.
• As mentioned in [2], one might wish to consider a scenario where only a noisy version of the cryptogram is available to

the attacker. The degradation in the attacker’s performance could be quantified.
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