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Abstract— We analyze an uplink of a fast flat fading MIMO-
CDMA channel in the case where the data symbol vector for each
user follows an arbitrary distribution. The spectral efficiency of
the channel with CSI at the receiver is evaluated analytically
with the replica method. The main result is that the hierarchical
decoupling principle holds in the MIMO-CDMA channel, i.e.,
the MIMO-CDMA channel is decoupled into a bank of single-
user MIMO channels in the many-user limit, and each single-
user MIMO channel is further decoupled into a bank of scalar
Gaussian channels in the many-antenna limit for a fading model
with a limited number of scatterers.

I. I NTRODUCTION

Direct-sequence spread-spectrum code-division multipleac-
cess (CDMA) has been utilized as a multiple access scheme in
wireless communication. As a method of overcoming the ca-
pacity bottleneck in future wireless communication, multiple-
input multiple-output (MIMO) systems have attracted so much
attention since the latter half of the 1990s [1]. Recently, MIMO
systems with CDMA technology (MIMO-CDMA) have been
studied [2], [3].

Mantravadi et al. [2] evaluated the asymptotic spectral
efficiency of a MIMO-CDMA channel with Gaussian modu-
lation using the random matrix theory. However, other data
modulation schemes such as quadrature phase shift keying
(QPSK) modulation, or more generally,M -quadrature am-
plitude modulation (M -QAM) are commonly employed in
practice. Thus, it is important to analyze the MIMO-CDMA
channel with a modulation of the kind. The purpose of our
study is to evaluate the spectral efficiency of the MIMO-
CDMA channel in the case that the data symbol vector for
each user follows an arbitrary distribution.

It was reported [4] that the spectral efficiency of a CDMA
channel with binary phase shift keying modulation can be
evaluated with the so-called replica method. Then, the method
was applied to the performance evaluation of MIMO systems
[5], [6], [7]. Guo et al. [8] analyzed a CDMA channel in the
case that the data symbol for each user follows an arbitrary
distribution and claimed that the decoupling principle, the
equivalent result to which has already been proved in the
case of Gaussian modulation [9], [10], holds in an asymptotic
limit, i.e., the CDMA channel is decoupled into a bank
of scalar Gaussian channels. This principle makes possible
the analytical evaluation of the spectral efficiency since the

degree of freedom drastically decreases. However, it is notstill
clear except special cases [2] whether or not the decoupling
principle holds in the MIMO-CDMA channel.

In this paper, we claim that the decoupling principle holds in
the MIMO-CDMA channel and evaluate the spectral efficiency
of the channel using the replica method.

II. M ODEL

We consider the uplink of a synchronousK-user MIMO-
CDMA flat fading channel [2]

yl =

K
∑

k=1

skl H
kxk + nl, (1)

where thekth user hasMk transmit antennas and the receiver
hasN receive antennas.xk = (xk

1 , . . . , x
k
Mk

)T is the data
symbol vector for thekth user and{skl ; l = 1, . . . , L} is
the spreading sequence for thekth user. We assume that
{xk; k = 1, . . . ,K} are mutually independent complex ran-
dom variables and that the real part and the imaginary part of
{skl } are independent and identically distributed (i.i.d.) zero-
mean random variables with the variance1/2L.Hk represents
the N -by-Mk channel matrix for thekth user, i.e., the (n,
mk)-elementhk

nmk
of Hk is the channel gain from themkth

transmit antenna of thekth user to thenth receive antenna.
We assume that{Hk; k = 1, . . . ,K} are mutually indepen-
dent. We consider the case that the noise is additive white
Gaussian noise (AWGN), i.e.,{nl; l = 1, . . . , L} are i.i.d.
zero-mean circularly symmetric complex Gaussian random
variables with the covariance matrixσ2IN , which are denoted
by CN (0, σ2IN ). yl represents theN -dimensional received
signal vector.

We write the entire data symbol vector~x and the received
signal vector~y in a symbol period as~x = (x1T , . . . ,xKT

)T ,
and ~y = (y1

T , . . . ,yL
T )T , respectively. The maximal sum

rate in the fast fading channel with perfect channel side
information at the receiver is given by the conditional mutual
information (the base of logarithms is taken to2 in this paper)
between~x and~y conditioned on the spreading sequences and
the channel matrices [1]

I(~x; ~y|S,H) = E

[

log
p(~y|~x,S,H)

E~x [p(~y|~x,S,H)]

]

, (2)
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whereS = {skl ; l = 1, . . . , L, k = 1, . . . ,K}, H = {Hk; k =
1, . . . ,K}, and wherep(~y|~x,S,H) is given by

p(~y|~x,S,H) =
1

(πσ2)LN

L
∏

l=1

e−
1
σ2 ‖yl−

P

K
k=1 skl H

kxk‖2

. (3)

We define the spectral efficiencyCMIMO−CDMA as the maxi-
mal sum rate per chip and per transmit antenna. In the many-
user limit, where the number of usersK and the spreading
factor L tend to infinity with their ratioβ = K/L fixed, the
spectral efficiency is given by

CMIMO−CDMA =
β

M̄ ln 2
EH [F ]− µ̄−1 log(πσ2e), (4)

whereM̄ = limK→∞ K−1
∑K

k=1 Mk andµ̄ is the ratio of the
average number of transmit antennas to the number of receive
antennas, i.e.,̄µ = M̄/N . The free energy F is defined as

F = − lim
K,L→∞

1

K
E [ln p(~y|S,H)|H] . (5)

III. R EPLICA ANALYSIS OF MIMO-CDMA

We explain briefly the calculation procedure of the free
energy (5) [4], [8]. Substituting the following identity:

lim
u→0

∂

∂u
[p(~y|S,H)]u = ln p(~y|S,H) (6)

to (5), we obtain

F = − lim
K,L→∞

lim
u→0

∂

∂u
Ξ
(u)
K , (7)

Ξ
(u)
K =

1

K
ln E {[p(~y|S,H)]

u |H} . (8)

We assume that the limit with respect toK, L and the
operation with respect tou are interchangeable. Then, (7)
becomes

F = − lim
u→0

∂

∂u
lim

K,L→∞
Ξ
(u)
K . (9)

Further, we assume that the result for positive integersu is
valid for real numberu in the calculation of (9).

We defineN -dimensional vectorsvα as

vα =
1√
β

K
∑

k=1

skHkxk,α, α = 0, . . . , u, (10)

wherexk,0 andxk,α = (xk,α
1 , . . . , xk,α

Mk
)T are the original data

symbol vector and the replicated data symbol vector for the
kth user, respectively.{xk,α, α = 0, . . . , u} are i.i.d. random
variables followingp(xk) and {sk; k = 1, . . . ,K} are i.i.d.
random variables followingp(skl ). Then, the expectation of
[p(~y|S,H)]u with respect to~y andS is given by

E {[p(~y|S,H)]u|H} = E
{

exp
[

LG
(u)
K ( ~X ,H)

]∣

∣

∣
H

}

,

(11)

G
(u)
K ( ~X ,H) = lnES

[

∫ u
∏

α=0

e−
1
σ2 ‖y−√

βvα‖2

dy

]

−N(u+ 1) ln(πσ2), (12)

where ~X is defined as{xk,α; k = 0, . . . ,K, α = 0, . . . , u}
and S repserents{sk; k = 1, . . . ,K}. When K and L are
sufficiently large with their ratio fixed, due to the central
limit theorem,v = (v0T , . . . ,vuT )T conditioned on~X and
H follows approximately the zero-mean circularly symmetric
complex Gaussian distribution with the covariance matrix

Q =
1

K

K
∑

k=1

wkwk∗, (13)

wherewk is defined as[(Hkxk,0)T , . . . , (Hkxk,u)T ]T . Then,
we can evaluate (11) and (12) as

Ξ
(u)
K =

1

K
ln E

{

eKβ−1G(u)(Q)
}

+O(K−1), (14)

G(u)(Q) = − ln det(I +ΣQ)−Nu ln(πσ2)−N ln(1 + u),
(15)

whereΣ is defined as

Σ =
β

σ2(1 + u)

[

u −eTu
−eu (1 + u)Iu − eue

T
u

]

⊗ IN , (16)

whereeu is theu-dimensional vector whose elements are all
one and⊗ represents the Kronecker product.

With a Hermitian matrixQ̃ we define the moment generat-
ing function of the data symbols of thekth user as

M(u)
k (Q̃) = EXk

{

exp
[

tr
(

Q̃wkwk∗
)]}

, (17)

whereX k represents{xk,α
mk

;mk = 1, . . . ,Mk, α = 0, . . . , u}.
SinceQ satisfies the large deviation principle, with the saddle
point method, (14) is evaluated as

lim
K,L→∞

Ξ
(u)
K = sup

Q

[

β−1G(u)(Q)− I(u)(Q)
]

, (18)

where the rate functionI(u)(Q) is given by

I(u)(Q) = sup
Q̃

[

tr(Q̃Q)− lim
K→∞

1

K

K
∑

k=1

lnM(u)
k (Q̃)

]

.

(19)
Differentiating (18) and (19) with respect toQ and Q̃,
respectively, we obtain the following equations giving extrema
of (18) and (19):

Q̃
s
= −β−1(I +ΣQ

s)−1
Σ, (20)

Q
s = lim

K→∞

1

K

K
∑

k=1

1

M(u)
k (Q̃

s
)
EXk

[

wkwk∗etr(Q̃
s
wkwk∗)

]

.

(21)
Differentiating (18) with respect tou and substituting (20) to
it, we can evaluate (9) as

F = − lim
u→0

[

β−1 ∂G
(u)

∂u
(Qs)− ∂I(u)

∂u
(Qs)

]

. (22)

To evaluate the solution of (20) and (21) in theu → 0 limit
analytically we assume that the replica symmetry holds, i.e.,



Q
s andQ̃

s
are invariant under exchange of non-zero replica

indexes. Then,Qs andQ̃
s

can be written as

Q
s =

(

Q0 eTu ⊗M

eu ⊗M∗ Iu ⊗ (Q1 −Q) + eue
T
u ⊗Q

)

, (23)

Q̃
s
=

(

Q̃
0

eTu ⊗ M̃

eu ⊗ M̃
∗

Iu ⊗ (Q̃
1 − Q̃) + eue

T
u ⊗ Q̃

)

, (24)

whereM , M̃ areN -by-N matrices andQ0, Q̃
0
, Q1, Q̃

1
,

Q, and Q̃ areN -by-N Hermitian matrices. By solving (20)
we have in theu → 0 limit

Q̃
0
= 0, M̃ = R−1, Q̃

1
= Q̃− M̃ , Q̃ = R−1R0R

−1,
(25)

whereR0, R are defined as

R0 = σ2IN + β(Q0 −M −M∗ +Q), (26)

R = σ2IN + β(Q1 −Q). (27)

It is straightforward to confirm thatR0, R are positive definite.
We move on to calculating the moment generating func-

tion (17). R0 can be decomposed into the product of two
nonsingular matrices, i.e.,R0 =

√
R0

√
R0

∗
. From (25) the

moment generating function (17) is evaluated as

M(u)
k (Q̃

s
) = EXk

[

e‖bk‖2−Pu
α=0(H

kxk,α)∗R−1
α Hkxk,α

]

,

(28)
whereRα = R for α = 1, . . . , u, and wherebk is defined as

bk = (
√

R0)
−1Hkxk,0 +

√

R0

∗
R−1

u
∑

α=1

Hkxk,α. (29)

By applying the transform:

e‖b
k‖2

=

∫

1

πN detR0
e−yk∗

R
−1
0 yk+2ℜ(bk∗

(
√
R0)

−1yk)dyk,

(30)
we obtain

M(u)
k (Q̃

s
) =

∫

Exk

[

p(yk|xk,Hk;R0)
]







Exk

[

p(yk|xk,Hk;R)
]

p(yk|0,Hk;R)







u

dy
k, (31)

wherep(yk|xk,Hk;R) is defined as

p(yk|xk,Hk;R) =
e−(yk−Hkxk)∗R−1(yk−Hkxk)

πN detR
. (32)

Assuming thatR0 is equal toR, from (21) we obtain

Q0 −M −M∗ +Q = Q1 −Q = lim
K→∞

1

K

K
∑

k=1

E
k, (33)

E
k = E

[

Hk
(

xk − 〈xk〉MIMO1

) (

xk − 〈xk〉MIMO1

)∗
Hk∗

]

,

(34)
where〈·〉MIMO1

is defined as

〈

xk
〉

MIMO1
=

Exk

[

xkp(yk|xk,Hk;R)
]

Exk

[

p(yk|xk,Hk;R)
] . (35)

Note thatEk is averaged with respect toHk due to the law of
large numbers. Substituting (33) to (26) and (27), we obtain
the fixed-point equation

R = σ2IN + β lim
K→∞

1

K

K
∑

k=1

E
k, (36)

which is the extension of the Tse-Hanly equation [9] to the
case of the MIMO-CDMA channel.

CalculatingG(u)(Qs), I(u)(Qs) and differentiating them
with respect tou, we can evaluateF as

β

ln 2
F = lim

K→∞

1

K

K
∑

k=1

βMkCk
MIMO1

+N log(πσ2e)

+KL
(

CN
(

0, σ2IN

)

||CN (0,R)
)

, (37)

where KL(·||·) represents the Kullback-Leibler divergence,
and whereCk

MIMO1
is defined as

Ck
MIMO1

=
1

Mk

E







log
p(yk|xk,Hk;R)

Exk

[

p(yk|xk,Hk;R)
]

∣

∣

∣

∣

∣

∣

Hk







.

(38)
Note that (37) depends only onR. In the case that there
exist multiple solutions of (36), one should choose the solution
achieving the supremum of (18) in a neighborhood ofu = 0,
i.e., the solution minimizing (37).

From the above mentioned analysis we claim that the
spectral efficiency of the MIMO-CDMA channel is evaluated
as

CMIMO−CDMA = lim
K→∞

1

K

K
∑

k=1

βMk

M̄
EHk

[

Ck
MIMO1

]

+
1

µ̄N
KL
(

CN
(

0, σ2IN

)

||CN (0,R)
)

. (39)

EHk [Ck
MIMO1

] can be interpreted as the spectral efficiency
of the following single-user MIMO Gaussian channel for the
kth user:

yk = Hkxk + nk, nk ∼ CN (0,R). (40)

From the replica analysis for the moment sequence of the pos-
terior mean estimator〈xk

mk
〉MIMO−CDMA = E[xk

mk
|~y,S,H],

(39) indicate that the MIMO-CDMA channel with the MMSE
detector front end is decoupled into a bank of single-user
MIMO channels with the MMSE detector front ends in the
many-user limit. It is easy to extend this decoupling resultto
the cases of the linear MMSE detector or the matched filter.

IV. REPLICA ANALYSIS OF MIMO

So far we have not specified statistics of the elements of
Hk. In order to obtain a more concrete expression of (39), we
consider a fading model with a limited number of scatterers
[6]

Hk = Φ
k∗Ak

Θ
k, (41)

where Θ
k is a Sk-by-Mk steering matrix which describes

the propagation from the transmit antennas of thekth user



to Sk scattering objects between thekth user and the receiver,
where Ak = diag(Ak

1 , . . . , A
k
Sk
) is a Sk-by-Sk diagonal

matrix which accounts for attenuation at the scattering objects
between thekth user and the receiver, and whereΦ

k is aSk-
by-N steering matrix which describes the propagation from the
scattering objects between thekth user and the receiver to the
receive antennas of the receiver. We assume that the elements
of Φk andΘ

k are i.i.d. random variables with the variances
1/N and 1/Sk, respectively, and that the elements ofAk

are independent random variables subject to the normalization
E[tr(AkAk∗)] = Sk.

It is difficult to evaluate (34) and (38) analytically exceptin
special cases, e.g., the data symbol vector of thekth userxk

follows a circularly symmetric complex Gaussian distribution
or the users and the receiver have a few numbers of the
antennas. Thus, we evaluate (34) and (38) using the replica
method in the many-antenna limit whereMk, Sk, andN tend
to infinity with their ratiosρk = Sk/N , γk = Mk/Sk fixed.
One might think that the assumption of the many-antenna limit
is impractical, but it can be a good approximate approach to
systems with a few antennas if the elements ofxk andHk

follow circularly symmetric complex Gaussian distributions
[1]. On the other hand, the spectral efficiency is not invariant
under exchange of the order of the many-user limit and the
many-antenna limit. In the MIMO-CDMA literature, however,
it may be reasonable to take the many-user limit first.

By regardingΦk∗ and Ak
Θ

kxk as the channel matrix
and the data symbol vector, respectively, we can evaluate the
expectation of (38) as

limEHk

[

Ck
MIMO1

]

= lim
Sk,Mk→∞

EAkΘk

[

Ck
MIMO2

]

+ lim
N→∞

1

µkN
KL
(

CN (0,R)||CN (0,W k)
)

, (42)

whereµk = Mk/N , wherelim represents the many-antenna
limit, and whereCk

MIMO2
is the spectral efficiency of the

following MIMO channel for thekth user:

ỹk = Ak
Θ

kxk + ñk, ñk ∼ CN (0, ζk
2
ISk

). (43)

ζk
2

andW k satisfy the following fixed-point equations:

ζk
−2

= lim
N→∞

1

N
tr
[

W k−1
]

, W k = R + ρkEk
MIMO2

IN ,

(44)

Ek
MIMO2

= lim
Mk,Sk→∞

1

Sk

E

[

∥

∥

∥
Ak

Θ
k(xk − 〈xk〉MIMO2

)
∥

∥

∥

2
]

,

(45)
where 〈xk〉MIMO2

= E[xk|ỹk,Ak
Θ

k] and where the op-
erator E in (45) represents the expectation with respect to
p(ỹk,xk,Ak

Θ
k). In the case that there exist multiple so-

lutions of (44) and (45), one should choose the solution
minimizing the spectral efficiency (42).

To evaluate (34) we define a quantitỹFk
MIMO1

as

F̃k
MIMO1

= lim
1

Sk

ln E
[

Z̃
(u)
MIMO1

(yk,Hk;Ω)
]

, (46)

Z̃
(u)
MIMO1

= EXk

{

etr[Ω
TF ]

u
∏

α=0

p(yk|xk,α,Hk;R)

}

, (47)

whereF is defined as

F (X k,Hk) = SkH
k(xk − xk,1)(xk − xk,2)∗Hk∗. (48)

Then, we obtain in the many-antenna limit [4]

limE
k = lim

u→0

∂

∂Ω
F̃MIMO1

∣

∣

∣

∣

Ω=0

. (49)

Calculating the right-hand side of (49), we can evaluate (34)
as

limE
k = R−RW̃

k−1

R, (50)

whereW̃
k

is a solution of (44) and (45). We have added a
tilde toW k in order to make clear that̃W

k
need not be equal

to W k in (42). In the case that there exist multiplẽW
k

one
should choose the solution minimizing (42).

Furthermore, we can evaluateE[Ck
MIMO2

] and Ek
MIMO2

by
applying the above mentioned method again. On the assump-
tion that {xk

mk
;mk = 1, . . . ,Mk} are mutually independent,

E[Ck
MIMO2

] in the many-antenna limit is given by [6], [7]

lim
Sk,Mk→∞

E[Ck
MIMO2

] = lim
Mk→∞

1

Mk

Mk
∑

mk=1

Ck,mk

AWGN

+ lim
Sk→∞

γ−1
k

Sk

EAk

[

KL
(

CN (0, ζk
2
ISk

)||CN (0,Ξk)
)]

, (51)

whereCk,mk

AWGN is the spectral efficiency of the scalar Gaussian
channel

ykmk
= xk

mk
+ nk

mk
, nk

mk
∼ CN (0, ξk

2
). (52)

ξk
2

andΞk satisfy the following fixed-point equations:

ξk
−2

= lim
Sk→∞

1

Sk

Sk
∑

sk=1

E

[

|Ak
sk
|2

ζk
2
+ γkEk

AWGN|Ak
sk
|2

]

, (53)

Ξ
k = ζk

2
ISk

+ γkEk
AWGNA

kAk∗, (54)

Ek
AWGN = lim

Mk→∞

1

Mk

Mk
∑

mk=1

E
[

∣

∣(xk
mk

− 〈xk
mk

〉AWGN)
∣

∣

2
]

,

(55)
where〈xk

mk
〉AWGN = E[xk

mk
|ykmk

]. In the case that there exist
multiple solutions of (53), (54), and (55), one should choose
the solution minimizing the spectral efficiency (51).

The result of a replica analysis claims that the moment
sequence of〈xk

mk
〉MIMO−CDMA converges to the moment

sequence of〈xk
mk

〉AWGN in the many-user and many-antenna
limits. Since the MMSE detector is information lossless in
the scalar Gaussian channel,Ck,mk

AWGN can be interpreted as
the spectral efficiency of the MMSE detector in the MIMO-
CDMA channel.

On the other hand, (45) is evaluated as

Ek
MIMO2

= lim
Sk→∞

1

Sk

Sk
∑

sk=1

E

[

ζk
2 − ζk

4

ζk
2
+ γkẼk

AWGN|Ak
sk
|2

]

,

(56)



whereẼk
AWGN is a solution of (53), (54), and (55). In the case

that there exist multiplẽEk
AWGN one should choose the solution

minimizing (51). We can obtain the same fixed-point equations
for ζk

2
and ξk

2
by means of calculating the expectation of

Ck
MIMO1

with respect toΘk and then evaluating the asymptotic
distribution of singular values ofΦk.

We can easily confirm that the spectral efficiency (39)
coincides with the spectral efficiency of the i.i.d. Rayleigh
fading MIMO-CDMA channel in the case that scattering is
very rich. In theγk → 0 limit with µk = ρkγk fixed, (53)
reduces toξk

2
= ζk

2
. Expanding (56) with respect toγk and

substituting it to (44), we obtain

ζk
−2

= lim
N→∞

1

N
tr
[

W k−1
]

, W k = R+µkEAWGN(ζ
k2)IN .

(57)
(57) coincides with the fixed-point equation forζk

2
andW k

in the case of the i.i.d. Rayleigh fading. Hence, (39) converges
to the spectral efficiency of the i.i.d. Rayleigh fading MIMO-
CDMA channel in theγk → 0 limit.

The above mentioned results indicate that the MIMO chan-
nel (40) with the MMSE detector front end is decoupled into
the bank of scalar Gaussian channels with the MMSE detector
front ends in the many-antenna limit even if the number of the
scatterers is limited. It is easy to extend this decoupling result
to the cases of the linear MMSE detector or the matched filter.

V. NUMERICAL EVALUATION

To evaluate the spectral efficiency numerically we consider
the case thatρ = ρk, γ = γk, {xk

mk
} are i.i.d. random

variables with the varianceP = E[|xk
mk

|2], and |Ak
sk
|2 = 1

with probability1. µ = ργ represents the ratio of the number
of transmit antennas to the number of receive antennas, i.e.,
µ = M/N . We denote the received signal-to-noise ratio per
transmit antenna by SNR= P/σ2

0 . Figure 1 displays the
spectral efficiency (39) versus SNR for QPSK modulation (4-
QAM). We find that the spectral efficiency of the MIMO-
CDMA channel with QPSK modulation is very close to the
capacity but there exists a large gap between the spectral
efficiency of the MMSE detector and the capacity in the highly
loaded system. The degradation of the spectral efficiency due
to the decrease of scatterers is shown in Fig. 2. In this case,an
interesting observation is that the spectral efficiency does not
degrade so much compared with the rich scattered environment
(γ → 0) even when the number of scatterers is comparable
with the number of the antennas.

VI. CONCLUSION

We evaluated the spectral efficiency of the uplink of the
MIMO-CDMA channel using the replica method. The main
result is that the hierarchical decoupling principle holdsin
the MIMO-CDMA channel, i.e., the MIMO-CDMA channel
is decoupled into the bank of single-user MIMO channels in
the many-user limit. The resulting single-user MIMO channel
is further decoupled into the bank of scalar Gaussian channels
in the many-antenna limit for the fading model with a limited
number of scatterers. We found numerically that the spectral

efficiency of the MIMO-CDMA channel with QPSK modula-
tion is very close to the capacity but there exists a large gap
between the spectral efficiency of the MMSE detector and the
capacity in a highly loaded system.
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Fig. 1. Spectral efficiency of the MIMO-CDMA channel versus SNR.
µ = 1.0 andγ = 1.0.
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Fig. 2. Spectral efficiency of the MIMO-CDMA channel for QPSK
modulation versusγ. µ = 1.0 and SNR= 10 dB. The spectral efficiency
coincides with the spectral efficiency of the i.i.d. Rayleigh fading MIMO-
CDMA channel in theγ → 0 limit.
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