
A Binary Coding Approach for Combination
Networks and General Erasure Networks

Ming Xiao
Department of Computer Engineering
Chalmers University of Technology

Gothenburg, 412 96 Sweden
mxiao@ce.chalmers.se

Muriel Médard
Lab. for Info. and Decision Systems

Massachusetts Institute of Technology
Cambridge, MA, 02139 USA

medard@mit.edu

Tor Aulin
Department of Computer Engineering
Chalmers University of Technology

Gothenburg, 412 96 Sweden
aulin@ce.chalmers.se

Abstract— We investigate a deterministic binary coding ap-
proach for combination networks. In the literature, network
coding schemes with large alphabet sizes achieve the min-cut
capacity. Here, we propose an approach using binary (GF(2))
sequences instead of going to a large alphabet size. In the
encoding process, only cyclic-shifting and XOR operations are
used. The encoding complexity is linear with the length of
information bits. The transfer matrix is sparse, and the de-
coder can perfectly decode source information by a sparse-
matrix processing approach. Our approach does not use any
redundant bits, and achieves the min-cut capacity. Further, the
code blocks can be produced in a rateless way. The sink can
decode source information from any subset of code blocks, if the
number of received distinct blocks is the same as that of the
information blocks. Thus, we use the code for general networks
with erasure channels. The proposed binary rateless codes have
quite small overheads and can work with a small number of
blocks. With high probability, the codes behave as maximum
distance separable (MDS) codes.

I. INTRODUCTION

s

[I1, I2] {a1, a2, b1, b2}

! "#
m1 m2 m3 m4

t6t1 t2 t3 t4 t5
$ % &' " (&) *# + $

[I1] [I2] [I1 + I2] [I1 + 2I2]

{b1,
b2}

{a1 ⊕ b1,
a2 ⊕ b2}

{a1 ⊕ b2,
a2}

{a1,
a2 ⊕ b1}

Fig. 1. A
`4
2

´
combination network. [·] is the nonbinary solution, I1 and I2

are symbols with the minimum ternary alphabet size. {·} denotes the binary
sequence solution. a1, a2, b1 and b2 are information bits.

We investigate codes for a special class of networks:
combination networks. Though they have a simple structure,

This work was supported in part by DAWN: Dynamic Ad Hoc Wireless
Networking ARO contract 007625.

the codes capture some essential properties of more general
problems. One can always find, for such networks, codes
that satisfy the maximum distance separable (MDS) property,
namely, the source can be reconstructed from any subset of
blocks equal to the number of blocks in the source before
coding. Combination networks are akin to the topologies found
in storage area networks (See, for instance, Page 125, [4]).

An
(

N
m

)
combination network [1], [2] is a 3-layer single

source multicast network. The first layer is the source node,
which has independent messages. The second layer consists
of N nodes, where each of them has one edge connecting to
the source. There are

(
N
m

)
sinks in the third layer. Each sink

has m edges connecting to m nodes of the second layer. The
combination networks are often used in the literature to show
the usefulness of a large alphabet size for codes using a scalar
approach, e.g., [3], [5], [6]. A

(
4
2

)
combination network is

shown in Fig. 1. Each edge has unit capacity. Here, a unit is in
the alphabet size of the network code. The multicasting task
requires that both symbols (I1 and I2) should be received at
six sinks. Clearly, the min-cut between each sink and source
is 2. It is shown (e.g., [3], [5], [6]) that the binary coding
scheme with the scalar approach cannot achieve the maximal
possible flow, which is determined by the min-cut [9], [10]. A
minimum ternary alphabet size is used to achieve the min-cut
capacity [3], [5]. With an increased N , an even higher alphabet
size is used. This is true if codes using the scalar approach
are considered. However, if the code with a sequence (vector)
approach is used, the situation is different. This is what we
shall discuss.

If there are only additions (subtractions) in the code, oper-
ations in a field of GF(2n) and n bit sequences (vectors) are
the same. They both are n bit-wise operations [12]. A bit-wise
operation means an operation only between bits having the
same positions in the sequences. However, for multiplication
(division), operations on GF(2n) have much higher complexity
than those of n bit-wise sequences. This motivates some earlier
work on using a sequence of bits instead of a higher alphabet
size. In [5], codes with a binary sequence are used for a special
network operating below channel capacity. The codes in [5]
use redundancy, which increases with the sequence length.
In [11], a random binary code approach is shown to replace
a large alphabet size. The approach uses an encoder at the

source, which introduces redundancy. In intermediate nodes,
the code performs permute-and-add operations. Though the
alphabet size is reduced, a large block length is used to get a
low error probability (for error-free channels).

The coding scheme proposed in this paper is deterministic,
and introduces no redundancy, so that the min-cut capacity
can be achieved. The sinks can perfectly recover source
information bits for error-free channels. In the presence of
erasures, our codes achieve the MDS property. In Section II,
we show the coding scheme, and analyze the rank property.
In Section III, we propose quasi-systematic codes, and discuss
the connection between our codes and array codes. In Section
IV, we discuss complexity and block length. In Section V, we
investigate a rateless approach for general erasure networks.

II. CODING SCHEME

Without loss of generality, we assume an
(

N
m

)
combina-

tion network as described before. Both N and m are arbitrary
positive integers with m ≤ N . Thus, the min-cut between the
source and each sink is m. The information bits in the source
are put into m sequences. We denote them as I1, I2, · · · , Im

(row vectors). The length of each sequence is p, and p+1 is a
prime. Here we assume that source information bits are long
enough to form these sequences. For the jth (j = 1, · · · , N)
output channel, the output bit sequences are encoded by
Algorithm 2.1. In this paper, we call a bit sequence output
from the source a coded block. For encoding, we only use
cyclic-shifting and XOR operations. Both of them have very
low complexity and can be easily implemented by a hardware
([12], [15]). We refer to the coding scheme as the binary
sequence code.

Algorithm 2.1: (Encoding)
1: Pad-zero: In the end of each Ii(i = 1, · · · , m), one zero is

appended in sequences. The resulting sequences are Îi.
2: Cyclic-shift. For the output to the jth (j = 1, · · · , N) second

layer node, cyclic-shift Îi (j − 1)(i − 1) times (bits). The
resulting sequence is denoted as eIj,i.

3: Final-bit removal. The final bit of eIj,i is discarded.
4: Binary add (XOR): The output to the jth (j = 1, · · · , N)

second layer node is formed by binary adding all eIj,i(i =
1, · · · , m).

Note that Ĩj,i has the same length as Ii after the final bit is
removed. In the encoding process, code blocks are produced
in a block-by-block fashion rather than simultaneously. This
property will be exploited later for the network with erasure
channels. Now, we first analyze some algebraic properties of
the code. We denote the coded block (p bits) in the jth second
layer as Cj . By Algorithm 2.1,

Cj = M jI (1)

where I = [I1, I2, · · · , Im]T is a pm × 1 column vec-
tor denoting the source information bit sequences. M j =[
M j,1,M j,2, · · · ,M j,m

]
is a p × pm matrix denoting the

encoding matrix for the jth second-layer node. M j,i(i =
1, 2, · · · ,m) is

M j,i =

0 · · · 0 · · · 0 1 0 · · · 0
0 · · · 0 · · · 0 0 1 · · · 0

· · · · · ·
0 · · · 1 0 · · · 0 0 · · · 0
0 · · · 0 1 · · · 0 0 · · · 0

p×p

.

(2)
Each column or row of M j,i has at most one 1, and other

elements are zeros. Let mk,t(k, t = 1, · · · , p) be the kth row
and tth column element of M j,i,

mk,t =

{
1 t = ((i− 1)(j − 1) + k) mod(p + 1),
0 otherwise.

(3)

From (3), we can see that the kth row of M j,i is all-zero if
((i−1)(j−1)+k) mod(p+1) = 0. By the topology of com-
bination networks, a sink z(z = 1, · · · ,

(N
m

)
) must connect to

m different second-layer nodes z1, z2, · · · , zm. The m blocks
(sequences) received in the sink z are Cz1

, Cz2
, · · · , Czm

,
totaling pm bits. The transfer matrix for the sink z is

Ms,z =

Mz1,1 Mz1,2 · · · Mz1,m

Mz2,1 Mz2,2 · · · Mz2,m

· · ·
Mzm,1 Mzm,2 · · · Mzm,m

pm×pm

. (4)

The decoding process is to recover the pm information bits
from the received pm code bits, namely,

IT
1

IT
2

:
IT

m

 = M−1
s,z

Cz1

Cz2

:
Czm

 . (5)

In the encoding and decoding process, all operations are
performed bit-wise. The decoder recovers pm bits from pm
received bits. The validity of the code then hinges on the
invertibility of Ms,z . To show that Ms,z is invertible, we
introduce another matrix M̃ j,i with p + 1 rows and p + 1
columns. The elements of M̃ j,i (m̃k,t, k, t = 1, 2, · · · , p + 1)
are obtained by (3). Since M̃ j,i is a (p + 1) × (p + 1)
matrix, each row or column of M̃ j,i has exactly one 1 and
all other elements are zero by (3). Note that M̃ j,i is a cyclic-
shifting matrix. A (p + 1)× 1 column vector is cyclic-shifted
(i − 1)(j − 1) times if multiplied with M̃ j,i. M j,i and M̃ j,i

have the same elements except in the final row and the final
column of M̃ j,i.

Following the notation of [13], [14], we denote σ as the one-
time cyclic-shifting matrix. Thus, M̃ j,i = σ(i−1)(j−1)mod(p+1).
If (i − 1)(j − 1)mod(p + 1) = 0, M̃ j,i is an identity matrix.
In the following, we shall omit the mod(p + 1) operation and
use (i− 1)(j − 1). Then,

M̃s,z !

M̃z1,1 M̃z1,2 · · · M̃z1,m

M̃z2,1 M̃z2,2 · · · M̃z2,m

· · ·
M̃zm,1 M̃zm,2 · · · M̃zm,m

=

σ0 σ(z1−1) · · · σ(z1−1)(m−1)

σ0 σ(z2−1) · · · σ(z2−1)(m−1)

· · ·
σ0 σ(zm−1) · · · σ(zm−1)(m−1)

 .(6)

M̃s,z is a (p+1)m×(p+1)m matrix. σ0 is a (p+1)×(p+1)
identity matrix. Without loss of generality, we assume 1 ≤
z1 < z2 < · · · < zm ≤ N .

Lemma 1. The rank of M̃s,z is pm + 1.
Proof: Owing to space limitations, we only give an outline

of the proof. The circulant matrix σk is associated with a
polynomial xk, which is over a ring of binary polynomials
modulo Rp+1 = xp+1 − 1. M̃s,z is associated with a
Vandermonde polynomial matrix with a nonzero determinant
to Rp+1/(x − 1). We define an auxiliary vector V j =
{V j,0, V j,1, · · · , V j,m−1}, j = 0, · · · ,m− 2. The subvectors
V j,k, (k = 0, · · · ,m − 1) are 1 × (p + 1) row vectors.
V j,k = {1, 1, · · · , 1} if k = j, or k = j+1, otherwise V j,k =
{0, 0, · · · , 0}. The dimension of span{V j |j = 0, 1, · · · ,m−2}
is m−1. It can be shown the kernel of M̃s,z = span{V j |j =
0, 1, · · · ,m−2}. The proof of this can be found in [13, Lemma
2.2] 1, [14, Section II], for instance. Thus, the rank of M̃s,z

is pm + 1.
Theorem 1. The rank of Ms,z is pm (full-rank).
Proof: We add the rows k(p + 1) + n, (n = 1, 2, · · · , p) of

M̃s,z to the rows (k + 1)(p + 1) for each k = 0, 1, · · · ,m−
1, i.e., we add all rows (except the final row) of the (p +
1) × m(p + 1) matrix [σ0,σ(zk−1), · · · ,σ(zk−1)(m−1)], (k =
1, · · · ,m) to their final rows. The resulting matrix is denoted
M̃1. Since there is exactly one 1 in each column of σj for
any j, there is exactly one 1 in each column of the matrix
[σ0,σ(zk−1), · · · ,σ(zk−1)(m−1)]. Then, the (k + 1)(p + 1)th
rows of M̃1 are all-one for k = 1, · · · ,m. M̃1 also has rank
pm+1 since we only perform row transformations from M̃s,z .
Then, we remove these m all-one rows and get a pm×(p+1)m
matrix M̃2. The rank of M̃2 is at most one less than that of
M̃1. Since M̃2 has pm rows, the rank of M̃2 is pm.

Now we repeat the above procedure for the columns of M̃2.
In the columns k(p+1)+n, (n = 1, 2, · · · , p+1) of M̃2, there
is exactly one 1 for each row for each k = 0, 1, · · · , m−1. We
add the columns k(p+1)+n, (n = 1, 2, · · · , p) to the columns
(k + 1)(p + 1) for k = 0, 1, · · · ,m − 1, and obtain a matrix
M̃3. The columns (k+1)(p+1), (k = 0, 1, · · · ,m−1) of M̃3

are all-one columns. M̃3 has rank pm (the same rank as M̃2).
Then, we remove these all-one columns and get a matrix M̃4,
which has the same rank as M̃3. The reason is follows: all
M̃zk,1, (k = 1, · · · ,m) of M̃s,z are (p+1)× (p+1) identity

1 fMs,z is slightly more general than the parity check matrix in [13], but
there is no difference with the same proof technique of [13].

matrices. Thus, the submatrices composed of the pk + 1-to-
pk + p rows (k = 0, 1, · · · ,m− 1) and of the 1-to-p columns
of M̃4 are also p× p identity matrices. Note that M̃4 is the
matrix M̃s,z with k(p+1), (k = 1, · · · ,m) rows and columns
being removed. Thus, the all-one column can be rebuilt in M̃4

by adding the first p− 1 columns to the pth column. M̃4 has
the same rank as M̃3. One may show that M̃4 = Ms,z .
Hence, Ms,z has rank pm. Q.E.D.

III. QUASI-SYSTEMATIC CODES AND CONNECTION WITH
ARRAY CODES

In addition to the coded blocks produced by Algorithm 2.1,
our codes can also use uncoded blocks directly. For this, up to
m− 1 uncoded blocks can be output without encoding. Other
N −m+1 blocks are formed by Algorithm 2.1. Any m of N
blocks can reproduce m information blocks. For convenience,
we call the codes using uncoded blocks as quasi-systematic
codes. We call the coded blocks from Algorithm 2.1 as
nonsystematic blocks, and the codes only using nonsystematic
blocks as nonsystematic codes. The transfer matrices for the
quasi-systematic codes are

Ms,s =

0 · · · Uz1
· · · 0

· · ·
0 Uzk

· · · 0
Mzk+1,1 Mzk+1,2 · · · Mzk+1,m

· · ·
Mzm,1 Mzm,2 · · · Mzm,m

,

(7)
where Uz1

, · · · , Uzk
are p×p identity matrices. k is an integer

with 0 ≤ k < m. In Ms,s, k upper identity matrices are
for uncoded blocks, and m − k bottom rows of submatrices
are for nonsystematic blocks. The nonsystematic part of Ms,s

requires the first column of submatrices to be identity matrices
for full-rank. Then, identity matrices for uncoded blocks
cannot appear in the left of Ms,s. Hence, there are at most
m−1 uncoded output blocks. Ms,s is alike to the parity matrix
of binary MDS array codes, e.g., [14], [15]. We use it as the
generator matrix. Thus, our quasi-systematic codes are similar
to the dual code of array codes. Array codes are systematic
codes. There is no limitation on the number of systematic
blocks for array codes (Assume the block length p is large
enough). However, the number of parity blocks of array codes
(k in Ms,s) is small. At most eight parity blocks is used in
[15]. To produce an arbitrary number of parity blocks for MDS
array codes is still an open problem e.g., [14], [15]. Thus, for a
given number of systematic blocks, MDS array codes cannot
have an arbitrary number of output blocks. For this reason,
array codes cannot be used for combination networks, which
may have many second-layer nodes (output blocks).

Assuming the block length p is large enough, there is no
limitation on the number of output blocks of our codes for
a given number of information blocks. However, there are
limitations on the number of uncoded blocks if we output
them directly and keep the MDS property (to be discussed
later). Similar to those on parity blocks for array codes, there

are two constraints on uncoded blocks of our codes: First, m
(the min-cut and the number of information blocks) might not
be arbitrarily large when we use quasi-systematic codes. A
large m needs very complex verification on p. For a network
with small m (e.g., topologies of some storage devices), there
is a significant benefit to use quasi-systematic codes since it
can greatly reduce encoding and decoding complexity. Second,
there is a constraint in the code length p. For quasi-systematic
codes, not all primes (minus one) can be used as code lengths
for m > 3. The constraints are similar to those of parity check
matrices of array codes in [15] (Table I). Under the constraints,
we can show that Ms,s is full-rank using approaches similar to
Lemma 1 and Theorem 1. Note that for nonsystematic codes,
both constraints do not exist for our codes.

IV. COMPLEXITY AND CODEWORD LENGTH DISCUSSION

In Algorithm 2.1, m Ĩj,is with the length p bits are added.
Thus, p(m− 1) ≈ n (for a large m) XORs are used for each
code block, where n = pm is the number of information bits.
The encoding complexity is linear with the number of infor-
mation bits. No matter how large the encoding matrix Ms,z

is, there are at most m 1s in each row or each column, and
other elements are zeros. Then, Ms,z is a sparse matrix. The
decoding process can be finished in O(n2) binary operations
using the approach in [16]. The complexity is the same as
those in [11]. Yet, our codes are deterministic and zero-error
(for error-free channels). The analysis is for nonsystematic
codes. Quasi-systematic codes have lower complexity.

Since σ is a (p + 1)× (p + 1) circulant matrix, σk+p+1 =
σk for any 0 ≤ k ≤ p + 1. For the transfer matrix M̃s,z ,
each submatrix M̃zi,k = σ(zi−1)(k−1) must be different for
different zi and any given k ≥ 2. Then, we have

p + 1 ≥ N. (8)

Thus, the block length adds a constraint on the number of
distinct blocks. Since N ≥ m, we can get p ≥ m− 1. When
using the code with a large alphabet size, a mapping from
binary bit groups to code symbols is necessary. We assume that
the length of these bit groups is D. The alphabet size is 2D.
To study the length of our codes, it is interesting to compare
D and p. In [5], it is shown that the alphabet size is lower
bounded by O(

√
Z), where Z is the number of sinks. In [7],

it is shown that an alphabet size
√

2Z − 7
4 is sufficient. Then,

D = 0.5 log2(2Z − 7
4). For combination networks, Z =

(N
m

)
.

Thus, D = 0.5 log2(2
(N
m

)
− 7

4). Since (N
m)m ≤ Z ≤ (N

me)m,
D ≈ C1m, where C1 is determined by the ratio of N and m.
When m ≈ N/2, D ≈ 0.5N , and p ≈ 2D. The result is for
the nonsystematic codes, quasi-systematic codes have m − 1
more blocks. Then, p + m ≥ N . p ≈ D for m ≈ N

2 .
More generally, if we assume N = C · m, where C is a

positive constant, then D ≈ N
2C log2 C for a nontrivial N .

p = N − m = N(1 − 1/C) (or p ≈ N for nonsystematic
codes). Thus, when C is not very big, p is comparable to D.

We use the example in Fig. 1 for illustration. For m = 2,
we use a quasi-systematic code. Since N = 4 and N −m =

2, p = 2 is enough to meet the multicast task and achieve
min-cut capacity. Thus, we divide the source information bits
into 2-bit groups. Since m = 2, we denote them as A =
{a1, a2} and B = {b1, b2}. Then we can denote the source
information as I = [A, B]T . First, we send B to the node
m1. Then, we produce nonsystematic blocks for m2, m3 and
m4 with Algorithm 2.1. The encoding matrices between the
intermediate nodes m1, m2, m3 and m4 are, respectively,

T 1 =
(

0 0 1 0
0 0 0 1

)
, T 2 =

(
1 0 1 0
0 1 0 1

)
,

T 3 =
(

1 0 0 1
0 1 0 0

)
, T 4 =

(
1 0 0 0
0 1 1 0

)
. (9)

Note that we show the transfer matrices just for the purpose
of analysis. In the encoding process, there is no any matrix
multiplication. The block sent to the second-layer node mi is
Ci = T iI . The block has a length of 2 bits. It is easy to verify
that any two-matrix combination (in the form

(T i
T j

)
, i '= j)

of them has rank 4 (full-rank). Thus, all sinks can recover 4
information bits from two blocks, which are received from two
second-layer nodes. The coding scheme achieves the min-cut
capacity 2. The output blocks are also shown in Fig. 1. For
this example, we can also see p = D when m = 0.5N .

V. RATELESS APPROACH FOR GENERAL NETWORKS WITH
ERASURE CHANNELS

We have shown that the sink can recovery source informa-
tion from any of the m distinct received blocks, which is a
subset of transmitted blocks. This property actually features
a MDS property when the codes are used for block erasure
channels. Specifically, the source produces N blocks with m
information blocks and send them to a network with erasure
channels. Here, the erasure channel means that a transmitted
block is either received by the sink without any error or lost
totally. The erasure can be caused by, for example, an inter-
mediate node memory overflow or a physical-layer decoding
error due to wireless interference or channel noise etc. On
receiving any m blocks of them, the sink can successfully
decode m information blocks. The MDS property motivates
us to use our codes for networks with erasure channels. The
network is general and is not limited to combination networks.

Operating in a rateless fashion, fountain codes [17], [18]
are excellent block erasure-correction codes. They use very
little or even no feedback. The benefits of fountain codes over
traditional erasure-correction codes (such as Reed-Solomon
codes), are low-complexity and flexibility in the rate [18]. By
[18], this is mainly because fountain codes are binary, and
are based on low-density random matrices. The rate-flexible
property is because the fountain codes produce output blocks
in a rateless fashion. The encoding process can be stopped
whenever a termination condition is satisfied. From Algorithm
2.1, the encoding process of our codes can also be stopped
after a coded block is produced. Thus, it can also work in a
rateless fashion. Motivated by these facts, we use our codes for
networks with erasure channels. The code is rateless, binary

and behaves as MDS codes in a very high probability (to be
discussed later). The code is given in Algorithm 5.1.

Algorithm 5.1: (The rateless binary sequence code.)

1: Produce and send out code blocks. Using Algorithm 2.1, the
source continuously produces and sends code blocks. One
block is sent out immediate after it is produced. The process
stops until the termination condition is satisfied. The blocks
are marked as B1, B2, · · · , up to BN and saved.

2: The sink receiving m blocks checks if m blocks are distinct.
If it is, the sink sends back a termination signal to the source
and decodes information bits.

3: The termination condition is satisfied if the source gets termi-
nation signals from all sinks or time-out.

4: If the block BN is sent out and the termination condition is
still not satisfied, the source transmits the block B1, B2, · · · .
This process repeats until the termination condition is satisfied
or time-out occurs.

Here, we use N = p + 1 (assume nonsystematic codes) to
denote the number of possible distinct blocks. The sink can
successfully decode the source information by receiving m
distinct blocks. Thus, the code is MDS before all N distinct
blocks are sent out. The code blocks are produced in a block-
by-block fashion. The process can be stopped whenever the
termination condition is satisfied. The number of transmitted
blocks might be much smaller than N . An unlimited number
of blocks can be sent out, though only N of them are distinct.
Thus, the code is rateless.

In Algorithm 5.1, the source has to retransmit the sent
blocks when all distinct blocks are already sent out and the
termination condition has not been satisfied yet. This will
degrade the system efficiency, and the code will lose the
MDS property. Now, we analyze the probability of this event.
For convenience, we call it an error, though it is not really
a decoding error, and only degrades the system efficiency.
Assume that there is one sink. The source has to resend
transmitted blocks only if N distinct blocks are transmitted
and fewer than m blocks are received by the sink, i.e., more
than N −m blocks are lost. The probability of this error is

PE =
N∑

i=N−m+1

(
N

i

)
εi(1− ε)N−i (10)

where ε is the source-to-sink erasure probability. PE decreases
with ε. For given m, PE also decreases with increasing N .
PE is very small for nontrivial N and m. For example, if
ε = 0.1 and p = 52 (N = 53), and m = 20 (totaling 1040
bits), PE = 1.7 × 10−21. If there is more than one sink,
e.g., T sinks with the error probability PE1 , PE2 , · · · , PET ,
PE = max{PE1 , PE2 , · · · , PET }, since sinks receive blocks
in a parallel way. Thus, we can ignore the situation when
the source has no unsent block. Moreover, from this example,
we can see that the number of information blocks can be
quite small. This is different from the codes based on sparse
random matrices. These codes normally use a large number

of blocks (denoting a large random matrix) to increase the
probability of successful decoding. Another benefit of our code
is small overhead since it behaves like MDS codes with a high
probability. Yet, the code has quadratic decoding complexity.

In the above analysis process, we do not assume any
limitation on the network model. Thus, it can be used in
general networks (including combination networks and unicast
networks as special examples).

VI. CONCLUSIONS

We propose a binary network coding approach for combi-
nation networks. The codes use bit sequences instead of large
alphabet-size symbols. They achieve the min-cut capacity. The
encoding complexity is linear with the number of information
bits, and decoding complexity is quadratical. The code block
can be produced in a rateless fashion. The codes have the MDS
property with a high probability for erasure channels. These
properties motivate us to use codes for general networks with
erasure channels. The overhead is quite small and the code
can be used for a small number of blocks. Possible directions
for future work are a further investigation of using uncoded
blocks, and applications for storage area networks [4]. A better
decoding approach is another direction for future work.

REFERENCES

[1] C. K. Ngai, and R. W. Yeung, “Network Coding Gain of Combination
Networks,” In Proc. IEEE Info. Theory Workshop, pp. 283-287, San
Antonio, USA, Oct. 2004.

[2] Z. Li, B. Li, and L. Lau, “On Achieving Maximum Multicast Throughput
in Undirected Networks,” IEEE Trans. on Inform. Theory, vol. 52, pp.
2467-2485, June 2006.

[3] R. W. Yeung, S. Y. R. Li, N. Cai, and Z. Zhang, “Network Coding
Theory,” Foundation and Trends in Communications and Information
Theory, now Publishers, Hanover, MA. USA, 2006.

[4] R. Thornburgh, and B. Schoenborn, Storage Area Networks, Prentice
Hall, 2001.

[5] A. Rasala-Lehman, Network Coding, Ph.D thesis, MIT, Feb. 2005.
[6] C. Chekuri, C. Fragouli, and E. Soljanin, “On average throughput and

alphabet size in network coding,” IEEE Trans. on Inform. Theory, pp.
2410 - 2424, June 2006.

[7] C. Fragouli, and E. Soljanin, “Information Flow Decomposition for
Network Coding,” IEEE Trans. on Inform. Theory, Mar. 2006.

[8] R. Ahlswede, N. Cai, S.-Y. R. Li and R. W. Yeung, “Network informa-
tion flow,” IEEE Trans. on Inform. Theory, pp. 2410-2424, June 2006.

[9] S. Li, R. W. Yeung and N. Cai, “Linear network coding,” IEEE Trans.
on Inform. Theory, vol. 49, pp. 371-381, Feb. 2003.

[10] R. Koetter and M. Médard, “An algebraic approach to network cod-
ing,” IEEE/ACM Trans. on Networking, vol. 11, pp. 782-795, Oct. 2003.

[11] S. Jaggi, Y. Cassuto, and M. Effros, “Low Complexity Encoding for
Network Codes,” In Proc. IEEE Int. Sym. on Info. Theory, July 2006.

[12] S. Lin, and D. Costello, Jr. Error Control Coding, Prentice Hall, 2004.
[13] H. Fujita, and K. Sakaniwa, “Some Classes of Quasi-Cyclic LDPC

Codes: Properties and Efficient Encoding Method,” IEICE Trans. on
Fundamentals, vol. E88-A, No. 12, Dec. 2005.

[14] W. Tan, and J. Cruz, “Array Codes for Erasure Correction in Magnetic
Recording Channels,” IEEE Trans. on Magnetics, vol. 39, Sep. 2003.

[15] M. Blaum, J. Bruck, and A. Vardy, “MDS Array Codes with Independent
Parity Symbols,” IEEE Trans. on Info. Theory, vol. 42, No. 2, Mar. 1996.

[16] D. Wiedemann, “Solving Sparse Linear Equations Over Finite
Fields,” IEEE Trans. on Info. Theory, vol. 32, No. 1, Jan. 1986.

[17] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A Digital Foun-
tain Approach to Reliable Distribution of Bulk Data,” In Proc. ACM
Sigcomm’ 98, pp. 56-67, Vancouver, Canada, Sep. 1998.

[18] M. Mitzenmacher, “Digital Fountains: A Survey and Look Forward,” In
Proc. IEEE Info. Theory Workshop, San Antonio, USA, Oct. 2004.

