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Abstract— We consider communication over a binary era-
sure channel with low density parity check codes and optimal
maximum a posteriori decoding. It is known that the problem
of computing the average conditional entropy, over such code
ensembles, in the asymptotic limit of large block length is closely
related to computing the free energy of a mean field spin glass
in the thermodynamic limit. Tentative, but explicit, formulas
for these quantities have been derived thanks to the replica
method (of spin glass theory) and are generally conjectured to
be exact. In this contribution we show that the replica formulas
are indeed exact in the case of Poissonian low density parity
check ensembles. Our methods use ideas coming from the recent
progress in the rigorous analysis of the Sherrington-Kirkpatrick
model and their applications to the theory of error correcting
codes.

I. INTRODUCTION

Linear codes based on sparse random graphs have been
very successful because of low-complexity decoding schemes
and good performance [1]. Among the most popular code
constructions one finds the low density parity check LDPC
ensembles and it is conjectured that important quantities
such as the average (over the code ensemble) conditional
entropy per bit hn = n−1H(Xn|Y n) of the transmitted
message Xn conditional to the received message Y n can
be computed exactly in the limit of large block length. This
would give us exactly the noise threshold beyond which error
free communication is not possible under optimal decoding.
Even more, it is known that there is an intimate relationship
between optimal maximum a posteriori (MAP) decoding and
message passing decoding using belief propagation. Namely
the so called generalized EXIT curves associated to the two
decoders are thought to be equal beyond the MAP threshold.

Most of the theory has been so far developed for the
binary erasure channel by using combinatorial methods. For
example limn→+∞ EC [hn] has been rigorously computed very
recently [2] for a class of LDPC ensembles by computing the
rate corresponding to the residual graphs left over after the
completion of iterative decoding. In this contribution we use
non-combinatorial methods coming from the rigorous analysis
of mean field spin glasses to derive such a result for the
special class of Poissonian LDPC ensemble. We believe that

it will be possible to extend our proofs beyond the binary
erasure channel because of their non-combinatorial nature.
Our method uses the two interpolations first developed by
Guerra and Toninelli [4] in the context of the Sherrington-
Kirkpatrick model [8] of a mean field spin glass. The first in-
terpolation has been adapted to diluted spin systems by Franz
and Leone [5] and to error correcting codes by Montanari
[6] for LDPC(n, Λ, P ) ensembles1 with any polynomial Λ(x)
but P (x) restricted to be a convex polynomial in a region
−e ≤ x ≤ e. The net result of the first interpolation is
a lower bound on the conditional entropy which coincides
with the ”replica formula” and is thus conjectured to be tight.
Note that the proof of this bound works for any memoryless
binary-input output-symmetric channel. For some channels
(BEC, BIAWGNC and BSC) the convexity requirement on
P (x) has been relaxed in [12]. For the Sherrington-Kirkpatrick
model the second interpolation leads to an upper bound which
coincides with the lower bound at least in the high temperature
region of the phase diagram2. In the case of LDPC ensembles
the second interpolation has not yet been developed. This is
in essence what we do in this contribution for the simplest
case of Poisson LDPC ensembles and the BEC. Part of the
mathematical analysis involved in the second interpolation is
reminiscent of the one we have developed recently for the
(simpler) case of a “gauge symmetric p-spin model” [11].

II. MAIN RESULT

In the sequel we consider communication through a BEC
with transition probability pY |X(y|x) and noise parameter ε.
We consider Poisson LDPC(n, Λ, P ) ensemble. The number
of check nodes is a Poisson integer with mean n γ

P ′(1) and
they are connected uniformly at random with n variable nodes.
Here Λ(x) = eγ(x−1) and hence we denote this ensemble also
as LDPC(n, γ, P ). The design rate of this ensemble is given

1Here Λ(x) =
P

d Λdxd, P (x) =
P

k Pkxk are the variable and check
node degree distributions from the node perspective

2Thus in this case the replica solution is confirmed. Remarkably this has
been extended to the whole phase diagram by Talagrand [7] thus proving the
Parisi formula



Fig. 1. The thin line is pRS obtained from the replica solution for γ =
3, P (x) = x6 and the thick line is the region where we prove its exactness

by 1 − γ
P ′(1) . We use the notation ρ(x) = P ′(x)/P ′(1) and

λ(x) = Λ′(x)/Λ′(1).
The mathematically ill defined replica calculations of spin

glass theory lead to a conjectured formula for the entropy
which has the form of a variational problem supdV

hRS [dV ]
over a class of probability distributions satisfying3 dV (v) =
e2vdV (−v) where the functional hRS [dV ] is known as the
replica symmetric entropy. For the BEC the probability distri-
butions are of the form dV (v) = pδ0(v) + (1− p)δ∞(v) with
0 ≤ p ≤ 1 and

hRS [p]
ln 2

=Λ′(1)pρ(1− p) + εΛ(1− ρ(1− p))

− Λ′(1)
P ′(1)

(1− P (1− p))

Hence the variational problem can be explicitly solved. The
maximizer of hRS [p] is a solution of the stationary point
equation p = ελ(1 − ρ(1 − p)), and we call the unique
maximizer pRS . Typically this is a curve as a function of ε
with one or many discontinuities (see figure 1 for an example
with one discontinuity). One of the results of this work (and of
[2]) is that this curve is nothing else but the MAP probability
of error.

When the suboptimal belief propagation (BP) decoder is
used one can compute the corresponding BP probability of
error by the method of density evolution. This method leads to
the same stationary point equation which is solved iteratively
starting from the initial condition p = ε. The BP probability
of error is the largest fixed point obtained from this initial
condition and we will call it pBP . This is again a curve as a
function of ε with one or many discontinuities, which is closely

3In coding this “symmetry” comes from channel symmetry and in statistical
physics it is a special instance of gauge symmetry.

related to pRS (see the example of figure 1). For example it
is possible to check that the two curves are identical for all ε
above the last discontinuity of pRS .

In order to state our theorem below we need to define an
auxiliary function

f(z) =
γ

P ′(1)
(
P (z)− zP ′(z)

)
+ (1− pRS)

γ

P ′(1)
(
P ′(z)− P ′(1− pRS)

)
+ pRS ln cosh

[ γ

P ′(1)
(
P ′(z)− P ′(1− pRS)

)]
Theorem 1: Assume communication using a Poisson

LDPC(n, γ, P ) code ensemble, through a BEC with erasure
probability ε. Assume that f has a unique maximizer ẑ. Then
for all ε such that pRS = pBP and ε ∈ CP,γ = {ε ∈ [0, 1]|ẑ =
1−pRS} we have the exact expression for the average per bit
conditional entropy

lim
n→+∞

EC [hn] = hRS [pRS ]

The condition over the range of ε is not optimal and comes
from the second interpolation that we use. One may check
explicitly that f ′(p̄RS) = 0, so that ẑ = p̄RS is always a
critical point. Furthermore, for some range of ε it is a global
maximum and this range intersects the one where pRS = pBP .
In [2] there is also a condition which is different from ours. A
consequence of the theorem is that (at least over some range
of ε) the MAP probability of error is given by pRS which is
computable from the replica formulas. One way to see this is
to check that ε d

dεhRS [pRS ] = pRS ln 2.

III. STATISTICAL MECHANICAL FORMULATION AND FIRST
INTERPOLATION

The Tanner graph has variable nodes, denoted by i that are
connected to check nodes denoted by c. We will work in terms
of the half-loglikelihood variables l = 1

2 ln pY |X(y|1)
pY |X(y|0) and call

their (ε dependent) distribution c(l) assuming that the all zero
codeword is transmitted.

The posterior distribution pXn|Y n(xn|yn) used in MAP
decoding can be viewed as the Gibbs measure of a random
spin system. For this it is convenient to use the mapping
of bits to spins σi = (−1)xi . For a uniform prior over the
code words and a memoryless binary-input output-symmetric
channel, Bayes rule implies

pXn|Y n(xn|yn) =
1

ZC

∏
c∈C

1
2
(1 + σ∂c)

n∏
i=1

eliσi

2 cosh li

where σ∂c =
∏

i∈c σi and ZC is the normalization factor or
partition function. Expectations with respect to the Gibbs mea-
sure for a fixed graph and a fixed channel output are denoted
by the bracket 〈−〉. More precisely for any X ⊂ {1, ..., n},
〈σX〉 =

∑
σn σXµC(σn) where σX =

∏
i∈X σi. Expectations

with respect to the code ensemble and the channel outputs will
be denoted by EC,ln [−].



It is possible to show [9] in the case of BEC

EC [hn] = n−1EC,ln [lnZC ] + ε ln 2

The quantity n−1EC,ln [lnZC ] is known as the average free
energy in statistical mechanics. Since this differs from the
average conditional entropy only by a constant, we will focus
on the evaluation of the free energy.

A. First interpolation

The main idea behind the interpolation technique is to
recursively remove the check node constraints and compen-
sate for the change of rate with “extra observations” Ua.
These are independent identically distributed random variables
constructed as follows. Let V be a random variable with a
symmetric density dV (v) (i.e dV (v) = e2vdV (−v)). Here
we deal with the BEC so it is sufficient to look at the
space of distributions dV (v) = pδ0(v) + (1− p)δ∞(v) where
0 ≤ p ≤ 1 is for the moment an arbitrary parameter. Set Ua =
tanh−1

[∏k−1
i=1 tanh Vi

]
where Vi are i.i.d copies of V and k

is an integer distributed as Pk. Notice that this equation mimics
a check node message in the belief propagation decoding
algorithm.

Let t ∈ [0, 1] be an interpolating parameter and consider the
Tanner graphs Ct from the ensemble LDPC(n, γt, P ). Thus at
“time” t the number of check nodes is a Poisson r.v with mean
nγt. As said before the loss of check nodes is compensated by
“extra observations”. Variable nodes i receive di i.i.d copies
{U i

a}, a = 1, ..., di of the r.v Ua. Here di are i.i.d copies of a
random Poisson integer with mean nγ(1−t). The interpolating
Gibbs measure is

1
Z(t)

∏
c∈Ct

1
2
(1 + σ∂c)

n∏
i=1

e(li+
Pdi

a=1 ui
a)σi

2 cosh li
∏di

a=1 2 coshui
a

Expectations with respect to this measure will be denoted by
〈−〉t and for the corresponding average free energy we set
αn(t) = n−1ECt,ln,{ui

a}[lnZ(t)]. At t = 1 one recovers the
original free energy αn(1) = n−1EC,ln [lnZC ] while at t = 0
we have a simple product measure which is tailored to yield
the replica symmetric free energy (or up to a constant term
hRS [p]).

In order to lighten the formulas from now on we consider
the case P (x) = xr but it is straightforward to extend the
arguments to general polynomials. Also, we use the simplified
notation ECt,ln,{ui

a} = Et and p̄ = 1− p.
From [6] we have that αn(1) can be written as,

αn(1) = hRS [p] +
∫ 1

0

dtR(t)

R(t) =
γ

r

∑
l≥1

(−1)l+1

l
Et[〈R(p̄, Ql)〉t] (1)

where Ql = n−1
∑

i σ1
i σ2

i · · ·σl
i are called the overlap param-

eters and R(a, b) = (r − 1)ar − rar−1b + br. One crucial
property of the later polynomial is that it is positive for all r
for a ≥ 0, b ≥ 0.

There are two major simplifications that we can make on
R(t). First it was shown in [12] that for almost every ε

R(t) =
γ

r

∑
l≥1

(−1)l+1

l
Et[R(p̄, 〈Ql〉t)] + on(1) (2)

Note that in equation (1), 〈R(p̄, Ql)〉t involves the three
quantities p̄, 〈Qr

l 〉t, 〈Ql〉t whereas in equation (2), R(p̄, 〈Ql〉t)
is a polynomial in two variables p̄, 〈Ql〉t. Furthermore, for the
BEC, we either receive a bit perfectly or it is erased. This is
the content of the lemma which can be given a formal proof.

Lemma 1: For the BEC the random variables 〈σi〉t take
values 0 or 1.

Proof: From the GKS inequality [10] we have 〈σi〉t ≥ 0.
Moreover from channel (or Nishimori) symmetry we have
Et[〈σi〉t] = Et[〈σi〉2t ]. Thus 〈σi〉t(1 − 〈σi〉t) is a positive
random variable with zero mean, even for n finite. Thus it
is zero for all the graph and noise realizations.

The lemma implies

〈Ql〉t =
1
n

n∑
i=1

〈σi〉lt =
1
n

n∑
i=1

〈σi〉t = 〈m〉t

where m = 1
n

∑n
i=1 σi is the “total magnetization”, which

leads to

αn(1) = hRS [p] + ln 2
γ

r

∫ 1

0

dtEt[R(p̄, 〈m〉t)] + on(1)

In particular this equality implies the lower bound EC [hn] ≥
hRS [pRS ] + on(1) for all r and almost every ε.

B. Belief propagation for the interpolating system

It will prove useful to collect here a few properties of
the interpolating system at time t. It can be thought of
as a communication system where code words from Ct ∈
LDPC(n, γt, P ) are sent via a BEC. The receiver also col-
lects “extra observations” U distributed as dU (u) = (1 −
ρ(p̄))δ0(u)+ρ(p̄)δ∞(u) Alternatively one can view the system
as codewords from Ct transmitted through a channel with
effective erasure probability ελ1−t(1 − ρ(p̄)). We have the
following recursive equation for the density evolution (of
erasures) analysis of the BP decoding (at iteration `)

xl+1,t = ελ1−t(1− ρ(p̄))λt(1− ρ(1− xl,t)) (3)

where λt(x) = eγt(x−1). By explicit analysis of (3) we can
show

Lemma 2: For any δ small enough, if we set p = pBP + δ
then the fixed point of the recursion (3) obtained from the
initial condition x0,t = ε satisfies x∞,t = pBP + O(δ).

Now we consider the BP estimate of the spin (or bit) σi

after l iterations for the interpolated code. It is possible to
regard the BP estimate as a statistical mechanical average on a
computational tree Ti(`) [1] of depth ` for node i. One simply
considers the Gibbs measure with appropriate check node



constraints and observations associated to all nodes appearing
in the labeled tree graph Ti(`). We denote this average by
〈σi〉t,Ti(`).

Lemma 3: For any t, and any δ > 0, one can find a depth
`(δ) and a block length n(δ) independent of t such that for
all n ≥ n(δ), if p = pBP + δ, we have Et[〈σi〉t,Ti(`)] ≥
p̄BP − g(δ), where 0 < g(δ) < δ.

Proof: On the Tanner graph Ct, let Ni(`) denote the
neighborhood of depth l for node i. With high probability this
is a tree so that one easily computes Et[〈σi〉t,Ti(`)] by (3). The
inequality then follows from lemma 2.

Finally we will need a concentration property for the BP
estimate of the interpolating system.

Lemma 4: One can find a numerical constant β > 0 such
that for any δ small enough, any fixed `, if n is large enough

Pt

[
|

n∑
i=1

〈σi〉t,Ti(`) −
n∑

i=1

Et〈σi〉t,Ti(`)| ≥ nδ
]

≤ e
− nβδ2

(ln n)2` + n1− 1
2 ln(ln n)

Proof: Adapt the proof of [3].

IV. UPPER BOUND ON THE REMAINDER R(t)

To prove the exactness of RS solution it remains to show
that Et [R(p̄RS , 〈m〉t)] ≤ on(1). The idea is that for p = pRS

the removal of the check nodes is perfectly compensated by
the addition of the cavity biases and Et [R(p̄RS , 〈m〉t)] does
not change with t and hence the remainder term is 0 (since at
t = 0 one can explicitly verify this). We are unable to show
directly this perfect compensation, but we can show that for
any δ > 0 and p = pδ = pRS + δ the compensation is almost
perfect in the sense that Et [R(p̄δ, 〈m〉t)] ≤ on(1) + O(δ).
Therefore,

hRS [pRS ] ≤ lim
n→∞

EC [hn] ≤ hRS [pRS + δ] + O(δ)

Since δ can be made as small as desired, using the continuity
of hRS [p] we get the equality of the theorem.

Notice that we need p = pBP + δ in lemmas 2, 3. Thus
we see that for the present proof to work ε has to be in the
range pRS = pBP . This is the first condition appearing in the
theorem.

A. Second Interpolation

In fact from [12] it is enough to show that
Et [〈R(p̄δ,m)〉t] ≤ on(1) + O(δ). We will use a second
interpolation in a similar fashion than in [11]. Consider the
following partition function,

Z(t, µ, p̄) =
∑
σn

eµnR(p̄,m)
∏
c∈Ct

(1 + σ∂c

2
)

n∏
i=1

e(hi+
Pdi

a=1 ui
a)σi

2 cosh(hi)
∏di

a=1 2 cosh(ui
a)

We denote 〈·〉t,µ the average associated to this partition
function and αn(t, µ, p̄) = n−1 lnZ(t, µ, p̄) the associated free
energy. The motivation for defining Z(t, µ, p̄) is to use the fact
that the fluctuations of R(p̄RS ,m) are very small and the free
energy αn(t, µ, p̄RS) is close to αn(t, 0, p̄RS).

The convexity of αn(t, µ, p̄) with respect to µ implies for
any µ > 0,

Et[〈R(p̄, m)〉t] =
∂

∂µ
Et[αn(t, µ, p̄)]

∣∣
µ=0

≤ 1
µ

Et[αn(t, µ, p̄)− αn(t, 0, p̄)]

It turns out that the good choice for µ is µ(t) = γ
r (1−t). Note

that with this choice a priori the t-integral of the remainder
term diverges. But it is easy to circumvent this problem by
splitting the integral in two intervals [0, 1− δ] and [1− δ, 1].
The second interval easily leads to a contribution O(δ) and
for the first one the rest of the proof will yield a contribution
of the form on(1) + O(δ2 ln δ).

Using the fundamental theorem of calculus, some algebra,
and positivity (of part of the remainders as in the first
interpolation), we finally obtain the estimate

Et[αn(t, µ(t), p̄)− αn(t, 0, p̄)] ≤ ∆n

(γ

r
, p̄

)
(4)

+
γ

r

∫ t

0

∑
l≥2

(−1)l+1

l
Es〈R(p̄, Ql)〉s,µ(s)ds (5)

where

∆n

(γ

r
, p̄

)
= E[αn(0,

γ

r
, p̄)− αn(0, 0, p̄)]

Remark that the term l = 1 in the sum has canceled due to
the judicious choice of µ(t).

B. Estimate of (4)

One can explicitly compute (4). Indeed the free energy
αn(0, 0, p̄) corresponds to a Gibbs measure with a product
form. For the other free energy αn(0, γ

r , p̄) the situation is
more complicated but the code Ct is absent and the problem
is similar to the computation of a free energy of a non-random
complete p-spin model. This can be computed by the saddle
point methods much like in [11]. The net result of this long
calculation is

∆n

(γ

r
, p̄δ

)
=

γ

r
(r − 1)p̄r

RS + max
z

f(z) + on(1)

where f(z) was defined in the second section. Thus for ε
such that the maximizer ẑ = p̄RS , this contribution vanishes
as n → +∞.

C. Estimate of (5)

It is difficult to decide what is the sign of (3) because
unlike the case µ = 0 we do not have tools such as the
GKS inequality [10] or Nishimori symmetry. This is why we
establish a relation between the µ 6= 0 system and µ = 0
system through the following two lemmas the (easy) proofs
of which we omit here.



Lemma 5: If 〈σi〉t = 1 then also 〈σi〉t,µ = 1

Lemma 6: For P (x) = xr we have 〈σ0〉t,µ ≥ −1+e−4nµr.

Thanks to these we can show the crucial result

Lemma 7: Let ε such that pRS = pBP . For any δ > 0 there
exists n(δ) such that for all n ≥ n(δ),∑

l≥2

(−1)l+1

l
Es〈R(p̄δ, Ql)〉s,µ(s) ≤ 0

Proof: Define the random variable q = 〈m〉s and the
random set of variable nodes S = {i : 〈σi〉t = 0}. From
lemma 5, Ql = q + 1

n

∑
i∈S σ

(1)
i ...σ

(l)
i which implies

〈R(p̄δ, Ql)〉s,µ(s)

=
r∑

j=0

(
r

j

)
qr−j 1

nj

∑
i1,...ij∈S

〈σi1 ...σij 〉ls,µ

− rp̄r−1
δ q − rp̄r−1

δ

1
n

∑
i∈S

〈σi〉ls,µ(s) + (r − 1)p̄r
δ

Using 〈σX〉2k
s,µ ≥ 〈σX〉2k+1

s,µ and 〈σX〉2k
s,µ ≥ 0 the j ≥ 2 part

of the j-sum yields a negative contribution when we combine
l = 2k and l = 2k + 1 as follows

− 1
2k

Es〈R(p̄δ, Q2k)〉s,µ +
1

2k + 1
Es〈R(p̄δ, Q2k+1)〉s,µ

≤ − 1
2k(2k + 1)

Es[R(q, p̄δ)]

− 1
2k

Es[T2k] +
1

2k + 1
Es[T2k+1]

where

Tl = r(qr−1 − p̄r−1
δ )

1
n

∑
i∈S

〈σi〉ls,µ(s)

Let As be the event {q ≥ p̄BP − δ
2 −

g(δ)
2 }. Since in the set

As T2k ≥ T2k+1, we have

− 1
2k

Es〈R(p̄δ, Q2k)〉s,µ +
1

2k + 1
Es〈R(p̄δ, Q2k+1)〉s,µ

≤ EAc
s

[
−T2k

2k
+
T2k+1

2k + 1

]
− r(r − 1)δ2

2k(2k + 1)
p̄r−2

BP P[As]

This yields a negative contribution for any fixed δ and n large
enough provided that we show P[Ac

s] → 0 fast enough (in
fact one has also to use lemma 6 to control the k-sum which
yields a contribution ln(1 + 〈σi〉s,µ)).

To bound the probability of the event Ac
s we note that for

any realization of the randomness 〈σi〉s ≥ 〈σi〉s,Ti(l). Indeed
if the iterative decoder succeeds and the BP estimate is 1 then
the MAP estimate is also necessarily 1. On the other hand
if the iterative decoder fails then the BP estimate is 0 and is
surely less than the MAP estimate which is 0 or 1. Therefore
lemma 3 implies that there is a n(δ) such that for n ≥ n(δ),

P[Ac
s] ≤ P

[∑
i

〈σi〉s,Ti(l) ≤
∑

i

Es〈σi〉s,Ti(l)

− n

2
(δ − g(δ))

]

and the result follows from lemma 4.

V. CONCLUSIONS

Similar results can be obtained for the Poisson LDGM
ensembles. The most important open problems are the exten-
sion of the present methods to any standard irregular LDPC
ensembles and other binary memoryless symmetric channels.
Because of the non-combinatorial nature of the proof it should
be possible to go beyond the BEC. The main problem is to
show that lemma 7 holds for other channels as well.

ACKNOWLEDGEMENT

The work of S. Kudekar has been supported by a grant
from the Swiss National Science Foundation number 200020-
113412. The work of S. Korada is supported by NCCR-MICS,
a center supported by the Swiss National Science Foundation
under grant number 5005-67322.

REFERENCES

[1] T. Richardson, R. Urbanke “Modern Coding Theory,” Cambridge Uni-
versity Press, in preparation.

[2] C. Meason, A. Montanari, R. Urbanke “Maxwell Construction: The
Hidden Bridge between Iterative and Maximum a Posteriori Decoding”,
preprint 2005 arxiv:cs.IT/0506083

[3] T. Richardson, R. Urbanke “The Capacity of LDPC codes under Message-
Passing Decoding”, IEEE Trans. Inf. Theory., pp. 638–656, 2001.

[4] F. Guerra, F. Toninelli “Quadratic Replica Coupling in the Sherrington-
Kirkpatrick Mean Field Spin Glass Model”, J. Math. Phys. 43 p. 3704
(2002).

[5] S. Franz, M. Leone “Replica Bounds for Optimization Problems and
Diluted Spin Systems,” J. Stat. Phys., 111 p. 535-564 (2003).

[6] A. Montanari, “Tight Bounds for LDPC and LDGM Codes Under MAP
Decoding,” IEEE Trans. Inf. Theory., 51, no. 9, pp. 3221–3246, (2005).

[7] M. Talagrand, “The Parisi formula”, Annals of Mathematics, 163 (2006),
221-263

[8] M. Mezard, G. Parisi, M. Virasoro, “Spin Glass Theory and Beyond”,
(1987) World Scientific

[9] A. Montanari, “The glassy phase of Gallager codes”, European Phys.
Journal, 23 2001.

[10] N. Macris, “Griffith-Kelly-Sherman Correlation Inequalities: A Useful
Tool in the Theory of Error Correcting Codes,” IEEE Trans. Inf. Theory.,
Vol. 53, No. 2, February 2007.

[11] S. Korada, N.Macris, “Exact solution of a p-spin model and its relation-
ship to error correcting codes”, Proc. ISIT, Seattle, 2006.

[12] S. Kudekar, N.Macris, “Sharp Bounds for MAP Decoding of General
Irregular LDPC Codes”, Proc. ISIT, Seattle, 2006.


