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Abstract— In this work, we consider a partially cooperative
relay broadcast channel (PC-RBC) controlled by random pa-
rameters. We provide rate regions for two different situations:
1) when side information (SI) Sn on the random parameters
is non-causally known at both the source and the relay and,
2) when side information S

n is non-causally known at the
source only. These achievable regions are derived for the general
discrete memoryless case first and then extended to the case
when the channel is degraded Gaussian and the SI is additive
i.i.d. Gaussian. In this case, the source uses generalized dirty
paper coding (GDPC), i.e., DPC combined with partial state
cancellation, when only the source is informed, and DPC alone
when both the source and the relay are informed. It appears that,
even though it can not completely eliminate the effect of theSI (in
contrast to the case of source and relay being informed), GDPC
is particularly useful when only the source is informed.

I. I NTRODUCTION

A three-node relay broadcast channel (RBC) is a communi-
cation network where a source node transmits both common
information and private information sets to two destination
nodes, destination1 and destination2, that cooperate by
exchanging information. This may model ”downlink” commu-
nication systems that exploit relaying and user cooperation to
improve reliability and throughput. In this work, we consider
the RBC in which only one of the two destinations (e.g.,
destination1) assists the other destination. This channel is
referred to aspartially cooperative RBC(PC-RBC) [1], [2].
Moreover, we assume that the channel is controlled by random
parameters and that side informationSn on these random
parameters is non-causally known either at both the source and
destination1 (i.e., the relay) (we refer to this situation asPC-
RBC with informed source and relay) or at the source only (we
refer to this situation asPC-RBC with informed source only).
The random state may represent random fading, interference
imposed by other users, etc. (see [3] for a comprehensive
overview on state-dependent channels). The PC-RBC under
investigation is shown in Fig. 1. It includes the standard relay
channel (RC) as a special case, when no private information
is sent to destination1, which then simply acts as relay for
destination2.

For the discrete memoryless PC-RBC with informed source

PSfrag replacements

Tx Rx 2

Relay

A
B

Rx 1

(W0,W1,W2)

Y1 X2

X1 Y2

Sn

Sn

&

p(y1, y2|x1, x2, s) (Ŵ0, Ŵ2)

Fig. 1. Partially-cooperative relay broadcast channel (PC-RBC) with state
information Sn non-causally known either at both the source and the relay
(A) or at the source only (B).

and relay (Section II), we derive an achievable rate region
based on the relay operating in the decode-forward (DF)
scheme. We also show that this region is tight and provides
the full capacity region when the channel outputs are corrupted
by degraded Gaussian noise terms and the SISn is additive
i.i.d. Gaussian (referred to asD-AWGN partially cooperative
RBC). Similarly to [4], [5], it appears that, in this case, the SI
does not affect the capacity region, even though destination
2 has no knowledge of the state. The result on the property
that a known additive state does not affect capacity (as long
as full knowledge of this state is available at the transmitter)
has been initially established for single-user Gaussian channel
in [4], and then extended to some other multi-user Gaussian
channels in [5].

For the PC-RBC with informed source only (Section III), we
derive achievable rate regions for the discrete memorylessand
the D-AWGN memoryless cases, based on the relay operating
in DF. The D-AWGN case uses generalized dirty paper coding
(GDPC), which allows arbitrary (negative) correlation between
codewords and the SI, at the source. In this case, we show
that, even though the relay is uninformed, it benefits from
the availability of the SI at the source, which then helps
the relay by allocating a fraction of its power to cancel the
state, and uses the remaining of its power to transmit pure
information using DPC. However, even though this region is
larger than that obtained by DPC alone (i.e., without partial
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state cancellation), the effect of the state can not be completely
canceled as in the case when both the source and the relay are
informed.

The results in this paper readily apply to the standard relay
channel (RC), as a special case of a PC-RBC when no private
information is sent to destination1. More generally, they
shed light on cooperation between informed and uninformed
nodes and can in principle be extended to channels with many
cooperating nodes, with only a subset of them being informed.
Section IV gives an illustrative numerical example. Section VI
draw some concluding remarks. Proofs are relegated to Section
VI.

II. PARTIALLY -COOPERATIVERBC WITH INFORMED

SOURCE AND RELAY

Consider the channel model for the discrete memory-
less PC-RBC with informed source and relay denoted by
{X1×X2, p(y1, y2|x1, x2, s),Y1 × Y2,S } and depicted in
Fig.1. It consists of a source with inputX1, a relay
with input X2, a state-dependent probability distribution
p(y1, y2|x1, x2, s) and two channel outputsY1 andY2 at des-
tinations1 (the relay) and2, respectively. The source sends a
common messageW0 that is decoded by both destinations and
private messagesW1 andW2 that are decoded by destinations
1 and2, respectively.

In this section, we consider the scenario in which the PC-
RBC is embedded in some environment with SISn available
non-causally at both the source and the relay. We assume that
Si’s are i.i.d. random variables∼ p(s), i = 1, . . . , n, and that
the channel is memoryless.

A. Inner bound on capacity region

The following Lemma gives an inner bound on capacity
region for the PC-RBC with informed source and relay, based
on the relay operating in the decode-and-forward (DF) scheme.

Lemma 1:For a discrete memoryless partially cooperative
relay broadcast channelp(y1, y2|x1, x2, s) with state informa-
tion Sn non-causally available at the source and destination
1 (which also acts as a relay for destination2) but not at
destination2, a rate tuple(R0, R1, R2) is achievable if

R1 < I(X1;Y1|SU1X2),

R0 +R2 < min
{

I(U2;Y1|SU1), I(U1U2;Y2)− I(U1U2;S)
}

,

(1)

for some joint distribution of the form

p(s)p(u1, u2, x1, x2|s)p(y1|x1, x2, s)p(y2|y1, x2),

whereU1 andU2 are auxiliary random variables with finite
cardinality bounds.
The proof is similar to that, given in Section V, for Lemma 2
(see below). However, it is more lengthy. We omitted it here
for brevity.

B. D-AWGN Partially Cooperative RBC

We now assume that the state is additive i.i.d. Gaussian.
Furthermore, we assume that the channel outputs are corrupted
by degraded Gaussian noise terms. We refer to this channel
as the D-AWGN PC-RBC with informed source and relay,
meaning that there exist random variableZ1 ∼ N (0, N1) and
Z ′
2 ∼ N (0, N2 − N1) with N1 < N2, independent of each

other and independent of the stateSn, such that

Y1 = X1 + S + Z1,

Y2 = Y1 +X2 + Z ′
2. (2)

The channel input sequences{x1,n} and {x2,n} are subject
to power constraintsP1 andP2, respectively, i.e.,

∑n
i=1 x

2
1i ≤

nP1 and
∑n

i=1 x
2
2i ≤ nP2; and the stateSn is distributed

according toN (0, QI).
The D-AWGN PC-RBC with no state has been introduced

and studied in [1]. It has been shown that its capacity regionis
given by the region with the rate tuples(R0, R1, R2) satisfying
[1]

R1 < C
(γP1

N1

)

(3a)

R0 +R2 < max
β

min

{

C(
βγ̄P1

γP1 +N1
),

C
( γ̄P1 + P2 + 2

√

β̄γ̄P1P2

γP1 +N2

)

}

, (3b)

for someγ ∈ [0, 1], where γ̄ = 1 − γ, β̄ = 1 − β and
C(x) := 0.5 log2(1 + x).

We now turn to the case when there is an additive i.i.d.
SI Sn which is non-causally known to both the source and
destination1 (the relay) but not to destination2. We obtain
the following result, similar in nature (and in proof) to
that provided for a physically degraded Gaussian RC in [5,
Theorem 3].

Theorem 1:The capacity region of the D-AWGN Partially
Cooperative Relay Broadcast Channel with state information
non-causally available at the source, destination1 (the relay)
but not destination2 is given by the standard capacity (3).

Proof: Similarly to Costa’s approach [4], we need
only prove the achievability of the region, which follows by
evaluating the region (1) with the input distribution given
by (4). Note that region (1) has been established for the
discrete memoryless case but it can be extended to memoryless
channels with discrete time and continuous alphabets using
standard techniques [6]. The choice ofp(u1, u2, x1, x2|s) is
given by

U1 ∼ N (α1S, P
(1)), U2 ∼ N (α2S, P

(2)) (4a)

X2 = (1− λ)(U1 − α1S), λ =

√

β̄ᾱP1√
P (1)

, (4b)

X ′
1 ∼ N (0, γP1), (4c)

X1 = λ(U1 − α1S) + (U2 − α2S) +X ′
1, (4d)



whereP (1) = (
√

β̄ᾱP1 +
√
P2)

2, P (2) = βᾱP1 and

αk =
P (k)

P (1) + P (2) + (αP1 +N2)
, k = 1, 2.

Furthermore, we letX ′
1 be independent ofU1, U2 and the state

S.
A (more intuitive) alternative approach is as follows. The
source uses superposition coding to send the information in-
tended for destination1, on top of that intended for destination
2 (and carried through the relay). We decompose the source
input X1 into two parts,X ′

1 with powerαP1 (stands for the
information intended for destination1), and U with power
ᾱP1 (stands for the information intended for destination2),
i.e.,X1 = X ′

1+U . For the transmission ofU , both the source
and destination1 know the stateSn and cooperate over a relay
channel (consideringX ′

1 as noise) to achieve the rate (3b) [5].
Next, to decode its own message, destination1 first pealsS
andU to make the channelY1 equivalent toY ′

1 = X ′
1 + Z1.

This gives us the rate (3a) for messageW1.

III. PARTIALLY -COOPERATIVE RBC WITH INFORMED

SOURCE ONLY

In this section, we assume that only the source non-causally
knows the SISn.

A. Discrete memoryless PC-RBC

The following Lemma gives an inner bound on capacity
region for the PC-RBC with informed source only. The result
is based on the relay operating in the DF scheme.

Lemma 2:For a discrete memoryless partially cooperative
relay broadcast channelp(y1, y2|x1, x2, s) with state informa-
tion Sn non-causally available at the source only, a rate tuple
(R0, R1, R2) is achievable if

R1 < I(U1;Y1|U2X2)− I(U1;S|U2X2)

R0 +R2 < min
{

I(U2;Y1|X2)− I(U2;S|X2),

I(U2X2;Y2)− I(U2;S|X2)
}

, (5)

for some joint distribution of the form

p(s)p(u1, u2, x1, x2|s)p(y1|x1, x2, s)p(y2|y1, x2),

whereU1 andU2 are auxiliary random variables with finite
cardinality bounds.

The proof is based on a combination of sliding-window
[7], [8], superposition-coding [9] and Gelfand and Pinsker’s
binning [10]. See Section VI for an outline of it.

B. D-AWGN Partially Cooperative RBC

Assume now that the PC-RBC with informed source only
is degraded Gaussian,i.e., the channel outputs can be written
as

Y1 = X1 + S + Z1,

Y2 = Y1 +X2 + Z ′
2, (6)

whereZ1 ∼ N (0, N1) andZ ′
2 ∼ N (0, N2 −N1), with N1 <

N2, are independent of each other and independent of the
stateSn ∼ N (0, QI); and the input sequences{x1,n} and
{x2,n} are subject to average power constraintsP1 and P2,
respectively.

We obtain an inner bound on capacity region by having the
source using a generalized dirty paper coding (GDPC), which
allows arbitrary (negative) correlation between the codeword
and the SI and can be viewed as a partial state cancellation
[11].

Definition 1: Let

Q′(γ, ρ) := (
√

Q−
√

ργ̄P1)
2,

A(γ, ρ, β, α) := (1− β2)ρ̄γ̄P1

(

(1− β2)ρ̄γ̄P1

+Q′(γ, ρ) + γP1 +N1

)

,

B(γ, ρ, β, α) := (1− α)2(1− β2)ρ̄γ̄P1Q
′(γ, ρ)

+ (N1 + γP1)
(

(1 − β2)ρ̄γ̄P1 + α2Q′(γ, ρ)
)

,

C(γ, ρ, β, α) := (1− β2)ρ̄γ̄P1

(

ρ̄γ̄P1 + P2

+Q′(γ, ρ) + 2β
√

ρ̄γ̄P1P2 + γP1 +N2

)

,

D(γ, ρ, β, α) := (1− α)2(1− β2)ρ̄γ̄P1Q
′(γ, ρ)

+ (N2 + γP1)
(

(1 − β2)ρ̄γ̄P1 + α2Q′(γ, ρ)
)

,

r1(γ, ρ, β, α) :=
1

2
log2

(

A(γ, ρ, β, α)

B(γ, ρ, β, α)

)

,

r2(γ, ρ, β, α) :=
1

2
log2

(

C(γ, ρ, β, α)

D(γ, ρ, β, α)

)

,

for given 0 ≤ γ ≤ 1, 0 ≤ ρ ≤ min{1, Q
γ̄P1

}, 0 ≤ β ≤ 1,
0 ≤ α ≤ 1 and wherēγ = 1− γ and ρ̄ = 1− ρ.

The following theorem gives an inner bound on capacity
region for D-AWGN partially cooperative RBC with informed
source only.

Theorem 2:Let Rin(γ) be the set of all rate tuples
(R0, R1, R2) satisfying

R1 ≤ 1

2
log2(1 +

γP1

N1
) (7a)

R0 +R2 ≤ max
α2,β,ρ

min
{

r1(γ, ρ, β, α2), r2(γ, ρ, β, α2)
}

,

(7b)

for some0 ≤ γ ≤ 1, where maximization is over0 ≤ ρ ≤
min{1, Q

γ̄P1

}, 0 ≤ α2 ≤ 1 and 0 ≤ β ≤ 1. Then,Rin(γ) is
contained in capacity region of the D-AWGN PC-RBC (6),
where state informationSn is non-causally available at the
source only.

Proof: The source uses a combination of superposition
coding and generalized DPC. More specifically, we decompose
the source inputX1 as

X1 = X ′
1 + U, (8a)

U = −
√

ργ̄P1

Q
S + Uw, (8b)



whereX ′
1 (of power γP1), Uw (of power ρ̄γ̄P1) and S are

independent, andE[UwX2] = β
√
ρ̄γ̄P1P2. With this choice

of input signals, channelsY1 andY2 in (6) become

Y ′
1 = X ′

1 + Uw + S′ + Z1 (9a)

Y ′
2 = Uw +X2 + S′ +X ′

1 + Z1 + Z ′
2, (9b)

where the Gaussian stateS′ = (1 −
√

ργ̄P1

Q
)S is known

to the source and has powerQ′(ρ, γ) = (
√
Q − √

ργ̄P1)
2.

Then, given that the result of Lemma 2 which has been
established for the discrete memoryless case can be extended
to memoryless channels with discrete time and continuous
alphabets using standard techniques [6], the proof of achiev-
ability follows by evaluating the region (5) (in whichY1, Y2

andS are replaced byY ′
1 , Y ′

2 andS′, respectively) with the
following choice of input distribution:

U1 ∼ N (α1(1 − α2)S
′, γP1), (10a)

U2 ∼ N (α2S
′, ρ̄γ̄P1), (10b)

X2 ∼ N (0, P2), (10c)

X1 = U1 + U2 − (α1 + α2 − α1α2 +

√
ργ̄P1√

Q−√
ργ̄P1

)S′,

(10d)

whereα1 = γP1/(γP1 +N1) and0 ≤ α2 ≤ 1. Furthermore,
we letE[UwX2] = β

√
ρ̄γ̄P1P2 and chooseX ′

1, X2 andS′ to
be independent. Through straight algebra which is omitted for
brevity, it can be shown that (10) achieve the rates in (7) to
complete the proof.
The intuition for (10) is as follows. Consider the channel
(9). The source allocates a fractionγP1 of its power to send
messageW1 (input X ′

1) to destination1 and the remaining
power, γ̄P1, to send messageW2 (input U ) to destination2,
through the relay. However, since the relay does not know
the stateSn, the source allocates a fractionρ (0 ≤ ρ ≤
min{1, Q

γ̄P1

}) of the powerγ̄P1 to cancel the state so that
the relay can benefit from this cancellation. Then, it uses
the remaining power,̄ργ̄P1, for pure information transmission
(input Uw).

For the transmission of messageW2 to destination2, we
treat the interferenceX ′

1 combined with the channel noise
Z1 + Z ′

2 as an unknown Gaussian noise. Hence, the source
uses a DPC

U2 ∼ N (α2S
′, ρ̄γ̄P1), (11a)

Uw = U2 − α2S
′. (11b)

Furthermore, the relay can decodeU2 = Uw + α2S
′ and peal

it of to make the channel to the relay equivalent to

Y ′
1 = Y1 − U2 = X ′

1 + (1− α2)S
′ + Z1. (12)

Thus, for the transmission of messageW1 to destination1,
the source uses another DPC

U1 ∼ N (α1(1− α2)S
′, γP1), (13a)

X ′
1 = U1 − α1(1− α2)S

′, (13b)

where(1 − α2)S
′ is the known state andα1 = γP1/(γP1 +

N1). This gives us the rate12 log2(1 +
γP1

N1

) for rateR1.
Remark 1 :Here, we have used in essence two superimposed

DPCs, with one of them being generalized. The first approach
which suggests itself and which consists in using two standard
(not generalized) DPCs corresponds to the special case ofρ =
0. Also, note that, for the GDPC, there is no loss in restricting
the correlation (between the source inputU and the stateS)
to have the form in (8b), in this case.

Remark 2 :A straightforward outer bound for the capacity
region of the D-AWGN partially-cooperative RBC with only
the source being informed is given by (3), for this is the
capacity region of the D-AWGN PC-RBC without state or
with state known everywhere.

Remark 3 :The results of Lemmas 1 and 2 and Theorems
1 and 2 specialize to the relay channel (RC), by letting
destination1 decode no private message (i.e.,R1=0). For the
case of a RC with informed source and relay, this gives us the
achievability of the rate

R = max
p(u1,u2,x1,x2|s)

min
{

I(U1;Y1|SU2), I(U1U2;Y2)

− I(U1U2;S)
}

.

(14)

Note that, even thought this rate is in general smaller than the
one given in [5, Lemma 3] (in whichI(U1;Y1|SX2) is used
instead ofI(U1;Y1|SU2) in (14)), the two rates coincide in
the Gaussian (not necessarily physically degraded) case. To see
that, note that in the Gaussian case,X2 is a linear combination
of U2 andS [4], and henceI(U2S;Y1) = I(X2S;Y1). Then,
writing

I(U1U2SX2;Y1) = I(X2S;Y1) + I(U1;Y1|SX2) + I(U2;Y1|SX2U1),

= I(U2S;Y1) + I(U1;Y1|SU2) + I(X2;Y1|SU1U2),

and noticing thatI(X2;Y1|SU1U2) = 0 (sincepX2|U2S =
0, 1) and I(U2;Y1|SX2U1) = 0 (since (U1, U2) ⊖
(X1, X2, S) ⊖ (Y1, Y2) forms a Markov chain under the
specified distribution in (14)), we getI(U1;Y1|SX2) =
I(U1;Y1|SU2).

IV. N UMERICAL EXAMPLE

This section illustrates the achievable rate regions for D-
AWGN PC-RBC and physically degraded Gaussian RC, with
the help of an example. We illustrate the effect of applying
GDPC in improving the throughput when only the source is
informed.

Fig.2 depicts the inner bound using generalized DPC in
Theorem 2. Also shown for comparison are: an inner bound
using DPC alone (i.e., GDPC withρ = 0) and an outer bound,
obtained by assuming both the source and the relay being
informed. Rate curves are depicted for both D-AWGN PC-
RBC and physically degraded Gaussian RC. We see that even
though the state is known only at the source, both the source
and the relay benefit.

For the physically degraded Gaussian RC, the improvement
is mainly visible at high SNR= P1/N1 [dB]. This is because,
the relay being operating in DF, cooperation between the



source and the relay ismore efficientat high SNR. In such
range of SNR, capacity of the degraded Gaussian RC is
driven by the amount of information that the source and the
relay can, together, transfer to the destination (given by the
term I(X1X2;Y2) in the capacity of the degraded RC). At
small SNR however, capacity of the degraded Gaussian RC is
constrained by the broadcast bottleneck (termI(X1;Y2|X2)).
Hence, in such range of SNR, there is no need for the source
to assist the relay by (partially) cancelling the state for it
(since this would be accomplished at the cost of the power
that can be allocated to transmit information from the source
to the relay). An alternative interpretation is as follows.At
high SNR, the source and the relay form two fictitious users
(with only one of them being informed) sending information to
same destination, over a MAC. The sum rate over this MAC
is more enlarged (by the use of GDPC) at high SNR. This
interpretation conforms with the result in [11] for a MAC with
only one informed encoder. However, note this interpretation
deviates from [11], in that the fictitious MAC considered here
has correlated inputs).

For the D-AWGN PC-RBC, we see that both destination1
and destination2 benefits from using GDPC at the source. This
can be easily understood as follows. Since applying GDPC at
the source improves rateR2 for destination2 (w.r.t. using DPC
alone), the source needs lesser power, for the same amount of
information to be transmitted to destination2 (i.e., for the
sameR2). Hence, the power put aside can be used to increase
rateR1 (see the zoom on the top left of Fig. 2(a)).

V. CONCLUDING REMARKS

In many practical communication systems that exploit node
cooperation to increase throughput or improve reliability, dif-
ferent (possibly not co-located) cooperating nodes rarelyhave
access to the same state information (SI) about the channel (in-
terference, fading, etc.). In this case, a more general approach
to address node cooperation in such channels is to consider
different SI at the different nodes. Also, as these nodes rarely
have the ability to measure directly, or estimate, the channel
state, a more involved approach would be to account for the
cost of conveying SI (e.g., by a third party) to the different
nodes (as already done for MAC, in [12]). In this paper, we
have considered the basic three-node network in which two
nodes transmit information over a partially cooperative relay
broadcast channel (PC-RBC). We investigated two different
situations: when both the source and the relay non-causally
know the channel state and, when only the source knows the
state. One important finding in the latter case is that, in the
degraded Gaussian case, the source can still help the relay
(which suffers from the interfering channel state), by using
generalized dirty paper coding (GDPC),i.e., DPC combined
with partial state cancellation.

VI. OUTLINE OF PROOF FORLEMMA 2

In the following, we denote the set of strongly jointlyǫ-
typical sequences (see [13, Chapter 14.2]) with distribution

(a) D-AWGN Partially Cooperative RBC
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Fig. 2. Achievable rate regions for D-AWGN PC-RBC and physically
degraded Gaussian RC. (a)P1 = P2 = 1 = Q, N1 = 10N2 = 1. (b)
P1 = P2 = 1, Q = 2, N2 = 1.

p(x, y) asT n
ǫ [x,y]. We defineT n

ǫ [x,y|xn] as

T n
ǫ [x,y|xn] = {yn : (xn, yn) ∈ T n

ǫ [x,y]}. (16)

Note that it suffices to prove the result for the case without
common message (i.e.R0 = 0). This is because one can view
part of the rateR2 to be common rateR0, since destination
1 also decodes messageW2.

We assume that the source uses a combination of superpo-
sition coding [13, Chapter 14.6] and Gelfand and Pinsker’s
binning [10]. We adopt the regular encoding/sliding window
decoding strategy [8] for the decode-and-forward scheme.
Decoding is based on a combination of joint typicality and
sliding-window.

We consider a transmission overB blocks, each with length
n. A each of the firstB − 1 blocks, a pair of messages
(w1,i, w2,i) ∈ W1 × W2 is sent, wherei denotes the index
of the block, i = 1, . . . , B − 1. For fixed n, the rate pair



(R1
B−1
B

, R2
B−1
B

) approaches(R1, R2) as B −→ +∞. We
use random codes for the proof.

Fix a joint probability distribution of
U1, U2, X1, X2, S, Y1, Y2 of the form

p(s)p(u1, u2, x1, x2|s)p(y1|x1, x2, s)p(y2|y1, x2),

whereU1 and U2 are two auxiliary random variables with
bounded alphabet cardinality which stand for the information
being carried by the source inputX1 and intended for desti-
nation1 and destination2, respectively.

Fix ǫ > 0. Let

J1 , 2n(I(U1;S|U2X2)+2ǫ),

J2 , 2n(I(U2;S|X2)+2ǫ),

M1 , 2n(R1−4ǫ),

M2 , 2n(R2−6ǫ).

Random codebook generation:We generate two statistically
independent codebooks (codebooks1 and2) by following the
steps outlined below twice. These codebooks will be used
for blocks with odd and even indices, respectively (see the
encodingstep).

1. GenerateM2 i.i.d. codewordsx2(w
′′), of length n

each, indexed byw′′ ∈ {1, 2, . . . ,M2}, and each with
distributionΠip(x2i).

2. For eachx2(w
′′), generate a collectionb(x2(w

′′)) of
u2-vectors

b
(

x2(w
′′)
)

=
{

u2j2,w′(x2(w
′′)), j2 ∈ {1, 2, · · · , J2},

w′ ∈ {1, 2, · · · ,M2}
}

independently of each other, each with distribution
Πip(u2i|x2i(w

′′)).
3. For eachx2(w

′′), for eachu2j2,w′(x2(w
′′)), generate a

collectiona of u1-vectors

a
(

x2(w
′′),u2j2,w′(x2(w

′′))
)

=
{

u1j1,w(u2j2,w′(x2(w
′′))),

j1 ∈ {1, 2, · · · , J1}, w ∈ {1, 2, · · · ,M1}
}

independently of each other, each with distribution
Πip(u1i|u2i(j2, w

′), x2i(w
′′)). Reveal the collectionsa

andb and the sequences{x2} to the source and desti-
nations1 and2.

Encoding: We encode messages using codebooks1 and
2, respectively, for blocks with odd and even indices. Using
independent codebooks for blocks with odd and even indices
makes the error events corresponding to these blocks inde-
pendent and hence, the corresponding probabilities easierto
evaluate.

At the beginning of blocki, let (w1,i, w2,i) be the new
message pair to be sent from the source and(w1,i−1, w2,i−1)
be the pair sent in the previous blocki−1. Assume that at the
beginning of blocki, the relay has decodedw2,i−1 correctly.
The relay sendsx2(w2,i−1) . Given a state vectors = sn, let
j2(s, w2,i−1, w2,i) be the smallest integerj2 such that

u2j2,w2,i
(x2(w2,i−1)) ∈ T n

ǫ [u2,x2, s|xn
2 ]. (17)

If such j2 does not exist, setj2(s, w2,i−1, w2,i) = J2.
Sometimes, we will usej⋆2 as shorthand for the chosenj2. Let
j1(s, w2,i−1, w2,i, w1,i) be the smallest integerj1 such that

(

u1j1,w1,i
(u2j⋆

2
,w2,i

(x2(w2,i−1))), s
)

∈ T n
ǫ [u1,u2,x2, s|un

2 , x
n
2 ]. (18)

If such j1 does not exist, setj1(s, w2,i−1, w2,i, w1,i) = J1.
Sometimes, we will usej⋆1 as shorthand for the chosenj1.
Finally, generate a vector of input lettersx1 ∈ X

n
1 according

to the memoryless distribution defined by then−product of

Πip(x1i|u1i(u2(x2)), u2i(x2), si) (19)

Decoding: The decoding procedures at the end of blocki
are as follows.

1. destination1, having knownw2,i−1, declares that̂w2,i

is sent if there is a uniquêw2,i such that
(

u2j2,ŵ2,i
(x2(w2,i−1)),y1(i)

)

∈ T n
ǫ [u2,x2,y1(i)|xn

2 ].

It can be shown that the decoding error in this step is
small for sufficiently largen if

R2 < I(U2;Y1|X2)− I(U2;S|X2). (20)

2. destination1, having knownw2,i−1 andw2,i, declares
that the messagêw1,i is sent if there is a uniquêw1,i

such that
(

u1j1,ŵ1,i
(u2j2,ŵ2,i

(x2(w2,i−1))),y1(i)
)

∈ T n
ǫ [u1,u2,x2,y1(i)|xn

2 , u
n
2 ].

It can be shown that the decoding error in this step is
small for sufficiently largen if

R1 < I(U1;Y1|U2X2)− I(U1;S|U2X2). (21)

3. Destination2 knowsw2,i−2 and decodesw2,i−1 based
on the information received in blocki− 1 and blocki.
It declares that the messagêw2,i−1 is sent if there is a
uniqueŵ2,i−1 such that
(

x2(ŵ2,i−1),y2(i)

)

∈ T n
ǫ [x2,y2],

(

u2j2,ŵ2,i−1
(x2(w2,i−2)),y2(i− 1)

)

∈ T n
ǫ [u2,x2,y2|xn

2 ].

It can be shown that the decoding error in this step is
small for sufficiently largen if

R2 < I(U2X2;Y2)− I(U2;S|X2). (23)
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