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Abstract—We present a graph theoretic upper bound on 3) We prove an wupper bound on speedup of
speedup needed to achieve 100% throughput in a multicast 2K-1 2N\ for an arbitraryK x N switch with

switch using network coding. By bounding speedup, we show & A K N4 .
equivalence between network coding and speedup in multicas traffic pattern restricted to unicasts and broadcasts only.

switches -i.e. network coding, which is usually implemented using Our work builds on the work by Sundararajenal.[2], [3],
;gm’(‘;s;% gj‘gégir?;]agztr‘;a:@?tci”?asg'rti‘ége ?Eﬁseggﬁﬁgvrslcﬁafegr? which gave a graph-theoretic formulation of the rate region
an approach to network coding problems called the “enhanced of a _mUItlcaSt SV\,”tCh with 'r_]tra'ﬂow coding us'mmhanced_
conflict graph”. We show that the “imperfection ratio” of the ~ conflict graphs Given a traffic pattern, the enhanced conflict
enhanced conflict graph gives an upper bound on speedup. In graphG = (V, E) is an undirected graph that contains one
particular, we apply this result to K x N switches with traffic  vertex for every;ubflov\ﬁ An edge exists between two vertices
patterns consisting ofﬂtirli{:as;]sv and broadcasts only to obtaan s they represent two subflows from the same input or to
upper bound of min(=%=, §77)- the same output. Reference [3] shows that the stable set
polytope and the fractional stable set polytope of an enddnc
conflict graph are the rate region and the admissible region
The input-queued crossbar switch has been studied weéli,a network coding switch, respectively. This graph-tiegior
especially in the context of unicast traffic. It is known thaformulation helps us transform any given traffic patterroint
100% throughput can be achieved [1], in the sense that @gonflict graph, and the properties of this graph can be used
long as no input or output is oversubscribed, traffic can tie derive insight on the speedup required to achieve 100%
supported without causing the queues to grow unboundedlyroughput with coding. A similar graph-theoretic formtida
Therefore, to serve any admissible unicast traffic, the tinpyvas used by Caramang al. in [4] in the context of unicast
queued crossbar switch does not need to process packeis fagffic in Banyan networks.
than the input line ralfei.e. the switch does not neepeedup ~ Note that, for the case of fanout splitting without coding,
The extension of the problem to multicast flows, howevel®] gave a characterization of the rate region as the convex
is intrinsically more difficult. Marsart al. [5] gave a charac- hull of certain modified departure vectors. However, a graph
terization of the rate region achievable in a multicast shvit theoretic formulation of the same is not known. As a restilt, i
with fanout splitting, and also defined the optimal schedulings Significantly harder to characterize the speedup reduoe
policy. Interestingly, this work proved that unlike in theicast achieve 100% throughput for fanout splitting without caglin
case, 100% throughput cannot be achieved for multicast flowsThe rest of the paper is organized as follows. Secfion II
in an input-queued switch. In fact, the minimum speedugates preliminary definitions that will be used throughtbis
needed to achieve 100% throughput grows unboundedly wRBRper. SectiofiL Tl shows that network coding is equivalent t
the switch size. speedup in a multicast switch to some extent. Seéfidn IVggive
In this paper, we discuss the same problem as [5], witRe relationship between speedup and imperfection ratia of
the following modification. The inputs are allowed to sen@onflict graph, which leads to our main result - an upper bound
linear combinations of cells waiting in the queues,, they ©On the minimum speedup required to achieve 100% throughput
are allowed to perform linearetwork coding9] with fanout in @& multicast switch with coding. In Sectidn] V, we apply
splitting. The main contributions of this paper are: the result from Sectiof IV to d¢ x N switch with traffic
onsisting only of unicasts and broadcasts and give an upper

b :/l:/teesshpzvéctj:?)t network coding can in many cases sub %ound on speedup ofin(25-1 2V_) Finally, in Sectiof V,

. K P N+1 X
2) We provide a simple graph-theoretic upper bound dve summarize the contrlbl_Jt|_ons of this paper, and present a
speedup. conjecture on the actual minimum speedup needed to achieve

min

I. INTRODUCTION

3A flow is a stream of packets that have common source and déstin

1The line rate of a switch is the rate at which packets arrivéeave the set. It is represented by a 2-tug( J) consisting of the input and a subset

switch at any one port. J of outputs corresponding to the destination set of the wadti stream. A

2Fanout splitting is the ability to serve partially a multacell to only a subflow of flow (s, J) is a part of a flow from input that goes to a particular

subset of its destined outputs, and complete the servicelbeesjuent time output inJ. Therefore, a subflow is a 3-tuple, J, j) consisting of an input
slots. 1, a subset of outputd and one outpuj € J.
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100% throughput in @ x N multicast switch with unicasts these conditions along with non-negativity constréinissthe
and broadcasts only. fractional stable set polytop€ST AB(G). In terms of the
switch, [3] shows that the clique inequalities of the enteahc
conflict graph correspond to thadmissibility conditions
Let G = (V, E) be an undirected graph with vertex dét Therefore, if a rate vectar € A, thene(r) € QSTAB(G) C

and edge seE. A graphG, = (V4, E1) is a subgraph o7 if Rm.

Vi CV andE; C E. A graphG, = (V3, E2) is aninduced  Note that, for most graphsSTAB(G) C QSTAB(G),
subgraphof G if V> C V and (v1,v2) € E» if and only if  since the clique inequalities are necessary but not suficie
(v1,v2) € E. In addition,G> is often denoted a&/(V2) and  conditions for stable set polytope. Thus, the admissitgéore
is said to be induced by>. The complemendf graphG is s often a strict superset of the achievable rate regiongchvhi
a graphG on the same vertex séf such that two vertices jmplies that it is not possible to achieve 100% throughpenev

of G are adjacent if and only if they are not adjacentdin with fanout splitting and coding - we need speedup.
The chromatic numbeiof a graphG is the smallest number

of colors x(G) needed to color the vertices ¢f so that no B. Perfect Graph

two adjacent vertices share the same color. In this section, we focus on the properties of perfect
G is acomplete graplif for every pair of vertices il there  graphs. We first start by stating three well-known facts that
exists an edge connecting the two, a¥ds called aclique.  characterize perfect graphs.

If for every pair of vertices in/ there is no edge connecting Theorem 2.1: (Weak Perfect Graph Theorem [7]) A graph
the two, thenV is said to be astable setG is aholeifitis (g perfect if and only if its complement is perfect.

a chordless cycle: is .caIIed a_nodd _hqleif itis a hoIe.of Theorem 2.2: (Strong Perfect Graph Theorem [8]) A graph
odd length at least % is ananti-holeif its complement is &  is perfect if and only if it contains no odd hole and no odd
hole; G is anodd anti-holeif its complement is an odd hole. gxti-hole.

G is said to beperfectif for every induced subgraph af, Lemma 2.3: (Replication Lemma [7]) Lét = (V, E) be a
the size of the largest clique equals the chromatic ”Umber-perfect graph and € V. Create a new vertex’ and join it

A. Stable Set Polytope to v and to all the neighbors of. Then, the resulting graph

. G’ is perfect.
The stable set polytopesT AB(G) of a graphG is the .
convex hull of the incidence vectors of the stable sets of t?gFrom SectiofI1-A, we have th#lT AB(G) € QSTAB(G)

graphG. In this section, we discuss how the stable set polytoper Ic’_:my tﬁrﬁﬁ W'gh gngallhty fq(rmperfzctthgrapns or;lly. T?'S
of a conflict graph can translate to the rate region of a switch P/ s hat the admissible regiod and the achievable rate
Let r € R/ be therate vectorof a traffic pattern that regionR are thg same if the enhance.d conflict graphis pgrfect.
has f flows. Suppose that the total number of subflows i-rl;hus’ as given iiCorollary 1”0”.‘ [3], if an gnhanced c;onfhct
the pattern isn. Then, theenhanced rate vector(r) € R™ graph is perfect, then speedup is not required to achievé100

corresponding ta is defined as: throughput.
P 9 ' . From this, we can observe that there is an intrinsic connec-
e(iwkj)(r) =T(i,J), for all VRS J.

, . tion between speedup and the “perfectness” of the enhanced
We use the enh_anced rate vectomasghtsfor vertices of the .jnict graph. As a result, to compute the minimum speedup,
enhanced conflict graph.- , _ _itis helpful to measure how perfect an enhanced conflictiyrap
A traffic patternr is said to beachievableif there exists

; Jevat = is. In this paper, we use thmperfection ratiointroduced by
a switch schedule that can serve it; it is calladmissible

_ ) ) ’ Gerke and McDiarmid [6] as such a measure.
if no input or output is oversubscribed. We also call the

collection of all achievable and admissible vectors as tl& Imperfection ratio
achievable rate regioR C R’ and admissible rate region | [6], the imperfection ratiomp(G) of graph(: is defined

A C R/ respectively. Forr € R, we can construct a switch asimp(@) = min{t : QSTAB(G) C t STAB(G)}. As we

schedule, which can be viewed as a time sharing betwegne y j, Sectioi_II-A\, in terms of a switch, the admissible
valid switch configurations. In a conflict graph, a valid shit gion A and the achievable regioR are projections of

e
configuration corresponds to a stable set, and a switch Etmei{%\iTAB(G) and STAB(G) respectively. Therefore, given

corre_sponds to a convex co_mbination of stable sets of imperfection ratiamp(G) of an enhanced conflict graph
conflict graphG. Therefore, if a rate vector € R, then G, we haveA C imp(G)R
e(r) € STAB(G) C R™. o A useful bound on the imperfection ratio is presented in [6],
For a general graplG, a complete characterization of ..
. . . R which we reproduce below.
STAB(G) in terms of linear inequalities is unknown. How- Proposition 2.4: (Gerke and McDiarmid [6]) For a graph
ever, several families of necessary conditions are knowre O

) ) ) . . G, if each vertex inG' can be covereg times by a family of
example is the clique mequaIltEasThe polytope described byq induced perfect subgraphs, thénp(G) < %_

II. NOTATION AND DEFINITIONS

4Clique inequalities of a graph say that the total weight am vhrtices of
maximal cliques must not exceed 1. In an enhanced confligthgthe clique 5Non-negativity constraints of a graph say that the weigheach vertex
inequalities imply that no input nor any output may be ovadied. is non-negative.



D. Speedup 1

| —

A switch is said to have @peedups if the switching
fabric can transfer packets at a ratéimes the incoming and
outgoing line rate of the switch. If we define a time slot to be
the reciprocal of the line rate, then this means the switghin
fabric can go through configurations within one time slot.
With this definition, it is easy to see that a rate veatois
achievable with speedupif and only if it is admissible and
%r is within the rate region. a multicast switch using network coding. Therefosg;, >

Note that the admissible and achievable rates correspond 125.
A andR respectively. Thensyi, = min{s | A C s R} is
the minimum speedupequired for the switch to achieve all
admissible rates,e. it is the minimum of alls such thatlr This section develops our main result, which relates speedu
is within the rate region for all admissible rate vectors with imperfection ratio. Note that, the definition of impecf

tion ratio in Sectiod II-C is very similar to that of minimum
[1I. NETWORK CODING FORSPEEDUP speedup in Section IHD. As a result, Corolldry]4.1 follows

In this section, we show the equivalence between netwdf@M Propositiori 24. . _
coding and speedup in multicast switchég-network coding, ~ Corollary 4.1: Given a traffic pattern, le' be its enhanced
which is usually implemented using software, can in marfPnflict graph ands, be the minimum speedup required to

cases substitute speedup, which is often achieved by addﬂf%ieve all admissible rates. Thes,, < imp(G).
exira switch fabrics. ote that the converse of Corollaly ¥.1 is not true.

In Figure[d, we show a special traffic pattern irza« N ThiS iS becauseA and R are projections ofQSTAB(G)
switch, which demonstrates the benefit of intra-flow codin%lnd STAB(G) such that the subflows corresponding to
Atinput 1, there is one broadcast flow with rdte ; atinput h€ same multicast flow have the same weight. As a re-
2, there is one unicast to each output with rate Reference sult, QSTAB(G) < imp(G)STAB(G) implies the A
[3] shows that this traffic is achievable if network codingtwi MP(G)R, but A C sy, R may not imply QST AB(G)
fanout splitting is allowed; however, a speeduplof — % SminSTAB(G).
is needed if only fanout_ spl_|tt|ng is allowed. This example \, BoUNDS ONSPEEDUP FORK x N SWITCH WITH
ishovtvlsSthatlnetwork coding is equivalent to a speedup of at UNICASTS AND BROADCASTS
eastl.5 — <.

Fig. 2. A traffic pattern which requires speedup ir2 3 switch and its
enhanced conflict graph

IV. IMPERFECTIONRATIO BOUNDS SPEEDUP

C
c

In this section, we apply Corollafy 4.1 t& x N switches
using intra-flow coding with traffic patterns consisting of
unicasts and broadcasts only. We show that the minimum
speedup needed for 100% throughput in this case is bounded
by min(25=1, 225). In this section, coding implies intra-
flow coding, since enhanced conflict graphs handle intra;flow
not inter-flow, coding. The rest of this section is organiasd
follows. First, we give a description of the enhanced conflic
Fig. 1. A traffic pattern which demonstrates the benefit ofingd graph for aK x N switch. In Sectiof V-B anf VAC, we show

o ) the two bounds on speedup &£ andz\?—f1 respectively.
However, it is important to note that network coding cannot

completely replace speedup. As noted above in Fiddire A, Enhanced conflict graph fak x N switch

there are situations where network coding reduces speeduRgonsider traffic patterns which consist only of unicasts and
however, there are situations where speedup needed remgipsyadcast per each input orfiax N switch. The basic idea
the same for with and without network coding. For instancgenind conflict graph is that vertices representing flows tha
in Figure[2, we show a traffic pattern that requires speedupnnot be served simultaneously are adjacent. In such a case

of 1.25 with or without network coding. At input 1, there is @nhe enhanced conflict graghix v = (V, E) has the following
broadcast flow and a unicast to output 1 with réteach; at strycture. ’

input 2, there is one unicast flow to each output 2 and 3 withthe vertex setV — (Uien.Us) U (Uiep.x)Bs) =

1 i . [ s 7 i [ [
rate 5. In Figure[2, we show that the enhanced conflict gra UsennU2) U (Ujepn,n BS) whereU; = {uy; | j € (1, N])8,
for this traffic, whereu;; represents the unicast flow fromp ~ _ {bij | 7 € [I,N]}, U° = {us | i € [1,K]}, and
input i to outputy, gnd the verte>bij represents the b_roadcasggg = {bi]i € [, K]}. The vjertexmj represents the unicast
subflow from inputi to output;j. The enhanced conflict graphgaw from input i to outputj, and the vertes,; represents

contains an odd hole; therefore, it is not perfect. the broadcast subflow from inputto outputj. Therefore,
Note that the traffic pattern in Figuld 2 gives a lower

bound on the speedup needed to achieve 100% throughput f < [1, N] means;j can be integer from 1 tov.

z|—-

=|—




U; and U? are collections of the unicast flows from inpit
and to outputj respectively.B; and Bf are collections of
the subflows of the broadcast from inputand to outputj
respectively.

The edge setE = (Uiep,x)BY) U (Uien, ) E?) U E°
where B = {(uij,wix) | j # k,5,k € [1,N]}, E! =
{(bij,uir) | j,k € [1,N]}, and E° = Ujep, M EY where
E? = {(uji, uki), (bji, bi), (bji,urs) | § # k, 3,k € [1, K]}
Each edge set represents a different type of conflit.
represents conflicts among unicasts at inpuE? represents
conflict between any broadcast subflow and any unicast at
input ¢; and E¢Y represents conflicts among all flows and
subflows at output.

It is important to note that each vertex @ix, v represents B. Speedup 01”(771
a subflow in aK x N switch. For exampleyu;; and usg;
corresponds to a unicast traffic to output 1 from input 1 an
input 2 respectively. The vertdxs represents a partial serviceOlc
of the broadcast from input 1 to output 2. In Figlte 3, we sho\\;\\;e
the switch configuration correspondingd®;, us1, andb, in
a2 x 3 switch.

Fig. 4. G2,3 for a2 x 3 switch with unicasts and broadcasts only

In this Section, we give an upper bound on speedup for
x N switches. We preseat —1 induced perfect subgraphs
Gk n that coverV K times. Then, with Proposition 2.4,
then have2f=L as an upper bound for speedup.

Lemma 5.1: LetG, = Gk n(Uic;1,x)Ui) be an induced
subgraph ofGk . ThenG,, is perfect.

, " " b Proof: @, is an enhanced conflict graph for unicast
Vertex in G 11 21 12 . . . . .
2 traffic. One may check that,, is a line graph of a bipartite
‘ . graph, which is known to be perfect [8]. [ ]
‘ 7 o~ Lemma[5.1 also follows from the result in [1] which shows
(S;‘;Vlfﬁguraﬁon | - / Il that 100% throughput can be achieved in a input-queued
crossbar switch in the context of unicast traffic.
Unicast flow from  Unicast flow from  Broadcast subflow Lemma 5.2: LeG; = GK,N ((Uje[l.,K] BJ) U Uz) for some
Input 1 to output 1 Input 2 to output 1 gLI;:JTZInptho i€ [LK] be an induced subgraph (ﬁ:K,N- Then Gz is

Fig. 3. Switch configuration corresponding 4@y, u21, andbi2 in G2 3 perfect.

Proof: Assume that; is not perfect. So it must have

The intuition behind a conflict graph is that vertices whicAn 0dd hole or odd anti-hole as an induced subgraph. Suppose

represent flows that cannot be served simultaneously #rd1@s an odd hole, sayf. In G, any broadcast subflow,
adjacent. As shown in [3], if fanout splitting and networiexcept the ones from input has no conflict on the input
coding are allowed, the switch can simultaneously serve t#§le. Suppose such a subflow were partfhf then both its
or more subflows of the same broadcast flow and hence stiéighbors ini will be due to output side conflicts. But in that
subflows are not adjacent to each other. For example, GASE: the two neighbors will themselves conflict at the dutpu
Figure[3, there are edges between and by, since they thereby forming a triangle. Since an odd hole cannot contain
conflict at input 1, and between;; and us;, since they @ triangle, we conclude thdf cannot include any;x, j # i.
conflict at output 1; howeveny; and by, are not adjacent, This meansi{ must be an induced subgraph@f, v (B; U
since they have different input and output. Therefore, frof:)- However, B; induces a stable set, whil; induces a
the input perspectiveix y consists ofK” induced complete clique. Therefore(ix n(B; UU;) is a sp_llt_grap which is
subgraphsG . v (U;) for unicasts from each input and K known to be. perfect [8]. This contradiction shows th@t
induced stable set§ v (B;) for broadcasts from each inputc@nnot contain an odd holé. _ o
i; from the output perspectivéix v consists o2 N induced ~ SUPPOSeG; contains an odd anti-hole, say. This will

complete subgraph€'sx (U¢) and G, n(B?) for unicasts happen if and only i7; contains an odd holél 4. Note that
and broadcast subflows to each outpuespectively. in G;, two vertices are connected if the corresponding subflows
Here, we note that conflict graph of & x N multicast do not conflict. Now,H 4 has to contain at least one unicast,

switch with unicasts and broadcasts traffic can be relaxed ¥ “is: S'nce_the broz_:\dcasts by themselves induce a pe_rfect
that of unicasts and single multicast per input. This reiaxa su_bgraph inG; (they induce t_he _Complement of a disjoint
just removes vertices that represent broadcast subflowshwh-"0N of _comp_lete;_graphs, which is I;nowh to./be ggrfegf [8)).
are not part of the multicast flow, from the conflict graph.sThiNOW' Wij "(;Gi |sba Jacgnt to %r.'yi'j“ where i ar? J # J
cannot hurt the “perfectness” of the conflict graph. Themfo Lhet bé’qf"."n. .bp'q’ fGivertmes a .Jicenamﬁ In Ha. T, en,‘usmdg

any upper bound on the imperfection ratio of the conflict grag€ definition ofG;, we can infer that # p # p’ # i an

for u_mcaStS and broadcasts bounds that of unicasts ant# SING7A spiit graphis a graph whose vertex set can be partitioned into a stable
multicast per input. set and a clique.



q = ¢ # j. But this means, any vertex that is adjacenbp Proposition 5.6:imp(Gx n) < A?—fl

is also adjacent té,/,. Hence,H 4 cannot be an odd hole. Proof: Consider the following collection of induced
This proves thaty; is perfect. m subgraphsG{,; and G3; for all i € [1,N]. By Lemmas
Using Lemma$5]1 ard 5.2, we derive our first upper bouBd and[5.5, we know that these subgraphs are all perfect.

on speedup iK' x N multicast switches with traffic patternsin addition, these subgraphs cover each vertex in G, n

consisting of unicasts and broadcasts only. N + 1 times. By Propositioh 214, the claim follows. [ ]

e e 2K—1
Proposition 5.3:imp(Gk n) < 5.

Proof: Consider the following collection of induced ) _ . .
subgraphsk — 1 copies ofG, from Lemm&B.lL and?; from In this paper, we introduce a simple graph theoretic bound
hoN speedup needed to achieve 100% throughput in a multicast

Lemmal[5.2 for alli € [1, K]. We know that these subgraphs’

are all perfect. In addition, these subgraphs cover eadhwernetwork coding S‘,NitCh usiqg the.concept of cpnflict graPhS-
in v € Gre x K times. By Propositiof 214, the claim follows. ve show that the imperfection ratio of the cor_1fl|ct graph give
’ an upper bound on speedup. We apply this resulfkto<

N switches with traffic patterns consisting of unicasts and
C. Speedup of’; broadcasts only to obtain an upper boundfi (251, 25).

The proof idea in this section is similar to that of Sectiofror a2 x N switch, this gives a bound of 3/2 on speedup;
V-B] We presen2N induced perfect subgraphs 6f, y that however, we conjecture that the actual speedup required to
cover V. N + 1 times, and then appeal to Propositi 2 Achieve 100% throughputin2ax N switch with traffic patterns

However, unlike Sectiol VIB, here we change our focus frofPnsisting of unicasts and broadcasts only is 5/4. We have

VI. CONCLUSION

the input to output. verified this conjecture using a computer f§r= 3,4 and 5.
Lemma 5.4: LetG?, = Grn(V;) whereV; = U? U In summary, by allowing network coding in multicast

(Ujepn, v B9) be an induced subgraph @ n. ThenG?, switches, we get not only an insightful characterization of

is perfect.” " the speedup needed for 100% throughput, but also a gain in

Proof: Assume thatG$ ; is not perfect. So it must have speedup. We have shown that network coding, which is usually
an odd hole or odd anti-hole as an induced subgraph. Suppt8elemented using software, can substitute speedup, wich
it has an odd hole, say/. SincelUU? U B° forms a complete often achieved by adding extra switch fabrics.
graph (known to be perfectf{ must contain vertices oB?, ACKNOWLEDGMENT
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