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Abstract— We present a graph theoretic upper bound on
speedup needed to achieve 100% throughput in a multicast
switch using network coding. By bounding speedup, we show the
equivalence between network coding and speedup in multicast
switches -i.e.network coding, which is usually implemented using
software, can in many cases substitute speedup, which is often
achieved by adding extra switch fabrics. This bound is basedon
an approach to network coding problems called the “enhanced
conflict graph”. We show that the “imperfection ratio” of the
enhanced conflict graph gives an upper bound on speedup. In
particular, we apply this result to K × N switches with traffic
patterns consisting of unicasts and broadcasts only to obtain an
upper bound of min( 2K−1

K
, 2N

N+1
).

I. I NTRODUCTION

The input-queued crossbar switch has been studied well,
especially in the context of unicast traffic. It is known that
100% throughput can be achieved [1], in the sense that as
long as no input or output is oversubscribed, traffic can be
supported without causing the queues to grow unboundedly.
Therefore, to serve any admissible unicast traffic, the input-
queued crossbar switch does not need to process packets faster
than the input line rate1, i.e. the switch does not needspeedup.

The extension of the problem to multicast flows, however,
is intrinsically more difficult. Marsanet al. [5] gave a charac-
terization of the rate region achievable in a multicast switch
with fanout splitting2, and also defined the optimal scheduling
policy. Interestingly, this work proved that unlike in the unicast
case, 100% throughput cannot be achieved for multicast flows
in an input-queued switch. In fact, the minimum speedup
needed to achieve 100% throughput grows unboundedly with
the switch size.

In this paper, we discuss the same problem as [5], with
the following modification. The inputs are allowed to send
linear combinations of cells waiting in the queues,i.e., they
are allowed to perform linearnetwork coding[9] with fanout
splitting. The main contributions of this paper are:

1) We show that network coding can in many cases substi-
tute speedup.

2) We provide a simple graph-theoretic upper bound on
speedup.

1The line rate of a switch is the rate at which packets arrive orleave the
switch at any one port.

2Fanout splitting is the ability to serve partially a multicast cell to only a
subset of its destined outputs, and complete the service in subsequent time
slots.

3) We prove an upper bound on speedup of
min

(

2K−1
K

, 2N
N+1

)

for an arbitraryK ×N switch with
traffic pattern restricted to unicasts and broadcasts only.

Our work builds on the work by Sundararajanet al. [2], [3],
which gave a graph-theoretic formulation of the rate region
of a multicast switch with intra-flow coding usingenhanced
conflict graphs. Given a traffic pattern, the enhanced conflict
graphG = (V,E) is an undirected graph that contains one
vertex for everysubflow.3 An edge exists between two vertices
if they represent two subflows from the same input or to
the same output. Reference [3] shows that the stable set
polytope and the fractional stable set polytope of an enhanced
conflict graph are the rate region and the admissible region
of a network coding switch, respectively. This graph-theoretic
formulation helps us transform any given traffic pattern into
a conflict graph, and the properties of this graph can be used
to derive insight on the speedup required to achieve 100%
throughput with coding. A similar graph-theoretic formulation
was used by Caramaniset al. in [4] in the context of unicast
traffic in Banyan networks.

Note that, for the case of fanout splitting without coding,
[5] gave a characterization of the rate region as the convex
hull of certain modified departure vectors. However, a graph-
theoretic formulation of the same is not known. As a result, it
is significantly harder to characterize the speedup required to
achieve 100% throughput for fanout splitting without coding.

The rest of the paper is organized as follows. Section II
states preliminary definitions that will be used throughoutthis
paper. Section III shows that network coding is equivalent to
speedup in a multicast switch to some extent. Section IV gives
the relationship between speedup and imperfection ratio ofa
conflict graph, which leads to our main result - an upper bound
on the minimum speedup required to achieve 100% throughput
in a multicast switch with coding. In Section V, we apply
the result from Section IV to aK × N switch with traffic
consisting only of unicasts and broadcasts and give an upper
bound on speedup ofmin(2K−1

K
, 2N
N+1 ). Finally, in Section VI,

we summarize the contributions of this paper, and present a
conjecture on the actual minimum speedup needed to achieve

3A flow is a stream of packets that have common source and destination
set. It is represented by a 2-tuple(i, J) consisting of the inputi and a subset
J of outputs corresponding to the destination set of the multicast stream. A
subflow of flow(i, J) is a part of a flow from inputi that goes to a particular
output inJ . Therefore, a subflow is a 3-tuple(i, J, j) consisting of an input
i, a subset of outputsJ and one outputj ∈ J .
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100% throughput in a2 × N multicast switch with unicasts
and broadcasts only.

II. N OTATION AND DEFINITIONS

Let G = (V,E) be an undirected graph with vertex setV

and edge setE. A graphG1 = (V1, E1) is a subgraph ofG if
V1 ⊆ V andE1 ⊆ E. A graphG2 = (V2, E2) is an induced
subgraphof G if V2 ⊆ V and (v1, v2) ∈ E2 if and only if
(v1, v2) ∈ E. In addition,G2 is often denoted asG(V2) and
is said to be induced byV2. The complementof graphG is
a graphG on the same vertex setV such that two vertices
of G are adjacent if and only if they are not adjacent inG.
The chromatic numberof a graphG is the smallest number
of colorsχ(G) needed to color the vertices ofG so that no
two adjacent vertices share the same color.
G is acomplete graphif for every pair of vertices inV there

exists an edge connecting the two, andV is called aclique.
If for every pair of vertices inV there is no edge connecting
the two, thenV is said to be astable set. G is a hole if it is
a chordless cycle;G is called anodd holeif it is a hole of
odd length at least 5.G is ananti-hole if its complement is a
hole;G is anodd anti-holeif its complement is an odd hole.
G is said to beperfect if for every induced subgraph ofG,
the size of the largest clique equals the chromatic number.

A. Stable Set Polytope

The stable set polytopeSTAB(G) of a graphG is the
convex hull of the incidence vectors of the stable sets of the
graphG. In this section, we discuss how the stable set polytope
of a conflict graph can translate to the rate region of a switch.

Let r ∈ Rf be the rate vector of a traffic pattern that
has f flows. Suppose that the total number of subflows in
the pattern ism. Then, theenhanced rate vectore(r) ∈ Rm

corresponding tor is defined as:
e(i,J,j)(r) = r(i,J), for all j ∈ J.

We use the enhanced rate vector asweightsfor vertices of the
enhanced conflict graph.

A traffic patternr is said to beachievableif there exists
a switch schedule that can serve it; it is calledadmissible
if no input or output is oversubscribed. We also call the
collection of all achievable and admissible vectors as the
achievable rate regionR ⊆ Rf and admissible rate region
A ⊆ Rf respectively. Forr ∈ R, we can construct a switch
schedule, which can be viewed as a time sharing between
valid switch configurations. In a conflict graph, a valid switch
configuration corresponds to a stable set, and a switch schedule
corresponds to a convex combination of stable sets of the
conflict graphG. Therefore, if a rate vectorr ∈ R, then
e(r) ∈ STAB(G) ⊆ Rm.

For a general graphG, a complete characterization of
STAB(G) in terms of linear inequalities is unknown. How-
ever, several families of necessary conditions are known. One
example is the clique inequalities4. The polytope described by

4Clique inequalities of a graph say that the total weight on the vertices of
maximal cliques must not exceed 1. In an enhanced conflict graph, the clique
inequalities imply that no input nor any output may be overloaded.

these conditions along with non-negativity constraints5 is the
fractional stable set polytopeQSTAB(G). In terms of the
switch, [3] shows that the clique inequalities of the enhanced
conflict graph correspond to theadmissibility conditions.
Therefore, if a rate vectorr ∈ A, thene(r) ∈ QSTAB(G) ⊆
Rm.

Note that, for most graphs,STAB(G) ( QSTAB(G),
since the clique inequalities are necessary but not sufficient
conditions for stable set polytope. Thus, the admissible region
is often a strict superset of the achievable rate region, which
implies that it is not possible to achieve 100% throughput even
with fanout splitting and coding - we need speedup.

B. Perfect Graph

In this section, we focus on the properties of perfect
graphs. We first start by stating three well-known facts that
characterize perfect graphs.

Theorem 2.1: (Weak Perfect Graph Theorem [7]) A graph
G is perfect if and only if its complement is perfect.

Theorem 2.2: (Strong Perfect Graph Theorem [8]) A graph
G is perfect if and only if it contains no odd hole and no odd
anti-hole.

Lemma 2.3: (Replication Lemma [7]) LetG = (V,E) be a
perfect graph andv ∈ V . Create a new vertexv′ and join it
to v and to all the neighbors ofv. Then, the resulting graph
G′ is perfect.

From Section II-A, we have thatSTAB(G) ⊆ QSTAB(G)
for any graph with equality for perfect graphs only. This
implies that the admissible regionA and the achievable rate
regionR are the same if the enhanced conflict graph is perfect.
Thus, as given inCorollary 1 from [3], if an enhanced conflict
graph is perfect, then speedup is not required to achieve 100%
throughput.

From this, we can observe that there is an intrinsic connec-
tion between speedup and the “perfectness” of the enhanced
conflict graph. As a result, to compute the minimum speedup,
it is helpful to measure how perfect an enhanced conflict graph
is. In this paper, we use theimperfection ratiointroduced by
Gerke and McDiarmid [6] as such a measure.

C. Imperfection ratio

In [6], the imperfection ratioimp(G) of graphG is defined
as imp(G) = min{t : QSTAB(G) ⊆ t STAB(G)}. As we
noted in Section II-A, in terms of a switch, the admissible
region A and the achievable regionR are projections of
QSTAB(G) and STAB(G) respectively. Therefore, given
the imperfection ratioimp(G) of an enhanced conflict graph
G, we haveA ⊆ imp(G)R.

A useful bound on the imperfection ratio is presented in [6],
which we reproduce below.

Proposition 2.4: (Gerke and McDiarmid [6]) For a graph
G, if each vertex inG can be coveredp times by a family of
q induced perfect subgraphs, thenimp(G) ≤ q

p
.

5Non-negativity constraints of a graph say that the weight oneach vertex
is non-negative.



D. Speedup

A switch is said to have aspeedups if the switching
fabric can transfer packets at a rates times the incoming and
outgoing line rate of the switch. If we define a time slot to be
the reciprocal of the line rate, then this means the switching
fabric can go throughs configurations within one time slot.
With this definition, it is easy to see that a rate vectorr is
achievable with speedups if and only if it is admissible and
1
s
r is within the rate region.
Note that the admissible and achievable rates correspond to

A andR respectively. Then,smin = min{s | A ⊆ s R} is
the minimum speeduprequired for the switch to achieve all
admissible rates,i.e. it is the minimum of alls such that1

s
r

is within the rate region for all admissible rate vectorsr.

III. N ETWORK CODING FORSPEEDUP

In this section, we show the equivalence between network
coding and speedup in multicast switches -i.e.network coding,
which is usually implemented using software, can in many
cases substitute speedup, which is often achieved by adding
extra switch fabrics.

In Figure 1, we show a special traffic pattern in a2 × N

switch, which demonstrates the benefit of intra-flow coding.
At input 1, there is one broadcast flow with rate1− 1

N
; at input

2, there is one unicast to each output with rate1
N

. Reference
[3] shows that this traffic is achievable if network coding with
fanout splitting is allowed; however, a speedup of1.5 − 1

N

is needed if only fanout splitting is allowed. This example
shows that network coding is equivalent to a speedup of at
least1.5− 1

N
.

Fig. 1. A traffic pattern which demonstrates the benefit of coding

However, it is important to note that network coding cannot
completely replace speedup. As noted above in Figure 1,
there are situations where network coding reduces speedup;
however, there are situations where speedup needed remains
the same for with and without network coding. For instance,
in Figure 2, we show a traffic pattern that requires speedup
of 1.25 with or without network coding. At input 1, there is a
broadcast flow and a unicast to output 1 with rate1

2 each; at
input 2, there is one unicast flow to each output 2 and 3 with
rate 1

2 . In Figure 2, we show that the enhanced conflict graph
for this traffic, whereuij represents the unicast flow from
input i to outputj, and the vertexbij represents the broadcast
subflow from inputi to outputj. The enhanced conflict graph
contains an odd hole; therefore, it is not perfect.

Note that the traffic pattern in Figure 2 gives a lower
bound on the speedup needed to achieve 100% throughput in

Fig. 2. A traffic pattern which requires speedup in a2 × 3 switch and its
enhanced conflict graph

a multicast switch using network coding. Therefore,smin ≥
1.25.

IV. I MPERFECTIONRATIO BOUNDS SPEEDUP

This section develops our main result, which relates speedup
with imperfection ratio. Note that, the definition of imperfec-
tion ratio in Section II-C is very similar to that of minimum
speedup in Section II-D. As a result, Corollary 4.1 follows
from Proposition 2.4.

Corollary 4.1: Given a traffic pattern, letG be its enhanced
conflict graph andsmin be the minimum speedup required to
achieve all admissible rates. Then,smin ≤ imp(G).

Note that the converse of Corollary 4.1 is not true.
This is becauseA and R are projections ofQSTAB(G)
and STAB(G) such that the subflows corresponding to
the same multicast flow have the same weight. As a re-
sult, QSTAB(G) ⊆ imp(G)STAB(G) implies the A ⊆
imp(G)R, but A ⊆ sminR may not implyQSTAB(G) ⊆
sminSTAB(G).

V. BOUNDS ONSPEEDUP FORK ×N SWITCH WITH

UNICASTS AND BROADCASTS

In this section, we apply Corollary 4.1 toK ×N switches
using intra-flow coding with traffic patterns consisting of
unicasts and broadcasts only. We show that the minimum
speedup needed for 100% throughput in this case is bounded
by min(2K−1

K
, 2N
N+1 ). In this section, coding implies intra-

flow coding, since enhanced conflict graphs handle intra-flow,
not inter-flow, coding. The rest of this section is organizedas
follows. First, we give a description of the enhanced conflict
graph for aK ×N switch. In Section V-B and V-C, we show
the two bounds on speedup of2K−1

K
and 2N

N+1 respectively.

A. Enhanced conflict graph forK ×N switch

Consider traffic patterns which consist only of unicasts and
a broadcast per each input on aK×N switch. The basic idea
behind conflict graph is that vertices representing flows that
cannot be served simultaneously are adjacent. In such a case,
the enhanced conflict graphGK,N = (V,E) has the following
structure.

The vertex setV =
(

∪i∈[1,K]Ui

)

∪
(

∪i∈[1,K]Bi

)

=
(

∪j∈[1,N ]U
o
j

)

∪
(

∪j∈[1,N ]B
o
j

)

whereUi = {uij | j ∈ [1, N ]}6,
Bi = {bij | j ∈ [1, N ]}, Uo

j = {uij | i ∈ [1,K]}, and
Bo

j = {bij |i ∈ [1,K]}. The vertexuij represents the unicast
flow from input i to output j, and the vertexbij represents
the broadcast subflow from inputi to output j. Therefore,

6j ∈ [1, N ] meansj can be integer from 1 toN .



Ui andUo
j are collections of the unicast flows from inputi

and to outputj respectively.Bi and Bo
j are collections of

the subflows of the broadcast from inputi and to outputj
respectively.

The edge setE =
(

∪i∈[1,K]E
u
i

)

∪
(

∪i∈[1,K]E
b
i

)

∪ Eo

where Eu
i = {(uij, uik) | j 6= k, j, k ∈ [1, N ]}, Eb

i =
{(bij , uik) | j, k ∈ [1, N ]}, and Eo = ∪i∈[1,N ]E

o
i where

Eo
i = {(uji, uki), (bji, bki), (bji, uki) | j 6= k, j, k ∈ [1,K]}.

Each edge set represents a different type of conflict.Eu
i

represents conflicts among unicasts at inputi; Eb
i represents

conflict between any broadcast subflow and any unicast at
input i; and Eo

i represents conflicts among all flows and
subflows at outputi.

It is important to note that each vertex inGK,N represents
a subflow in aK × N switch. For example,u11 and u21

corresponds to a unicast traffic to output 1 from input 1 and
input 2 respectively. The vertexb12 represents a partial service
of the broadcast from input 1 to output 2. In Figure 3, we show
the switch configuration corresponding tou11, u21, andb12 in
a 2× 3 switch.

Fig. 3. Switch configuration corresponding tou11, u21, andb12 in G2,3

The intuition behind a conflict graph is that vertices which
represent flows that cannot be served simultaneously are
adjacent. As shown in [3], if fanout splitting and network
coding are allowed, the switch can simultaneously serve two
or more subflows of the same broadcast flow and hence such
subflows are not adjacent to each other. For example, in
Figure 4, there are edges betweenu11 and b12, since they
conflict at input 1, and betweenu11 and u21, since they
conflict at output 1; howeveru21 and b12 are not adjacent,
since they have different input and output. Therefore, from
the input perspective,GK,N consists ofK induced complete
subgraphsGK,N (Ui) for unicasts from each inputi, andK

induced stable setsGK,N (Bi) for broadcasts from each input
i; from the output perspective,GK,N consists of2N induced
complete subgraphsGK,N (Uo

j ) and GK,N (Bo
j ) for unicasts

and broadcast subflows to each outputj respectively.
Here, we note that conflict graph of aK × N multicast

switch with unicasts and broadcasts traffic can be relaxed to
that of unicasts and single multicast per input. This relaxation
just removes vertices that represent broadcast subflows, which
are not part of the multicast flow, from the conflict graph. This
cannot hurt the “perfectness” of the conflict graph. Therefore,
any upper bound on the imperfection ratio of the conflict graph
for unicasts and broadcasts bounds that of unicasts and single
multicast per input.

Fig. 4. G2,3 for a 2× 3 switch with unicasts and broadcasts only

B. Speedup of2K−1
K

In this Section, we give an upper bound on speedup for
K×N switches. We present2K−1 induced perfect subgraphs
of GK,N that coverV K times. Then, with Proposition 2.4,
we then have2K−1

K
as an upper bound for speedup.

Lemma 5.1: LetGu = GK,N (∪i∈[1,K]Ui) be an induced
subgraph ofGK,N . ThenGu is perfect.

Proof: Gu is an enhanced conflict graph for unicast
traffic. One may check thatGu is a line graph of a bipartite
graph, which is known to be perfect [8].

Lemma 5.1 also follows from the result in [1] which shows
that 100% throughput can be achieved in a input-queued
crossbar switch in the context of unicast traffic.

Lemma 5.2: LetGi = GK,N

(

(∪j∈[1,K]Bj) ∪ Ui

)

for some
i ∈ [1,K] be an induced subgraph ofGK,N . ThenGi is
perfect.

Proof: Assume thatGi is not perfect. So it must have
an odd hole or odd anti-hole as an induced subgraph. Suppose
it has an odd hole, sayH . In Gi, any broadcast subflow,
except the ones from inputi, has no conflict on the input
side. Suppose such a subflow were part ofH , then both its
neighbors inH will be due to output side conflicts. But in that
case, the two neighbors will themselves conflict at the output,
thereby forming a triangle. Since an odd hole cannot contain
a triangle, we conclude thatH cannot include anybjk, j 6= i.

This meansH must be an induced subgraph ofGK,N (Bi∪
Ui). However,Bi induces a stable set, whileUi induces a
clique. Therefore,GK,N (Bi ∪ Ui) is a split graph7 which is
known to be perfect [8]. This contradiction shows thatGi

cannot contain an odd holeH .
SupposeGi contains an odd anti-hole, sayA. This will

happen if and only ifGi contains an odd holeHA. Note that
in Gi, two vertices are connected if the corresponding subflows
do not conflict. Now,HA has to contain at least one unicast,
sayuij , since the broadcasts by themselves induce a perfect
subgraph inGi (they induce the complement of a disjoint
union of complete graphs, which is known to be perfect [8]).
Now,uij in Gi is adjacent to anybi′j′ , wherei 6= i′ andj 6= j′.
Let bpq andbp′q′ be vertices adjacent touij in HA. Then, using
the definition ofGi, we can infer thati 6= p 6= p′ 6= i and

7A split graph is a graph whose vertex set can be partitioned into a stable
set and a clique.



q = q′ 6= j. But this means, any vertex that is adjacent tobpq
is also adjacent tobp′q′ . Hence,HA cannot be an odd hole.

This proves thatGi is perfect.
Using Lemmas 5.1 and 5.2, we derive our first upper bound

on speedup inK ×N multicast switches with traffic patterns
consisting of unicasts and broadcasts only.

Proposition 5.3: imp(GK,N ) ≤ 2K−1
K

.
Proof: Consider the following collection of induced

subgraphs:K−1 copies ofGu from Lemma 5.1 andGi from
Lemma 5.2 for alli ∈ [1,K]. We know that these subgraphs
are all perfect. In addition, these subgraphs cover each vertex
in v ∈ GK,N K times. By Proposition 2.4, the claim follows.

C. Speedup of2N
N+1

The proof idea in this section is similar to that of Section
V-B. We present2N induced perfect subgraphs ofGK,N that
cover V N + 1 times, and then appeal to Proposition 2.4.
However, unlike Section V-B, here we change our focus from
the input to output.

Lemma 5.4: LetGo
1,i = GK,N (Vi) where Vi = Uo

i ∪
(

∪j∈[1,N ]B
o
j

)

be an induced subgraph ofGK,N . ThenGo
1,i

is perfect.
Proof: Assume thatGo

1,i is not perfect. So it must have
an odd hole or odd anti-hole as an induced subgraph. Suppose
it has an odd hole, sayH . SinceUo

i ∪ Bo
i forms a complete

graph (known to be perfect),H must contain vertices ofBo
j ,

j 6= i. Supposebkj ∈ Bo
j is part ofH , thenH contains at

least two vertices ofBo
j . This is because, inGo

1,i, bkj has
only one conflict on the input side; thus, neighbors ofbkj are
uki (input conflict) andBo

j (output conflict). However, note
that Bo

j itself forms a complete graph, thereforeH contains
at most two vertices ofBo

j . Thus,bkj andbk′j , k 6= k′ are in
H . Then,uki anduk′i are inH . However, these four vertices
form a cycle, thusGo

1,i cannot contain an odd holeH .
By the same argument as in the proof for Lemma 5.2, we

can show thatGo
1,i cannot contain an odd anti-hole.

Lemma 5.5: LetGo
2,i = GK,N (Vi) where Vi = Bo

i ∪
(

∪j∈[1,N ]U
o
j

)

be an induced subgraph ofGK,N . Then,Go
2,i

is perfect.
Proof: Go

2,i is an enhanced conflict graph for unicast
traffic in addition to all broadcast subflows to outputi.
Considerb1i ∈ Bo

i andu1i ∈ ∪i∈[1,K]Ui. In aK ×N switch,
b1i andu1i represent subflows from input 1 to outputi, and
thus conflict with the same set of subflows,i.e. neighbors of
u1i are neighbors ofb1i. In addition,b1i andu1i are in conflict.
Therefore, by Replication Lemma (Lemma 2.3), we know that
Go

2,i is perfect ifGK,N (Vi \ {b1i}) is perfect. We can apply
this argument repeatedly for eachbji ∈ Bo

i , and deduce that
if GK,N (∪j∈[1,N ]U

o
j ) perfect thenGo

2,i is perfect. Note that
from Lemma 5.1, we know that the enhanced conflict graph
Gu = GK,N (∪i∈[1,K]Ui) = GK,N (∪j∈[1,N ]U

o
j ) for unicast

traffic is perfect. Therefore,Go
2,i is perfect.

Now, using Lemmas 5.4 and 5.5, we can derive an upper
bound for speedup inK × N multicast switches with traffic
patterns consisting of unicasts and broadcasts only.

Proposition 5.6: imp(GK,N ) ≤ 2N
N+1 .

Proof: Consider the following collection of induced
subgraphs:Go

1,i and Go
2,i for all i ∈ [1, N ]. By Lemmas

5.4 and 5.5, we know that these subgraphs are all perfect.
In addition, these subgraphs cover each vertex inv ∈ GK,N

N + 1 times. By Proposition 2.4, the claim follows.

VI. CONCLUSION

In this paper, we introduce a simple graph theoretic bound
on speedup needed to achieve 100% throughput in a multicast
network coding switch using the concept of conflict graphs.
We show that the imperfection ratio of the conflict graph gives
an upper bound on speedup. We apply this result toK ×
N switches with traffic patterns consisting of unicasts and
broadcasts only to obtain an upper bound ofmin(2K−1

K
, 2N
N+1 ).

For a 2 × N switch, this gives a bound of 3/2 on speedup;
however, we conjecture that the actual speedup required to
achieve 100% throughput in a2×N switch with traffic patterns
consisting of unicasts and broadcasts only is 5/4. We have
verified this conjecture using a computer forN = 3, 4 and 5.

In summary, by allowing network coding in multicast
switches, we get not only an insightful characterization of
the speedup needed for 100% throughput, but also a gain in
speedup. We have shown that network coding, which is usually
implemented using software, can substitute speedup, whichis
often achieved by adding extra switch fabrics.

ACKNOWLEDGMENT

This material is based upon research partly supported by
Stanford University under the Complex Network Infrastruc-
tures for Communication and Power, Sponsor Award No.
PY-1362; University of California under DAWN: Dynamic
Adhoc Wireless Networking, Sponsor Award No. S0176938;
Air Force Aerospace Research - OSR under the Robust Self-
Authenticating Network Coding, Sponsor Award No. FA9550-
06-1-0155; and DARPA ITMANET.

REFERENCES

[1] N. McKeown, V. Anantharam, and J. Walrand, “Achieving 100% through-
put in an input-queued switch”, inProceedings of IEEE INFOCOM, 1996,
pp. 296-302.

[2] J.K. Sundararajan, M. Médard, R. Koetter, and E. Erez, “A systematic
appraoch to network coding problems using conflict graphs”,in Proceed-
ings of the UCSD Workshop on Information Theory and its Applications,
San Diego, CA, February 2006.

[3] J.K. Sundararajan, M. Médard, M. Kim, A. Eryilmaz, D. Shah, and R.
Koetter, “Network Coding in a Multicast Switch”, inProceedings of IEEE
Infocom, 2007

[4] C. Caramanis, M. Rosenblum, M. X. Goemans, and V. Tarokh,“Schedul-
ing algorithms for providing flexible, rate-based, qualityof service
guarantees for packet-switching in Banyan networks”, inProceedings of
the Conference on Information Sciences and Systems, 2004, pp. 160-166.

[5] M. A. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F. Neri, “Mul-
ticast traffic in input-queued switches: optimal scheduling and maximum
throughput”,IEEE/ACM Trans. Netw., vol. 11, no. 3, pp. 465-477, 2003.

[6] S. Gerke and C. McDiarmid, “Graph Imperfection I, II”,Journal of
Combinatorial Theory, Series B 83 (2001), 58-78, 79-101.

[7] L. Lovász, “Normal hypergraphs and the perfect graph conjecture”,
Discrete Mathematics 2(1972) 253-267

[8] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency,
Springer Verlag, 2003.

[9] R. Ahlswede, N. Cai, S.-Y. R. Li and R. W. Yeung, “Network information
flow”, IEEE Trans. on Information Theory, vol. 46, pp. 1204-1216, 2000.


	Introduction
	Notation and Definitions
	Stable Set Polytope
	Perfect Graph
	Imperfection ratio
	Speedup

	Network Coding for Speedup
	Imperfection Ratio Bounds Speedup
	Bounds on Speedup for KN switch with unicasts and broadcasts
	Enhanced conflict graph for KN switch
	Speedup of 2K-1K
	Speedup of 2NN+1

	Conclusion
	References

