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Simultaneous Communication of Data and State

Thomas M. Cover, Young-Han Kim, and Arak Sutivong∗

Abstract

We consider the problem of transmitting data at rate R over a state dependent channel
p(y|x, s) with the state information available at the sender and at the same time conveying the
information about the channel state itself to the receiver. The amount of state information that
can be learned at the receiver is captured by the mutual information I(Sn;Y n) between the
state sequence Sn and the channel output Y n. The optimal tradeoff is characterized between
the information transmission rate R and the state uncertainty reduction rate ∆, when the state
information is either causally or noncausally available at the sender. This result is closely
related and in a sense dual to a recent study by Merhav and Shamai, which solves the problem
of masking the state information from the receiver rather than conveying it.

1 Introduction

A channel p(y|x, s) with noncausal state information at the sender has capacity

C = max
p(u,x|s)

(I(U ;Y )− I(U ;S)) (1)

as shown by Gelfand and Pinsker [13]. Transmitting at capacity, however, obscures the state

information Sn as received by the receiver Y n. In some instances we wish to convey the state

information Sn to Y n. For example, Sn could be time-varying fading parameters or an original

image that we wish to enhance. Another motivation comes from cognitive radio systems [12, 22,

8, 17] with the additional assumption that the secondary user Xn communicates its own message

and at the same time facilitates the transmission of the primary user’s signal Sn. Here we wish

to minimize the receiver’s uncertainty about the state by reducing the size of the receiver’s list of

likely candidates of the state sequence Sn.

More precisely, we study the communication problem depicted in Figure 1. Here the sender has

(Ŵ (Y n), Ln(Y
n))

Sn ∼
∏

n

i=1
p(si)

p(y|x, s)W ∈ {1, 2, . . . , 2nR} Xn(W,Sn) Y n

Pr(Sn /∈ Ln(Y
n)) → 0

Pr(W 6= Ŵ (Y n)) → 0

Figure 1: Pure information transmission versus state uncertainty reduction.

access to the channel state sequence Sn = (S1, S2, . . . , Sn), independent and identically distributed
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(i.i.d.) according to p(s), and wishes to transmit a message index W ∈ {1, 2, . . . , 2nR}, independent
of Sn, as well as to help the receiver reduce the uncertainty about the channel state in n uses of a

state dependent channel (X × S, p(y|x, s),Y). Based on the message W and the channel state Sn,

the sender chooses Xn(W,Sn) and transmits it across the channel. Upon observing the channel

output Y n, the receiver guesses Ŵ ∈ {1, 2, . . . , 2nR} and forms a list Ln(Y
n) ⊆ Sn that contains

likely candidates of the actual state sequence Sn. The channel state uncertainty reduction rate ∆

is given by

∆ = H(S)− 1

n
log |Ln|,

where H(S) is the per-symbol channel state entropy and |Ln| is the size of the candidate list Ln.

In essence, the uncertainty reduction rate ∆ captures the difference between the original channel

state uncertainty and the residual state uncertainty after observing the channel output.1 Formally,

we define a (2nR, 2n∆, n) code as the encoder map

Xn : {1, 2, . . . , 2nR} × Sn → X n

and decoder maps

Ŵ : Yn → {1, 2, . . . , 2nR}
Ln : Yn → 2S

n

with list size

|Ln| = 2n(H(S)−∆).

The probability of a message decoding error P
(n)
e,w and the probability of a list decoding error P

(n)
e,s

are defined respectively as

P (n)
e,w =

1

2nR

2nR
∑

w=1

Pr(Ŵ 6= w|W = w),

P (n)
e,s = Pr(Sn /∈ Ln(Y

n)),

where the message index W is chosen uniformly over {1, . . . , 2nR} and the state sequence Sn is

drawn ∼ i.i.d. p(s), independent of W . A pair (R,∆) is said to be achievable if there exists a

sequence of (2nR, 2n∆, n) codes with P
(n)
e,w → 0 and P

(n)
e,s → 0 as n → ∞.

Definition. The tradeoff region R∗ is the closure of all achievable (R,∆) pairs.

This paper shows that the tradeoff region R∗ can be characterized as the union of all (R,∆)

pairs satisfying

R ≤ I(U ;Y )− I(U ;S)

∆ ≤ H(S)

R+∆ ≤ I(X,S;Y )

for some joint distribution of the form p(s)p(u, x|s)p(y|x, s). In particular, the maximum uncer-

1Implicit here is that the state uncertainty reduction rate ∆ satisfies 0 ≤ ∆ ≤ H(S).
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tainty reduction rate

∆∗ = sup{∆ : (R,∆) is achievable for some R ≥ 0}

is given by

∆∗ = min{H(S), max
p(x|s)

I(X,S;Y )}. (2)

The maximum uncertainty reduction rate ∆∗ is achieved by designing the signal Xn to enhance the

receiver’s estimation of the state Sn while using the remaining pure information bearing freedom

in Xn to provide more information about the state. More specifically, there are three different

components involved in reducing the receiver’s uncertainty about the state:

1) The transmitter uses the channel capacity to convey the state information. In Section 2, we

study the classical setup [19, 15] of coding for memories with defective cells (Example 1) and

show that this “source-channel separation” scheme is optimal for certain cases.

2) The transmitter gets out of the receiver’s view of the state. For instance, the maximum

uncertainty reduction for the binary multiplying channel Y = X ·S (Example 2 in Section 2)

with binary input X ∈ {0, 1} and state S ∈ {0, 1} is achieved by sending X ≡ 1.

3) The transmitter actively amplifies the state. In Example 3 in Section 3, we consider the

Gaussian channel Y = X + S + Z with Gaussian state S and Gaussian noise Z. Here

the optimal transmitter amplifies the state as X = αS under the given power constraint

EX2 ≤ P .

It is interesting to note that the maximum uncertainty reduction rate ∆∗ is the information

rate that could be achieved if both the state S and the signal X could be freely designed, instead

of the state S being generated by nature. This rate also appears in the sum rate of the capacity

region expression for the cooperative multiple access channel [7, Problem 15.1] and the multiple

access channel with cribbing encoders by Willems and van der Meulen [32].

When the state information is only causally available at the transmitter, that is, when the

channel input Xi depends on only the past and the current channel channel state Si, we will show

that the tradeoff region R∗ is given as the union of all (R,∆) pairs satisfying

R ≤ I(U ;Y )

∆ ≤ H(S)

R+∆ ≤ I(X,S;Y )

over all joint distributions of the form p(s)p(u)p(x|u, s)p(y|x, s). Interestingly, the maximum un-

certainty reduction rate ∆∗ stays the same as the noncausal case (2). That causality has no cost

on the (sum) rate is again reminiscent of the multiple access channel with cribbing encoders [32].

The problem of communication over state-dependent channels with states known at the sender

has attracted a great deal of attention. This research area was first pioneered by Shannon [27],

Kuznetsov and Tsybakov [19], and Gelfand and Pinsker [13]. Several advancements in both theory

and practice have been made over the years. For instance, Heegard and El Gamal [15, 14] charac-

terized the channel capacity and devised practical coding techniques for computer memories with

defective cells. Costa [5] studied the now famous “writing on dirty paper” problem and showed that

the capacity of an additive white Gaussian noise channel is not affected by additional interference,
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as long as the entire interference sequence is available at the sender prior to the transmission. This

fascinating result has been further extended with strong motivations from applications in digital

watermarking (see, for example, Moulin and O’Sullivan [24], Chen and Wornell [3], and Cohen

and Lapidoth [4]) and multi-antenna broadcast channels (see, for example, Caire and Shamai [2],

Weingarten, Steinberg, and Shamai [31], and Mohseni and Cioffi [23]). Readers are referred to

Caire and Shamai [1], Lapidoth and Narayan [20], and Jafar [16] for more complete reviews on

the theoretical development of the field. On the practical side, Erez, Shamai, and Zamir [10, 34]

proposed efficient coding schemes based on lattice strategies for binning. More recently, Erez and

ten Brink [11] report efficient coding techniques that almost achieve the capacity of Costa’s dirty

paper channel.

In [29, 30], we formulated the problem of simultaneously transmitting pure information and

helping the receiver estimate the channel state under a distortion measure. Although the char-

acterization of the optimal rate-distortion tradeoff is still open in general (cf. [28]), a complete

solution is given for the Gaussian case (the writing on dirty paper channel) under quadratic distor-

tion [29]. In this particular case, optimality was shown for a simple power-sharing scheme between

pure information transmission via Costa’s original coding scheme and state amplification via simple

scaling.

Recently, Merhav and Shamai [21] considered a related problem of transmitting pure informa-

tion, but this time under the additional requirement of minimizing the amount of information the

receiver can learn about the channel state. In this interesting work, the optimal tradeoff between

pure information rate R and the amount of state information E is characterized for both causal

and noncausal setups. Furthermore, for the Gaussian noncausal case (writing on dirty paper),

the optimal rate-distortion tradeoff is given under quadratic distortion. (This may well be called

“writing dirty on paper”.)

The current paper thus complements [21] in a dual manner. It is refreshing to note that our

notion of uncertainty reduction rate ∆ is essentially equivalent to Merhav and Shamai’s notion

of E; both notions capture the normalized mutual information I(Sn;Y n). (See the discussion in

Section 3.) The crucial difference is that ∆ is to be maximized while E is to be minimized. Both

problems admit single-letter optimal solutions.

The rest of this paper is organized as follows. In the next section, we establish the optimal

(R,∆) tradeoff region for the case in which the state information Sn is noncausally available at

the transmitter before the actual communication. Section 3 extends the notion of state uncertainty

reduction to continuous alphabets, by identifying the list decoding requirement Sn ∈ Ln(Y
n) with

the mutual information rate 1
n
I(Sn;Y n). In particular, we characterize the optimal (R,∆) tradeoff

region for Costa’s “writing on dirty paper” channel. Since the intuition gained from the study of

the noncausal setup carry over when the transmitter has causal knowledge of the state sequence,

the causal case is treated only briefly in Section 4, followed by concluding remarks in Section 5.

2 Optimal (R,∆) Tradeoff: Noncausal Case

In this section, we characterize the optimal tradeoff region between the pure information rate R

and the state uncertainty reduction rate ∆ with the state information noncausally available at the

transmitter, as formulated in Section 1.

Theorem 1. The tradeoff region R∗ for a state-dependent channel (X × S, p(y|x, s),Y) with the
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state information Sn noncausally known at the transmitter is the union of all (R,∆) pairs satisfying

R ≤ I(U ;Y )− I(U ;S) (3)

∆ ≤ H(S) (4)

R+∆ ≤ I(X,S;Y ) (5)

for some joint distribution of the form p(s)p(u, x|s)p(y|x, s), where the auxiliary random variable

U has cardinality bounded by |U| ≤ |X |+ |S|.

As will be clear from the proof of the converse, the region given by (3)–(5) is convex. (We can

merge the time-sharing random variable into U .) Since the auxiliary random variable U affects

the first inequality (3) only, the cardinality bound on U follows directly from the usual technique;

see Gelfand and Pinsker [13] or a general treatment by Salehi [26]. Finally, we can take X as

a deterministic function of (U,S) without reducing the region, but at the cost of increasing the

cardinality bound of U ; refer to the proof of Lemma 2 below.

It is easy to see that we can recover the Gelfand–Pinsker capacity formula

C = max{R : (R,∆) ∈ R∗ for some ∆ ≥ 0} = max
p(x,u|s)

(I(U ;Y )− I(U ;S)).

On the other extreme, we have the following result.

Corollary 1. Under the condition of Theorem 1, the maximum uncertainty reduction rate ∆∗ =

max{∆ : (R,∆) ∈ R∗ for some R ≥ 0} is given by

∆∗ = min{H(S), max
p(x|s)

I(X,S;Y )}. (6)

Thus the receiver can learn about the state Sn essentially at the maximal cut-set rate I(X,S;Y ).

Before we prove Theorem 1, we need the following two lemmas. The first one extends Fano’s

inequality [7, Lemma 7.9.1] to list decoding.

Lemma 1. For a sequence of list decoders Ln : Yn → 2S
n

, Y n 7→ Ln(Y
n) with list size |Ln|

fixed for each n, let P
(n)
e,s = Pr(Sn /∈ Ln(Y

n)) be the sequence of corresponding probabilities of list

decoding error. If P
(n)
e,s → 0, then

H(Sn|Y n) ≤ log |Ln|+ nǫn,

where ǫn → 0 as n → ∞.

Proof. Define an error random variable E as

E =

{

0, if Sn ∈ Ln,

1, if Sn /∈ Ln.

We can then expand H(E,Sn|Y n) = H(Sn|Y n) +H(E|Y n, Sn) = H(E|Y n) +H(Sn|Y n, E). Note

that H(E|Y n) ≤ 1 and H(E|Y n, Sn) = 0. We can also bound H(Sn|Y n, E) as

H(Sn|E,Y n) = H(Sn|Y n, E = 0)Pr(E = 0) +H(Sn|Y n, E = 1)Pr(E = 1)

≤ log |Ln|(1− P (n)
e,s ) + n log |S|P (n)

e,s ,
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where the inequality follows because when there is no error, the remaining uncertainty is at most

log |Ln|, and when there is an error, the uncertainty is at most n log |S|. This implies that

H(Sn|Y n) ≤ 1 + log |Ln|(1− P (n)
e,s ) + n log |S|P (n)

e,s

= log |Ln|+ 1 + (n log |S| − log |Ln|)P (n)
e,s .

Taking ǫn = 1
n
+ (log |S| − 1

n
log |Ln|)P (n)

e,s proves the desired result.

The second lemma is crucial to the proof of Theorem 1 and contains a more interesting technique

than Lemma 1.

Lemma 2. Let R be the union of all (R,∆) pairs satisfying (3)–(5). Let R0 be the closure of the

union of all (R,∆) pairs satisfying (3), (4), and

R+∆ ≤ I(U,S;Y ) (7)

for some joint distribution p(s)p(x, u|s)p(y|x, s) where the auxiliary random variable U has finite

cardinality. Then

R = R0.

Proof. Since U → (X,S) → Y forms a Markov chain, it is trivial to check that

R0 ⊆ R. (8)

For the other direction of inclusion, we need some notation. Let P be the set of all distributions

of the form p(s)p(x, u|s)p(y|x, s) consistent with the given p(s) and p(y|x, s), where the auxiliary

random variable U is defined on an arbitrary finite set. Further let P ′ be the restriction of P such

that X = f(U,S) for some function f , i.e., p(x|u, s) takes values 0 or 1 only.

If we define R1 to denote the closure of all (R,∆) pairs satisfying (3), (4), and (7) over P ′, or

equivalently, if R1 is defined to be the restriction of R0 over a smaller set of distributions P ′, then

clearly

R1 ⊆ R0. (9)

Let R2 be defined as the closure of (R,∆) pairs satisfying (3)–(5). Since X → (U,S) → Y forms a

Markov chain on P ′, we have

R2 ⊆ R1. (10)

To complete the proof, it now suffices to show that

R ⊆ R2. (11)

To see this, we restrict R2 to the distributions of the form U = (V, Ũ ) with V independent of

(Ũ , S), namely,

p(x, u|s) = p(x, v, ũ|s) = p(v)p(ũ|s)p(x|v, ũ, s)) (12)

with deterministic p(x|v, ũ, s), i.e., x is a function of (v, ũ, s), and call this restriction R3. In other
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words, (R,∆) ∈ R3 if

R ≤ I(V, Ũ ;Y )− I(V, Ũ ;S)

∆ ≤ H(S)

R+∆ ≤ I(X,S;Y )

for some distribution of the form p(s)p(x, v, ũ|s)p(y|x, s) satisfying (12). But we have

I(V, Ũ ;Y )− I(V, Ũ ;S) ≥ I(Ũ ;Y )− I(V, Ũ ;S) = I(Ũ ;Y )− I(Ũ ;S), (13)

and the set of conditional distributions on (Ũ ,X) given S satisfying (12) is as rich as any p(ũ, x|s).
(Indeed, any conditional distribution p(a|b) can be represented as

∑

c p(c)p(a|b, c) for appropriately
chosen p(c) and deterministic distribution p(a|b, c) with the cardinality of C upper bounded by

(|A| − 1)|B|; see also [32, Eq. (44)].) Therefore, we have

R ⊆ R3 ⊆ R2, (14)

which completes the proof.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. For the proof of achievability, in the light of Lemma 2, it suffices to prove

that any pair (R,∆) satisfying (3), (4), (7) for some p(u, x|s) is achievable. Since the coding

technique is quite standard, we only sketch the proof here. For fixed p(u, x|s), the result of Gelfand–

Pinsker [13] shows that the transmitter can send I(U ;Y ) − I(U ;S) bits across the channel. Now

we allocate 0 ≤ R ≤ I(U ;Y )− I(U ;S) bits for sending the pure information and use the remaining

Γ = I(U ;Y )− I(U ;S)−R bits for sending the state information by random binning (i.e., sending

the random hash index of Sn). At the receiving end, the receiver is able to decode the codeword

Un from Y n. Using joint typicality of (Un, Y n, Sn), the state uncertainty can be first reduced from

H(S) to H(S|Y,U). In addition, using Γ = I(U ;Y ) − I(U ;S) − R bits of refinement information

from the transmitter, we can further reduce the state uncertainty, resulting in the total state

uncertainty reduction rate ∆ = I(U, Y ;S) + I(U ;Y ) − I(U ;S) − R = I(U,S;Y ) − R. By varying

0 ≤ R ≤ I(U ;Y )− I(U ;S), it can be readily seen that all (R,∆) pairs satisfying

R ≤ I(U ;Y )− I(U ;S)

∆ ≤ H(S)

R+∆ ≤ I(U,S;Y )

for any fixed p(x, u|s) are achievable.

For the proof of converse, we have to show that given any sequence of (2nR, 2n∆, n) codes with

P
(n)
e,w , P

(n)
e,s → 0, the (R,∆) pairs must satisfy

R ≤ I(U ;Y )− I(U ;S)

∆ ≤ H(S)

R+∆ ≤ I(X,S;Y )

for some joint distribution p(s)p(x, u|s)p(y|x, s).
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The pure information rate R can be readily bounded from the previous work by Gelfand and

Pinsker [13, Proposition 3]. Here we repeat a simpler proof given in Heegard [14, Appendix 2] for

completeness; see also [9, Lecture 13]. Starting with Fano’s inequality, we have the following chain

of inequalities:

nR ≤ I(W ;Y n) + nǫn

=

n
∑

i=1

I(W ;Yi|Y i−1) + nǫn

≤
n
∑

i=1

I(W,Y i−1;Yi) + nǫn

=
n
∑

i=1

I(W,Y i−1, Sn
i+1;Yi)−

n
∑

i=1

I(Yi;S
n
i+1|W,Y i−1) + nǫn

(a)
=

n
∑

i=1

I(W,Y i−1, Sn
i+1;Yi)−

n
∑

i=1

I(Y i−1;Si|W,Sn
i+1) + nǫn

(b)
=

n
∑

i=1

I(W,Y i−1, Sn
i+1;Yi)−

n
∑

i=1

I(W,Y i−1, Sn
i+1;Si) + nǫn,

where (a) follows from the Csiszár sum formula

n
∑

i=1

I(Yi;S
n
i+1|W,Y i−1) =

n
∑

i=1

n
∑

j=i+1

I(Yi;Sj |W,Sn
j+1, Y

i−1)

=

n
∑

j=1

j−1
∑

i=1

I(Yi;Sj |W,Sn
j+1, Y

i−1)

=
n
∑

j=1

I(Y j−1;Sj |W,Sn
j+1)

and (b) follows because (W,Sn
i+1) is independent of Si. By recognizing the auxiliary random variable

Ui = (W,Y i−1, Sn
i+1) and noting that Ui → (Xi, Si) → Yi forms a Markov chain, we have

nR ≤
n
∑

i=1

(I(Ui;Yi)− I(Ui;Si)) + nǫn. (15)

On the other hand, since log |Ln| = n(H(S)−∆), we can trivially bound ∆ by Lemma 1 as

n∆ ≤ nH(S)−H(Sn|Y n) + nǫ′n

≤ nH(S) + nǫ′n.
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Similarly, we can bound R+∆ as

n(R+∆) ≤ I(W ;Y n) + I(Sn;Y n) + nǫ′′n
(a)

≤ I(W ;Y n|Sn) + I(Sn;Y n) + nǫ′′n

≤ I(W,Sn;Y n) + nǫ′′n
(b)
= I(Xn, Sn;Y n) + nǫ′′n
(c)

≤ 1

n

n
∑

i=1

I(Xi, Si;Yi) + ǫ′′n, (16)

where (a) follows since W is independent of Sn and conditioning reduces entropy, (b) follows from

the data processing inequality (both directions), and (c) follows from the memorylessness of the

channel.

We now introduce the usual time-sharing random variable Q uniform over {1, . . . , n}, indepen-
dent of everything else. Then (15) implies

R ≤ I(UQ;YQ|Q)− I(UQ;SQ|Q) + ǫn

= I(UQ, Q;YQ)− I(UQ, Q;SQ) + ǫn.

On the other hand, (16) implies

R+∆ ≤ I(XQ, SQ;YQ|Q) + ǫ′′n

≤ I(XQ, SQ, Q;YQ) + ǫ′′n

= I(XQ, SQ;YQ) + ǫ′′n,

where the last equality follows since Q → (XQ, SQ) → YQ forms a Markov chain.

Finally, we recognize U = (UQ, Q),X = XQ, S = SQ, Y = YQ, and note that U → (X,S) → Y ,

S ∼ p(s) and Pr(Y = y|X = x, S = s) = p(y|x, s), which completes the proof of the converse.

When Y is a function of (X,S), it is optimal to identify U = Y, and Theorem 1 simplifies to

the following corollary.

Corollary 2. The tradeoff region R∗ for a deterministic state-dependent channel Y = f(X,S)

with the state information Sn noncausally known at the transmitter is the union of all (R,∆) pairs

satisfying

R ≤ H(Y |S) (17)

∆ ≤ H(S) (18)

R+∆ ≤ H(Y ) (19)

for some joint distribution of the form p(s)p(x|s)p(y|x, s). In particular, the maximum uncertainty

reduction rate is given by

∆∗ = min{H(S), max
p(x|s)

H(Y )}. (20)

Next two examples show different flavors of optimal state uncertainty reduction.
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Figure 3: The optimal (R,∆) tradeoff for memory with defective cells.

Example 1. Consider the problem of conveying information using a write-once memory device

with stuck-at defective cells [19, 15] as depicted in Figure 2. Here each memory cell has probability

p of being stuck at 0, probability q of being stuck at 1, and probability r of being a good cell, with

p+ q + r = 1. It is easy to see that the channel output Y is a simple deterministic function of the

channel input X and the state S.

Now it is easy to verify that the tradeoff region R∗ is given by

R ≤ rH(α) (21)

∆ ≤ H(p, q, r) (22)

R+∆ ≤ H(p+ αr, q + (1− α)r), (23)

where α can be arbitrarily chosen (0 ≤ α ≤ 1). This region is achieved by choosing p(x) ∼ Bern(α).

Without loss of generality, we can choose X ∼ Bern(α) independent of S, because the input X

affects Y only when S = 2.

There are two cases to consider.
(a) If p = q, then the choice of α∗ = 1/2 maximizes both (21) and (23), and hence achieves

the entire tradeoff region R∗. The optimal transmitter uses the full channel capacity C =

rH(α∗) = r to send the pure information and the state information. (See Figure 3(a) for the

case (p, q, r) = (1/3, 1/3, 1/3).)
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(b) On the other hand, when p 6= q, there is a clear tradeoff in our choice of α. For example,

consider the case (p, q, r) = (1/2, 1/6, 1/3). If the goal is to communicate pure information

over the channel, we should take α∗ = 1/2 to maximize the number of distinguishable input

preparations. This gives the channel capacity C = rH(α) = 1/3. If the goal is, however, to

help the receiver reduce the state uncertainty, we take α∗ = 0, i.e., we transmit a fixed signal

X ≡ 0. This way, the transmitter can minimize his interference with the receiver’s view of

the state S. The entire tradeoff region is given in Figure 3(b).

Example 2. Consider the binary multiplying channel Y = X ·S, where the output Y is the product

of the input X ∈ {0, 1} and the state S ∈ {0, 1}. We assume that the state sequence Sn is drawn

i.i.d. according to Bern(γ). It can be easily shown that the optimal tradeoff region is given by

R ≤ γH(α) (24)

∆ ≤ H(γ) (25)

R+∆ ≤ H(α · γ). (26)

This is achieved by p(x) ∼ Bern(α), independent of S.

As in Example 1(b), there is a tension between the pure information transmission and the state

uncertainty reduction. When the goal is to maximize the pure information rate, we should choose

α∗ = 1/2 to achieve the capacity C = γ. But when the goal is to maximize the state uncertainty

reduction rate, we should choose α∗ = 1 (X ≡ 1) to achieve ∆∗ = H(γ). In words, to maximize

the state uncertainty reduction rate, the transmitter completely gets out of the receiver’s view of

the state.

3 Extension to Continuous State Space

The previous section characterized the tradeoff region R∗ between the pure information rate R and

the state uncertainty reduction rate ∆ = H(S)− 1
n
log |Ln(Y

n)|. It appears at first that our notion
of uncertainty reduction rate ∆ is meaningful only when the channel state S has finite cardinality

(i.e., |S| < ∞), or at least when H(S) < ∞.

However, the proof of Theorem 1 (the generalized Fano’s inequality in Lemma 1), along with

the fact that the optimal region is single-letterizable, reveals that the reduction of list size from

2nH(S) to |Ln(Y
n)| is not fundamental to the notion of the state uncertainty reduction rate ∆.

What ∆ really captures is the normalized mutual information 1
n
I(Sn;Y n), which can be defined

for an arbitrary state space S.
More precisely, we define a (2nR, n) code by an encoding function

Xn : {1, 2, . . . , 2nR} × Sn → X n

and a decoding function

Ŵ : Yn → {1, 2, . . . , 2nR}.

Then the associated state uncertainty reduction rate with the (2nR, n) code is defined as

∆I =
1

n
I(Sn;Y n),
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where the mutual information is with respect to the joint distribution

p(xn, sn, yn) = p(xn|sn)
n
∏

i=1

p(si)p(yi|xi, si)

induced by Xn(W,Sn) with the message W distributed uniformly over {1, . . . , 2nR}, independent
of Sn. Similarly, the probability of error is defined as

P (n)
e = Pr(W 6= Ŵ (Y n)).

A pair (R,∆I) is said to be achievable if there exists a sequence of (2nR, n) codes with P
(n)
e → 0

and

lim
n→∞

1

n
I(Sn;Y n) ≥ ∆I .

The closure of all achievable (R,∆I) pairs is again called the tradeoff region R∗
I . (Here we use the

notation R∗
I and ∆I instead of R∗ and ∆ to distinguish this from the original problem formulated

in terms of the list size reduction.)

Proposition 1. The tradeoff region R∗
I for a state-dependent channel (X × S, p(y|x, s),Y) with

the state information Sn noncausally known at the transmitter is the closure of all (R,∆I) pairs

satisfying

R ≤ I(U ;Y )− I(U ;S)

∆I ≤ H(S)

R+∆I ≤ I(X,S;Y ),

for some joint distribution of the form p(s)p(u, x|s)p(y|x, s) with auxiliary random variable U .

Proof sketch. The proof of the converse follows trivially from the intermediate steps in the proof

of the converse for Theorem 1.

For the achievability, we first use a finite partition2 to quantize the state random variable S

into [S]. Under this partition, we pick a pair (R,∆) that is achievable with respect to the original

list size reduction problem in Theorem 1. Now from the generalized Fano’s inequality (Lemma 1),

the achievable uncertainty reduction rate ∆ satisfies

n∆ ≤ I([S]n;Y n) + nǫn

with ǫn → 0 as n → ∞, which implies that

∆I = lim
n→∞

1

n
I([S]n;Y n) ≥ lim

n→∞

1

n
I([S]n;Ln(Y

n)) = ∆.

Hence, R∗
I ⊇ R∗ for the given partition. By taking a sequence of partitions with mesh → 0, we

have the desired achievability.

It turns out an alternative coding scheme based on Wyner–Ziv source coding with side infor-

2 Recall that the mutual information between continuous random variables X and Y is defined as I(X;Y ) =
supP,Q I([X]P ; [Y ]Q), where the supremum is over all finite partitions P and Q; see Kolmogorov [18] and Pinsker [25].
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mation [33] also achieves the tradeoff region R∗
I . For a fixed p(u, x|s) and p(v|s) satisfying

Γ := I(V ;S|U, Y ) ≤ I(U ;Y )− I(U ;S),

we can perform the Wyner–Ziv encoding of Sn with covering codeword V n and side information

(Un, Y n) at the decoder. Since the rate Γ = I(V ;S|U, Y ) is sufficient to reconstruct V n at the

receiver, we can allocate the remaining rate R = I(U ;Y )− I(U ;S)− Γ for extra pure information

and achieve the uncertainty reduction rate ∆I given by

∆I =
1

n
I(Sn;Y n)

=
1

n
I(Sn;Y n, Ûn(Y n), V̂ n(Ûn))

≥ I(S;Y,U, V )− ǫn

= I(S;Y,U) + Γ− ǫn

= I(S;U, Y ) + I(U ;Y )− I(U ;S) −R− ǫn,

= I(U,S;Y )−R− ǫn,

where ǫn → 0 as n → ∞. Here the inequality follows because S1, S2, . . . are i.i.d. and the probability

of error for decoding the correct Un and covering Sn with a jointly typical V n can be made

arbitrarily small for sufficiently large n.

Thus the tradeoff region R∗
I is achievable via the combination of two fundamental results in com-

munication with side information: channel coding with side information by Gelfand and Pinsker [13]

and rate distortion with side information by Wyner and Ziv [33]. It is also interesting to note that

the information about Sn can be transmitted in a manner completely independent of geometry (ran-

dom binning) or completely dependent on geometry (random covering); refer to [6] for a similar

phenomenon in a relay channel problem.

Example 3. Consider Costa’s writing on dirty paper model depicted in Figure 4 as the canonical

example of continuous state-dependent channel. Here the channel output is given by Y n = Xn +

Y n Ŵ (Y n)

Pr(W 6= Ŵ (Y n)) → 0

lim
n→∞

1

n
I(Sn;Y n) ≥ ∆I

Zn ∼ N(0, NI)

Xn(W,Sn)
Pn

i=1
EX2

i ≤ nP

W ∈ {1, 2, . . . , 2nR}

Sn ∼ N(0, QI)

Figure 4: Writing on dirty paper.

Sn + Zn, where Xn(W,Sn) is the channel input subject to a power constraint
∑n

i=1 EX2
i ≤ nP ,

Sn ∼ N(0, QI) is the additive white Gaussian state, and Zn ∼ N(0, NI) is the white Gaussian

noise. We assume that Sn and Zn are independent.

For the writing on dirty paper model, we have the following tradeoff between the pure informa-

tion transmission and the state uncertainty reduction.
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Proposition 2. The tradeoff region R∗
I for the Gaussian channel depicted in Figure 4 is charac-

terized by the boundary points (R(γ),∆I(γ)), 0 ≤ γ ≤ 1, where

R(γ) =
1

2
log

(

1 +
γP

N

)

(27)

∆I(γ) =
1

2
log






1 +

(√
Q+

√

(1− γ)P
)2

γP +N






. (28)

Proof sketch. The achievability follows from Proposition 1 with trivial extension to the input power

constraint. In particular, we use the simple power sharing scheme proposed in [29], where a fraction

γ of the input power is used to transmit the pure information using Costa’s writing on dirty paper

coding technique, while the remaining (1− γ) fraction of the power is used to amplify the state. In

other words,

X = V +

√

(1− γ)
P

Q
S

with V ∼ N(0, γP ) independent of S, and

U = V + αS

with

α =
γP

γP +N

√

(1− γ)P +Q

Q
.

Evaluating R = I(U ;Y )− I(U ;S) and ∆I = I(S;Y ) for each γ, we recover (27) and (28).

The proof of converse requires a little more work but is essentially the same as that of [29,

Theorem 2], which we do not repeat here.

As two extreme points of the (R,∆I) tradeoff region, we have on one hand Costa’s writing on

dirty paper result

C =
1

2
log

(

1 +
P

N

)

,

and on the other hand the maximum uncertainty reduction rate

∆∗
I =

1

2
log

(

1 +

(√
P +

√
Q
)2

N

)

,

which is achieved by amplifying the state with X = (
√

P/Q)S.

In [29, Theorem 2], the optimal tradeoff was characterized between the pure information rate

R and the receiver’s state estimation error D = 1
n
E||Sn − Ŝn(Y n)||2. Although the notion of

state estimation error D in [29] and our notion of the uncertainty reduction rate ∆I appear to be

distinct objectives at first sight, the optimal solutions to both problems are identical, as shown in

the proof of Proposition 2. There is no surprise here. Because of the quadratic Gaussian nature of

both problems, minimizing the mean squared error E(S − Ŝ(Y ))2 can be recast into maximizing

the mutual information I(S;Y ), and vice versa. Also the optimal state uncertainty reduction rate

∆∗
I (or equivalently, the minimum state estimation error D∗ is achieved by the symbol-by-symbol
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amplification Xi =
√

(P/Q)Si.

4 Optimal (R,∆) Tradeoff: Causal Case

The previous two sections considered the case in which the transmitter has complete knowledge

of the state sequence Sn prior to the actual communication. In this section, we consider another

model in which the transmitter learns the state sequence on the fly, i.e., the encoding function

Xi : {1, 2, . . . , 2nR} × Si → X , i = 1, 2, . . . , n,

depends causally on the state sequence.

We state our main theorem.

Theorem 2. The tradeoff region R∗ for a state-dependent channel (X × S, p(y|x, s),Y) with the

state information Sn causally known at the transmitter is the union of all (R,∆) pairs satisfying

R ≤ I(U ;Y ) (29)

∆ ≤ H(S) (30)

R+∆ ≤ I(X,S;Y ) (31)

for some joint distribution of the form p(s)p(u)p(x|u, s)p(y|x, s), where the auxiliary random vari-

able U has cardinality bounded by |U| ≤ |X ||S|.

As in the noncausal case, the region is convex. Since the auxiliary random variable U affects

the first inequality (29) only, the cardinality bound |U| ≤ |X ||S| is given by the number of functions

f : S → X ; see Shannon [27]. Finally, we can take X as a deterministic function of (U,S) without

decreasing the region.

Compared to the noncausal tradeoff region R∗
noncausal

in Theorem 1, the causal tradeoff region

R∗
causal

in Theorem 2 is smaller in general. More precisely, R∗
causal

is equal to the restriction of

R∗
noncausal

to the set of joint distributions with the auxiliary variable U independent of S. Indeed,

from the independence between U and S, we can rewrite (29) as

R ≤ I(U ;Y ) = I(U ;Y )− I(U ;S), (29′)

which is exactly the same as (3). Thus the inability to use the future state sequence decreases the

tradeoff region. However, only the inequality (29), or equivalently, the inequality (3), is affected by

the causality, and the sum rate (31) does not change from (5).

Since the proof of Theorem 2 is essentially identical to that of Theorem 1, we skip most of the

steps. The least straightforward part is the following lemma.

Lemma 3. Let R be the union of all (R,∆) pairs satisfying (29)–(31). Let R0 be the closure of

the union of all (R,∆) pairs satisfying (29), (30), and

R+∆ ≤ I(U,S;Y ) (32)

for some joint distribution p(s)p(u)p(x|u, s)p(y|x, s) where the auxiliary random variable U has

finite cardinality. Then

R = R0.
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Proof sketch. The proof is a verbatim copy of the proof of Lemma 2, except that here U is inde-

pendent of S, i.e., p(x, u|s) = p(u)p(x|u, s). The final step (14) follows since the set of conditional

distributions on X,U = (V, Ũ ) given S of the form

p(x, u|s) = p(v)p(ũ)p(x|v, ũ, s) (12′)

with deterministic p(x|v, ũ, s) is as rich as any p(ũ)p(x|ũ, s), and

I(V, Ũ ;Y ) ≥ I(Ũ ;Y ). (13′)

With this replacement, the desired proof follows along the same lines as the proof of Lemma 2.

As demonstrated in Section 3, the mutual information rate ∆I =
1
n
I(Sn;Y n) is asymptotically

equivalent to the rate ∆ of the list size reduction. Thus Theorem 2 characterizes the region R∗
I of

(R,∆I) tradeoff as well.

As one extreme point of the tradeoff region R∗, we recover the Shannon capacity formula [27]

for channels with causal side information at the transmitter as follows:

C = max
p(u)p(x|u,s)

I(U ;Y ). (33)

On the other hand, the maximum uncertainty reduction rate ∆∗ is identical to that for the noncausal

case given in Corollary 1.

Corollary 3. Under the condition of Theorem 2, the maximum uncertainty reduction rate ∆∗ is

given by

∆∗ = min{H(S), max
p(x|s)

I(X,S;Y )}. (34)

Thus the receiver can learn about the state essentially at the maximum cut-set rate, even under

the causality constraint.

Finally, we compare the tradeoff regions R∗
causal

and R∗
noncausal

with a communication problem

that has a totally different motivation, yet has a similar capacity expression. In [32, Situations 3

and 4], Willems and van der Meulen studied the multiple access channel with cribbing encoders. In

this communication problem, the multiple access channel (X × S, p(y|x, s),Y) has two inputs and

one output. The primary transmitter S and the secondary transmitter X wish to send independent

messages Ws ∈ {1, 2, . . . , 2n∆} and Wx ∈ {1, 2, . . . , 2nR} respectively to the common receiver Y .

The difference from the classical multiple access channel is that either the secondary transmitter

X learns the primary transmitter’s signal S on the fly (Xi(Wx, S
i) [32, Situation 3]) or X knows

the entire signal Sn ahead of time (Xi(Wx, S
n) [32, Situation 4]). The capacity region C for both

cases is given by all (R,∆) pairs satisfying

R ≤ I(X;Y |S) (35)

∆ ≤ H(S) (36)

R+∆ ≤ I(X,S;Y ) (37)

for some joint distribution p(x, s)p(y|x, s).
This capacity region C looks almost identical to the tradeoff regions R∗

noncausal
and R∗

causal
in

Theorems 1 and 2, except for the first inequality (35). Moreover, (35) has the same form as the

capacity expression for channels with state information available at both the encoder and decoder,
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either causally or noncausally. (The causality has no cost when both the transmitter and the

receiver share the same side information; see, for example, Caire and Shamai [1, Proposition 1].)

It should be stressed, however, that the problem of cribbing multiple access channels and our

state uncertainty reduction problem have a fundamentally different nature. The former deals with

the encoding and decoding of the signal Sn, while the latter deals with the uncertainty reduction

in an uncoded sequence Sn specified by nature. In a sense, the cribbing multiple access channel is

a detection problem, while the state uncertainty reduction is an estimation problem.

5 Concluding Remarks

Because the channel is state dependent, the receiver is able to learn something about the channel

state from directly observing the channel output. Thus, to help the receiver narrow down the

uncertainty about the channel state at the highest rate possible, the sender must jointly optimize

between facilitating state estimation and transmitting refinement information, rather than merely

using the channel capacity to send the state description. In particular, the transmitter should

summarize the state information in such a way that the summary information results in the max-

imum uncertainty reduction when coupled with the receiver’s initial estimate of the state. More

generally, by taking away some resources used to help the receiver reduce the state uncertainty,

the transmitter can send additional pure information to the receiver and trace the entire (R,∆)

tradeoff region.

There are three surprises here. First, the receiver can learn about the channel state and the

independent message at a maximum cut-set rate I(X,S;Y ) over all joint distributions p(x, s)

consistent with the given state distribution p(s). Second, to help the receiver reduce the uncertainty

in the initial estimate of the state (namely, to increase the mutual information from I(S;Y ) to

I(X,S;Y )), the transmitter can allocate the achievable information rate I(U ;Y )− I(U ;S) in two

alternative methods—random binning and its dual, random covering. Thirdly, as far as the sum rate

R+∆ and the maximum uncertainty reduction rate ∆∗ are concerned, there is no cost associated

with restricting the encoder to learn the state sequence on the fly.
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