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Abstract-We consider three capacity definitions for general
channels with channel side information at the receiver, where
the channel is modeled as a sequence of finite dimensional
conditional distributions not necessarily stationary, ergodic, or
information stable. The Shannon capacity is the highest rate
asymptotically achievable with arbitrarily small error probability.
The outage capacity is the highest rate asymptotically achievable
with a given probability of decoder-recognized outage. The
expected capacity is the highest expected rate asymptotically
achievable with a single encoder and multiple decoders, where the
channel side information determines the decoder in use. Expected
capacity equals Shannon capacity for channels governed by a
stationary ergodic random process but is typically greater for
general channels. These alternative definitions essentially relax
the constraint that all transmitted information must be decoded
at the receiver. We derive equations for these capacity definitions
through information density. Examples are also provided to
demonstrate their implications.

I. INTRODUCTION

The well-known capacity formula

C = lim sup II(X'; Y')
n---o) Xn n

does not hold in full generality. Dobrushin proved it for the
class of information stable channels in [1]. Verdui and Han
showed the formula

C = sup I(X; Y)
x

for general channels in [2], where I(X; Y) is the liminf
in probability of the normalized information densities. This
formula highlights the pessimistic nature of the Shannon
capacity definition - which forces the use of a single code
with arbitrarily small error probability. For example, consider
a collection of channels {W5 s e S} parameterized by s.
Suppose the random variable S is chosen according to some
distribution p(s) at the beginning of transmission and then
held fixed. This is called a composite channel [3] or averaged
channel [4], and the capacity is dominated by the performance
of the "worst" channel, no matter how small its probability.
To deal with channels such as the composite channel above,

we relax the constraint that all transmitted information has to
be correctly decoded. Although the transmitter is forced to use
a single code in the absence of channel side information, the
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receiver may decide how much information can be reliably
decoded based on channel state information at the receiver
(CSIR). The outage capacity [5] illustrates this idea. Here we
design a coding scheme that works well most of the time,
but, with some maximal probability q, the decoder sees a bad
channel and declares an outage, and the transmitted informa-
tion is lost. The encoding scheme is designed to maximize
the capacity for non-outage states. Previously examined in [5],
outage capacity is a common criterion used in wireless fading
channels.

Another method for dealing with channels with variable
quality is to apply the broadcast strategy [6]. The transmitter
views the composite channel as a broadcast channel with a
collection of virtual receivers indexed by channel realization
S. The encoder uses a broadcast code to transmit to the virtual
receivers. The receiver uses side information S to choose the
appropriate decoder. The goal is to identify the point in the
broadcast rate region that maximizes the expected rate, where
the expectation is taken with respect to the distribution p(s)
on S. In [7] Shamai derives the expected capacity for the
Gaussian slowly fading channel. The broadcast strategy is also
used in [8] to minimize expected distortion. Here we bound
the expected capacity for a broad class of channels.
The alternative capacity definitions are of particular interest

for applications where it is desirable to maximize average
received rate and acceptable for the encoder not to know the
exact delivered rate. Examples include systems with some
acceptable outage probability, feedback channels where the
receiver tells the transmitter which symbols to resend, or com-
munication systems using multiple resolution source codes.

These alternative definitions and main capacity results were
proposed in our previous work [3]. Here we revisit capacity
theorems for general channels with CSIR and give details
of the proofs in Section II. In Section III we compare ca-
pacity definitions and their implications through examples of
the Gilbert-Elliott channel and the binary symmetric channel
(BSC) with random crossover probabilities. Conclusions are
given in Section IV.

II. CAPACITY UNDER DIFFERENT DEFINITIONS

Consider a sequence of n-dimensional channels W
{W = Pzn x°I' 1 where W' is the conditional distribution
from the input space Xn to the output space Zn. Let X and
Z denote the input and output processes respectively, where
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each process is specified by a sequence of finite-dimensional
distributions, e.g. X = {Xn = (X(n) ,X )} .

For the special case where the decoder has CSIR, we repre-
sent this information as an output of the channel. Specifically,
we let Zn = (S, yn), where S is the channel side information
and yn is the output. We assume that S is independent
of X and unknown to the encoder. Thus Wn (Zn xn)
pS(S)pY_IXXS(ynXn:, s). The information density is defined
similarly as in [2], i.e.

tx.W i(x; Y' s) = log Py_lX_ S(yn s)

py_,S(ynlS)

The logarithms in this paper are base 2 if not stated otherwise.
Throughout we will consider sequences of (2nR, n) codes for
channel W, where an (2nR, n) code is a collection of 2nR
blocklength-n codewords and the associated decoding regions.

A. Shannon Capacity

The achievability and converse theorems for the Shannon
capacity C of a general channel

C = sup I(X; Z)
x

sup I(X; Y S)
x

sup sup {a: lim Pr [- iXnW. (Xn; Y IS) < a
x n--ooc n

0}

are proved by Theorems 2 and 5 of [2]. We here provide
another proof of achievability based on the notion of typical
sets. In this proof we omit explicitly denoting the conditioning
on the side information S for ease of notation.

Encoding: Generate the codebook by choosing X' (1), ,
Xn(2nR) i.i.d. according to some distribution Px<x(x).

Decoding: Define, for any e > 0, the typical set A(n) as

A(n) = (n yn): in n(;n) > I(X; Y)-e
(2)

Channel output yn is decoded to Xn(i) where i is the unique
index for which (X(i),y) C A

Error Analysis: Assuming equiprobable inputs, the expected
probability of error is:

All probabilities above are conditioned on codeword 1 being
sent: we omit explicit conditioning for conciseness. From (3)

p(n) < e + 2n(R-I(X;Y)±c) > e

for all R < I(X; Y) -e and arbitrary e > 0, which completes
our proof.

B. Outage Capacity

Consider a sequence of (2nR, n) codes. Let p(n) be the
probability that the decoder declares an outage. Let p(n) be the
probability that the receiver decodes improperly given that an
outage is not declared. We say that a rate (1 -q)R is outage-q
achievable if there exists a sequence of (2nR, n) channel codes
such that lim p(n) < q and lim pjn) = 0. The outage-q

n--oo noo
capacity of the above described channel is defined to be the
supremum over all outage-q achievable rates, i.e.

Cq (1q)suplq(X; YIS)

(1 q) sup sup a: lim Pr [-i(X ; Y IS) <] < 4 (4)
x nL 12ojn

Notice that CO = C, so the outage-q capacity is a generaliza-
tion of the Shannon capacity. The achievability proof follows
the same typical-set argument given above. The converse result
likewise follows [2]. A closely-related concept of e-capacity
was defined in [2], where the error probability e consists of
decoding errors which the receiver is unaware of. Whereas in
outage capacity the receiver declares an outage based on CSIR
when it cannot decode with vanishing error probability. As a
consequence no decoding is performed for outage states.

In the example of a composite channel, the encoder uses a
single code book and sends information at rate Cq /(1 -q). The
receiver correctly decodes the information proportion (1 -q) of
the time and declares an outage proportion q of the time. Thus
the average rate is Cq. The value q can be chosen to maximize
the outage capacity Cq. When an outage occurs, the receiver
may notify the sender for retransmission or approximate the
unreliable information from surrounding samples.

C. Expected Capacity

PW Pr(error~~~ I sent)
~Another strategy for increasing reliably-received rate is

p(n) = Pr(error 1 sent) to use a single encoder and a collection of decoders, each
2nR parameterized by s and decoding at a rate R, The transmitter

< Pr((Xn(1),Yn) , A(n)) + E Pr((Xn(j), Yn) A(n)) is forced to use a single encoder without channel side in-
j=2 formation. The receiver, on the other hand, can choose the

< Pr [-iXtWtt (Xn(1); Yn) < I(X; Y) 1 appropriate decoder based on CSIR. Denote by Ph' the<rn-X nprobability of error associated with channel s. We define the

+2nR 5 PX (Xn))Pyn (yn) expected capacity ce as the supremum of all achievable rates:EsRs of any code sequence that satisfies -ESpn*> 0 . We
(Xn Y)cA$j) show that Ce satisfies the lower bound Ce > SUPq Cq and the

< e+2 PXnWnI(X;Y)±c) E Px <n(,yn) (3) upper bound

for n large enough. The final inequality uses (1), (2), and the
fact that (xt,ynn) C A(n) implies

Pyn (yn) < 2-n(I(X;Y)-e) PW (yn Xn).

ce < suplimsupEE [-ixnwi xn;YI 5) 51.
X n--*oo [1 j

(5)
The lower bound is achieved using the code used for outage-

q capacity. For the upper bound, we assume channel side
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information is provided to the transmitter (CSIT) so it can
adapt the transmission rate to the channel state. In this case
we also obtain those rates {R,}ss achievable without CSIT.
Denote by X'(1),... ,X(2nR ) and D9(1),. ,Ds(2nR,)
the set of codewords and decoding regions corresponding to
channel s. We fix -y > 0 and define for each s C S and
1 < i < 2nR,

Bs(i) {yn C yn ix w (Xn (i);yn s) < Rs - /}
{yn C y PXnlynS Y ) <22/}(6)

where (6) follows from (1). Notice that for any s with R, > 0

Px-y Is [ >x wI(xn;Yn s) < R5- s]

2nRs

< [2 -R PynlXn,s(Ds(i) X(i), s)
i=l

+ PXnynIS(XX(i),y s)]
yn (EB, (i)nD, (i)

2nRs

< p(n,s) + 5 5 2 n7Pyn IS(yn| s)
i 1 ynGB (i)nD (i)

< pe(s) + 2 '2. (7)

Furthermore we have

IEs liminf PXnynl-IS XnWn(; nS <Rs-y Snoo ~~n

< lim ESPxnynIs [1iXnWnixnYnS) <Rs-t S

< lim [ESPe(n,S) + 2 anY] = 0,

where the chain of inequalities follows from Fatou's lemma,
(7), and the code constraint EsPe(n,S) -> 0. Since the proba-
bility must be non-negative, we conclude

liminfPxnynIs 1s]XnWn(Xn yn0S) <RS--y S =0
n---~oo -n

almost surely (a.s.) in S. Thus for any e > 0,

PXnynlIs -iXnWn(X;nS <RR- y SH < e

occurs infinitely often a.s. Assuming iXnWn(Xn;yn S) is
bounded by M, we then have

EXnynIS [9XnWn(Xn;Yn S) S] > (Rs -y)(1-)-EM

also occurs infinitely often a.s. Since e is arbitrary, we see that

ESE11XnynIS LinWn(Xn; ynlS) SH > EsRs-

infinitely often for arbitrary -y, which gives us the upper bound
(5) for expected capacity. Note that the expectation in the
upper bound (5) is indeed 1 I(Xn; Yn S).

III. EXAMPLES

A. Gilbert-Elliott Channel

The Gilbert-Elliott channel [9] is a two-state Markov
chain, where each state is a BSC. The transition probabilities
between channel states are g and b respectively, the initial
state distribution is given by wG and 7B for states G and B.
The crossover probabilities for the "good" and "bad" BSCs
satisfy 0 < PG <PB < 1/2. We let xn C {0, 1}, yn C {0, 1},
and z, = yn(D Yn denote the channel input, output, and
error on the nth transmission. Whether or not the channel is
stationary or ergodic depends on the channel parameters. We
study the capacity definitions under a variety of scenarios.

Example 1: Ergodic Case, Stationary or Non-Stationary
Consider the case with g and b nonzero, G= g7(g +
b) and 7B = bl(g + b), so the Gilbert-Elliott channel is
stationary and ergodic. In this case the information density
1*Vxi wn(X';Y') converges to a delta function at the av-

erage mutual information, so capacity equals average mutual
information as usual. The Shannon capacity C is equal to the
expected capacity 7FGCG + 7TBCB, where CG = 1 -h(PG),
CB = 1-h(pB) and h(p) =-p logp -(1 -p) log( -p) is
the binary entropy function.

This is not a composite channel. Since any transmission
intrinsically experiences both good and bad channel states,
the receiver has no basis of choosing certain transmissions
over the others to declare outage. Outage capacity is not well

S defined for stationary and ergodic channels, but becomes more
interesting for non-ergodic channels as in Example 2.

If wG :t g7(g + b) but b and g are nonzero, then the
Gilbert-Elliott channel is ergodic but not stationary. However,
the distribution on the states G and B converges to a
stationary distribution. Thus the channel is asymptotically
mean stationary, and our four definitions of capacity have the
same values as in the stationary case.

Example 2: Stationary and Nonergodic Case
We now set g = b = 0. So the initial channel state is chosen
according to probabilities {7G, 7B } and then remains fixed for
all time. The Shannon capacity equals that of the bad channel.
The outage capacity Cqo (1 -q) CB if the outage probability
q < 7B and Cq = (1 q)CG otherwise. The loss incurred
from the lack of side information at the encoder is that the
expected capacity is strictly less than the average of individual
capacities 7rBCB + 7wGCG and is equal to [6]

max 1 -h(r * PB) +wG[h(r * PG) -h(pG)], (8)
O<r<1/2

where a * Q = Q(l-) + (1- a)3. The interpretation here
is that the broadcast code achieves rate 1 -h(r * PB) for the
bad channel and an additional rate h(r * PG) -h(pG) for the
good channel, so the average rate is the expected capacity.

Using the tangent match approach developed in [10] we can
obtain r* which maximizes (8). Namely if we define

A=I 2PB f(pl,p2)
1 2pG'

log(l/pl
log(I /p2

1)
1)'
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then r* = 0 if 7G < Af(PB,PG); r* = 1/2 if 7G > A2 and
r* solves f(r*PG, r*PB) = A/7G otherwise. A more general
case will be considered in the next example.

B. BSC with random crossover probabilities

We consider a BSC with random crossover probability
0 < p < 1/2. At the beginning of transmission p is chosen
according to some distribution f (p) and then held fixed. We
also denote F(p) fo' f (s)ds as the cumulative distribution
function. This is an example of a composite channel. The
Shannon capacity is C = l-h(p*) where p* = sup{p:
f (p) > 0} = inf{p: F(p) = 1}, and the outage-q capacity is
Cq = (1 -q)[ -h(pq)] where Pq = inf{p: F(p) > 1 -q}.
We then consider a broadcast approach on this channel The

receiver is equivalent to a continuum of ordered users, each
indexed by the BSC crossover probability p and occurring
with probability f(p)dp. The transmitter sends an infinite
number of layers of coded information and each user decodes
an incremental rate IdR(p)l corresponding to its own layer.
Since the BSC broadcast channel is degraded, a user with
crossover probability p can also decode layers indexed by
larger crossover probabilities, hence we achieve a rate of

1/2

R(p) j dR(p) (9)

The problem of determining the expected capacity then boils
down to the characterization of the broadcast rate region.

In the discrete case with N users, assuming 0 < P1 < ...<

PN < (1/2), the capacity region is shown to be [11]

{R: Ri = h(ri *pi) -h(ri-1 *pi), I < i < N} (10)

where 0 = rO < rl < ... < rN 1/2. Since the original
broadcast channel is stochastically degraded it has the same
capacity region as a cascade of N BSC's. The capacity region
boundary is traced out by augmenting (N -1) auxiliary
channels [11] and varying the crossover probabilities of each.
For each i, ri equals the overall crossover probability for
auxiliary channels 1 up to i. See Figure 1 for an illustration.

Auxiliary channel Degraded BSC BC
X Y1 Y2

pi

r2 P2
rN] PN

Fig. 1. BSC broadcast channel with auxiliary channels for random coding

We extend the above result to the continuous case with an
infinite number of auxiliary channels. In this case we define
a monotonically increasing function r(p) equal to the overall
crossover probability of auxiliary channels up to that indexed
by p. In the following we use both r(p) and rP interchangeably.
For the layer indexed by p, the incremental rate is

-dR(p) = h(p * rp) -h(p * rp-dp) r. 109lo (IIX- 1),

where x = p * rP, d = (1 -2p)r'dp, the first order approx-
imation rp-dp r - rdp and h(x -) h(x) -h'(x)6.
Here d is a small variation, and we do not explicitly address
the problematic limiting case h'(x) -> oc as x -> 0.

Overall the expected rate is
c 1/2

ce= f(p)R(p)dp:
1/2 1

F(p) log
*o p * rp~~

J1/2
F(p)dR(p)

I) (1

The optimal r(p) maximizing the expected rate can be solved
through calculus of functional variation. Let us represent

S(p, rp, r') = F(p) log ( 1) (1 -2p)r> (12)

The optimal r(p) should satisfy the Euiler equation [12]

d
Sr - -Sr = 0

dp
(13)

where Sr = &S/&r and Sr = &S/&r'. After some algebra
(13) simplifies to

(p*rp)-1 -(1 -p*rp)-1
log( -p * rp) -log,(p * rp)

(1 -2p)f (p) -2F(p)
F(p)

(14)
In general (14) has no closed-form solution but there exist
obvious numerical approaches.
As an example we examine capacity under different def-

initions for a crossover probability uniformly distributed on
[0,1/2]. The Shannon capacity C = 0. The outage-q capacity
Cq = (1 -q) [1 -h( 2q)]. To evaluate the expected capacity
we solve r(p) for each p in (14). It is seen that 0 < rp < 1/2
only for Pl < p < p,, with the two cutoff probabilities
r(pi) = 0 and r(pa,) = 1/2. For the uniform distribution case,
Pl = 0.136 and p,, = 1/6, which illustrates it is unnecessary to
use the channel all the time to achieve the expected capacity.
In fact no information is sent when p > 1/6.

In Figure 2 we plot the capacity under different definitions.
We observe that, although the achievable rate in non-outage
states, Cq/l(1 -q), could exceed the expected capacity Ce,
the outage-q capacity Cq is always dominated by the expected
capacity ce. We further define cutoff outage probabilities ql =
1 -2pl and q,, = 1-2p,. In Figure 3 we plot the achievable
rates in each state for various capacity definitions. We see that
the code for outage-q capacity achieves a constant rate for
non-outage states and a rate 0 otherwise. For this example,
the incremental rates dR(p) are nonzero only for P, < p <

Pa. Therefore the code for expected capacity achieves a rate
0 when p > Pa. When p decreases from Pa, to Pl, the rate
gradually increases from 0 to 0.38 bits per channel use, and
stays at this constant level for p < Pl. Since all channels are
equally probable, the area under each curve is the average
rate of that strategy. The area under the expected capacity
curve is the largest. The expected capacity curve is, in some
places, lower than the curve for outage-ql capacity. Although
the outage-ql code achieves a rate higher than the broadcast
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code for expected capacity when p < Pl, the same code has
decoding rate 0 for all other channel states p > Pl, giving a
lower area under the total curve.

In summary, when optimizing r(p) for the expected capacity
we first identify the cutoff probabilities (Pl, pa,) and then solve
(14) to obtain r(p) for each p. We want to emphasize that
the correct cutoff range, although seemingly a very coarse
characterization of the optimal solution, is crucial to the
expected rate. Consider some alternative approaches:

. Optimal cutoff [pl,ptl]: r(p) = 0 for p < pl, r(p)
2(p-P t)' for pl <P <Pp, and r(p) = 1/2 for p >Pa;

* Entire range [0, 1/2]: r(p) = (1/2)(2p)>Y.
The choice of makes r(p) convex ('y > 1), linear (y
1) or concave (y < 1) in both approaches. The achievable
rates are plotted for 20 trials in each case together with Ce in
Figure 4. In each trial iy is randomly chosen between 0 and 4.
We observe that the correct cutoff range yields an achievable
expected rate very close to ce. But the expected rate varies
dramatically if we naively spread r(p) over [0,1/2].

IV. CONCLUSION

In view of the pessimistic nature of Shannon capacity
for composite channels with CSIR, we propose alternative
capacity definitions including outage capacity and expected
capacity. These definitions lend insights to applications where
side information at the receiver combined with appropriate
source coding strategies can exploit these more flexible notions
of capacity. We prove capacity theorems or bounds under each
definition, and illustrate how average achievable rates can be
improved through examples of Gilbert-Elliot channels and a
BSC with random crossover probabilities.
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