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Abstract— The fading broadcast channel with confidential the transmitter (the source node) can be realized by reliabl
messages (BCC) is investigated, where a source node has comnm feedback from the two receivers, who are supposed to receive
information for two receivers (receivers 1 and 2), and has aufi- information from the source node.

dential information intended only for receiver 1. The confidential The fadi BCC tudv in thi lates t
information needs to be kept as secret as possible from receir € _a Ing we study In this paper re_aes o o!'
2. The broadcast channel from the source node to receivers 1 9eneralizes a few channels that have been previously studie
and 2 is corrupted by multiplicative fading gain coefficiens in in the literature. Compared to the fading broadcast channel
addition to additive Gaussian noise terms. The channel stat stydied in [71, [8], [9], [10], [11], the fading BCC requires
information (CSI) is assumed to be known at both the transmiter 5 gacrecy constraint that the confidential information foe o
and the receivers. The secrecy capacity region is first estished . tb t ible f the oth .
for the parallel Gaussian BCC, and the optimal source power recelver_mus e_as secret as pO.SS' e, rom the other reP.ce.‘Ne
allocations that achieve the boundary of the secrecy capagi |he fading BCC includes the fading wire-tap channel studied
region are derived. In particular, the secrecy capacity regon is in [12], [13] and [14] (full CSI case) as a special case,
established for the Gaussian case of the Cs&zKorner BCC  pecause the fading BCC assumes that the source node has
Qogﬁligggiéicrigyggfafgyiéﬁsﬂﬁstﬁéefg&?nn achplcl:‘Ed o gvhe 5 common message for both receivers in addition to the
g y capactly reg g ' confidential message for receiver 1. The fading BCC also
|. INTRODUCTION includes the parallel Gaussian wire-tap channel studi¢tiSh
(the case where wire-tappers cooperate) as a special case fo

The wire-tap channel models a communication system {Re same reason as above and also because a power constraint
which a source node wishes to transmit confidential informgs 5ssumed for each subchannel in [15]

tion to a destination node and wishes to keep a wire-tappef, this paper, we first study the parallel Gaussian BCC,

as ignorant of this information as possible. This channed Wgyhich serves as a basic model that includes the fading BCC
introduced by Wyner in [1], where the secrecy capacity Wag 5 special case. We show that the secrecy capacity region
given. The secrecy capacity of the Gaussian wire-tap cHangehe parallel Gaussian BCC is a union over the rate regions
was given in [2]. The wire-tap channel was considered régent, chieved by all source power allocations (among the paralle
for fading and multiple antenna channels in [3], [4]. A morgpchannels). Moreover, we derive the optimal power alloca
general model of the wire-tap channel was studied by @6isgjong that achieve the boundary of the secrecy capacitpmegi
and Komer in [5], where the source node also has a COMMQRY hence completely characterize this region. In paticul

message for both receivers in addition to the confidentigh esiaplish the secrecy capacity region of the Gaussian cas
message for only one receiver. This channel is regarded @She Csisar-Kérner BCC model.

the broadcast channel with confidential messages (BCC). Th§ye then apply our results to study the fading BCC, which
capacity-equivocation region and the secrecy capacitioned can pe viewed as the parallel Gaussian BCC with each fading
of the discrete memoryless BCC were characterized in [Jate corresponding to one subchannel. Thus, the secrecy
The BCC was further studied recently in [6], where the sourgg 4 ity region of the parallel Gaussian BCC applies to the
node transmits two confidential message sets for two re&ive,ging BCC. In particular, since the source node knows the
respectively. CSI, it can dynamically change its transmission power with

In this paper, we investigate the fading BCC, which ighanne| state realization to achieve the boundary of theegc
based on the BCC studied in [5] with the channels from thf'apacity region.

source node to receivers 1 and 2 corrupted by multiplicative |, this paper, we Us&([; ;; to indicate a group of variables
fading gain coefficients in addition to additive Gaussiaiseo (X1, Xs,...,X1), and uéeX’; ,; to indicate a group of
terms. We assume that the channel state information (CSI) s-tors (X1, X3, ... XD, where X7 indicates the vector
known at both the transmitter and the receivers. The CSI (%11,)(12, ..., X1m). Throughout the paper, the logarithmic
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Y1 A rate-equivocation triple(Ro, Ry, R.) is achievable if
Y. ' Receiver 1 there exists a sequence ¢ 271 ) codes with the
] average probability of error goes to zeroragoes to infinity
, Y, and with the equivocation ratB, satisfying
A
Source | : R. < nh_{lgo EH (W1‘Z[17L]) : (4)
: :‘,"Zl "
Z.z Receiver 2 In this paper, we focus on the case in which perfect secrecy
P is achieved, i.e., receiver 2 does not obtain any informatio
‘\,_‘ZL',} about the messadé’;. This happens iR, = R;. Thesecrecy
capacity region C, is defined to be the set that includes all
Fig. 1. Parallel BCC (Ro, Ry) such that(Ry, R, R. = R1) is achievable, i.e.,

C, = {(RO, R1): (Ro,Ri,Re = Ry) is achievabl%.
parallel Gaussian BCC. We then study the fading BCC and
demonstrate our results with numerical examples. We cdeclu  For the parallel Gaussian BCC, we characterize the secrecy
the paper with a few remarks. capacity region in the following Theoreris 1 did 2.
Il. PARALLEL GAUSSIAN BCCs Theorem 1. The secrecy capacity region of the parallel

We consider the parallel Gaussian BCC withindependent Gaussian BCC is

subchannels (see Fi{g. 1), where there are one source node and U
two receivers. As in the BCC, the source node wants to trans-

mit common information to both receivers and confidential
information to receiver 1. Moreover, the source node wishep (Ro, R1) :
to keep the confidential information to be as secret as plassib| Ro < min

from receiver 2. 1 1 Pio
For each subchannel, outputs at receivers 1 and 2 afe { ; 9 log (1 T 1 +p11) + Z 510g (1 + N_?) ’
S

pEP

corrupted by additive Gaussian noise terms. The channet-inp ] 1
output relationship is given by Z ~ log (1 + ) + Z ~ log (1 + Ilg)
V +pl1 leAc 2 Y
Yii=Xiui+Wy, Zu=Xu+Vy, forl=1,...,L (1) » 1 »
. Lo B . R1<Z log 1—|—£ — - log ]
wherei is the time index. Fot =1, .. ., L, the noise processes 1 2 V2
{Wy;} and{V};} are independent identically distributed (i.i.d.) teA (6)

with the components being Gaussian random variables with

the varlancefal a”QdeQ’ respectively. We assume’ < v’ for where p is the power allocation vector, which consists of

l € Aandpu; > v for I € A°. The channel input Sequencey, ;) for I € A andpy for I € A as components. The

X[ 1) is subject to the average power constraiRtsi.e., setP includes all power allocation vectogsthat satisfy the
power constraint{2), i.e.,

1
3 S B[xE] < P @)
=1 l=1
_ , =1p: w+pal+ Y po<P (7)
A (2nFo 2nfi n) code consists of the following: {_ ZEZALP | l;:c
e Two message set3), = {1,2,...,2"%} and W, = Proof: ~ The achievability proof uses the following
{1,2,..., 27"} with the messages$V, and W, uni-  scheme. Foi € A, the source node transmits both common

formly distributed over the setd), andW;, respectively; and confidential messages using the superposition engoding
e One (stochastic) encoder at the source node that mapsd p,, and p;; indicate the powers allocated to transmit
each message paitvy,w1) € (Wo, W1) to a codeword the common and private messages, respectively. ForA°,
LI the source node transmits only the common message, and
lI'WO decoders: one at receiver 1 that maps a receiveg), indicates the power to transmit the common message.
sequencer; 1) to amessage pa(f:u0 ,W1) € Wo,W1);  The converse proof involves clever use of the entropy power
the other at rece|ver2 that maps a received sequghge  inequality. Details of the proof can be found in [16]. =
to a messagﬁ, ) e Wy, In particular, the converse proof for the parallel Gaussian
The secrecy level of the confidential mess&kje achieved BCC also gives the converse proof for the Gaussian BCE (
at receiver 2 is measured by the followieguivocation rate: 1), and hence establishes the following secrecy capacitgmeg
1 for the Gaussian case of the CgisKodrner BCC model.
EH (Wl‘Zﬁ,L]) : (3) Corollary 1: The secrecy capacity region of the Gaussian



BCC is where ) is chosen to satisfy the power constraint

Cs = U Z[pzo +pul+ Z pio < P. (11)

0<p<1 leA le Ac
Ro, Ry) :
(Ro, Br) ) (1 5P Case 2:p* = p? if the following p'® satisfiesRo: (2(2)) >
Ry <min<=log(1+ ——— |, (2)
"= {2 g( /ﬂ+ﬁp) @ )
1 (1-p)P - it
—log |1+ ——4= Forlc A, if — L
20g<+u2+ﬁP> orleA, | W0>Vz2—H127
+
1 BP 1 BP (2 _ 7o ot 2 2
Rl S |:§10g (1-’-?) —510g (1+—>:| P = (2)\1112 <’}/0 +1) (Vl Hl)) )

@ _
where(z)t =z if x >0 and(z)* =0if z <0. b
Note that the secrecy capacity region of the parallel Gaus- [ | .. l\/ V2 _ 2 (1/2 2 27 ) 1 42
sian BCC given in[{B) is convex. Hence the boundary of 2|/t )\ g 2 (ki + 01
this region can be characterized as follows. For every point +
(R§, RY) on the boundary, there exisy > 0 and~; > 0 —(vi — i) —u?}) )
such that(R§, R}) is the solution to the following problem

2
oo Hi @) _ ( Yo 2)* M _ Q.
if =< = — , =0;
o [roBo + R . © "o P\ ) m
0,411 S s +
For | € A° (2 _ ( Yoo 2)
€45 P =gy me M

Therefore, the power allocatigit that achieves the boundary
point (R§, R}) is the solution to the following problem where ) is chosen to satisff (11).
Case 3p* = p® if there existd) < a < 1 such that the following

r;leax['yoRo( )+ 71 Ri(p )} p'®) satisfiesRo: (p ) Roz( “”)

(10)
_meax {yomm{R(n ), Roa( )} +’71R1(£)} Forle A, if 1L M7
Yo Vi —
where Ry(p) and R, (p) indicate the bounds o, and R, @ (1 s % N2 2a7
in (B). We further defineRy:(p) and Roz(p) to be the two P~ = 2\/( —H T 21n2)\) NI,
terms over which the minimization iR,(p) is taken, i.e., n
Ro(p) = min{Ro1(p), Roz(p)}. The solution to[(10) is given 400 _ (ﬂ —a+ 1) WE — M?)) 7
in the following theorem. The proof can be found in [16] and 42X\ 2
is omitted here due to space limitations. p§a>

solves [[ID) and hence achieves the boundary of the secrec

Theorem 2: The optimal power allocation vectgr* that 5 .
. . . )<m1n{ \/( —Hz)<’/z —H1+)\1112) 5(#1“"/1)
capacity region of the parallel Gaussian BCC has one of the

following three forms. " L\
Case 1p* = p'V) if the following p*) satisfiesRo: ( (1)) < ,YO(W - ui) = (i +apif) ’
Ro2 (g(l))- P avi + ap}
Forle A if—1>2’2 1\/ 2 2
’ —u’ (@_ (1 (2_2_ Yo ) Y, 0 o
o Hy . Do 2 LT 2Im 2N + )\ln2(’/l 1)
(1) Yo Y1
= (1) P - , +
Do (2)\1112 (’Yo >( 1 Nz)) _l( 2,20 )
o0 = g Mmoo/ | o
11
(o) _
; l 2,2 2 o 2 1 p; = 0;
<m1n{2\/(ul Nz)(”z Mz‘*‘an 2(#1‘*‘”1) For [ € A°,
+ 1 22
() _ [ 1 (2_ 2 7o ) o o o
%(Vf—u?)—uf}) : Pio <2\/ VTR San) t ame T M)
2 + 1 ~ +
L M1 14} (1)_( 0 2) 1 _ __( 2 2 0 )
RERPS = _ =
T SE—p Po = \gxmz #) » P =0 o MM~ 9on
Yo + . .
For L€ A°, pjy) = (2)\ n2 Mzz) where )\ is chosen to satisfy (11).



Based on Theoreilnl 2, we provide the following algorithwhere A := <h : ‘%'2 > VLLQIQ . The random vectoh =
to search the optimai*. (h1, h2) has the same distribution as the marginal distribution

Algorithm to searchp® that solves[{I0) of the pro.ces_s{ﬁi} at one time instant. The funcuomg(@)_
= andp; (h) indicate the source powers allocated to transmit the

Step 1. Findp') given in Case 1 in Theorefd 2. common and confidential messages, respectively. Th® $et
It Boy (p) < Roz (p), thenp* = p® and finisn, defined as
Otherwise, go to Step 2. P = {(po (h),p1(h)) : Ea[po(h) + p1(R)]+Eac[po(h)] < P .
Step 2. Findp®® given in Case 2 in Theoref 2. (14

If Rox (B<2)) > Roz (E(Q))’ thenp” = p'¥ and finish.  From the bound or, in (I3), it can be seen that as long
Otherwise, go to Step 3. as A is not a zero probability event, positive secrecy rate can
Step 3. For a giveny, find p* given in Case 3 in Theorell 2. e achieved. Since fading introduces more randomness to the
Search oved < a < 1 to find a that satisfies channel, it is more likely that the channel from the source
Ro1 (3‘“)) = Roz (g(a))- Thenp* = p'* and finish. node to receiver 1 is better than the channel from the source

A numerical example that demonstrates power aIIocatioHQde o receiver 2 for some c_hannel states,_a_lnd hence positiv
following from three cases is given in Sectiof Ill. secrecy capacity can be achieved by exploiting these channe

states.
I1l. FADING BCCs Since the source node is assumed to know the channel state
In this section, we study the fading BCC, where the chanrigformation, it can allocate its power according to the amst
input-output relationship is given by taneous channel realization to ach|eve_z the k_Jest performa_mc
i.e., the boundary of the secrecy capacity region. Suchrabti
Yi=hX;+ Wi,  Zi=h Xi +V; (12)  power allocations can be derived from Theofdm 2. The details

wherei is the time index. The channel gain coefficients can be foun.d in [16].
andhs; are proper complex random variables. We define= Remark 1: If the source node does not hav_e common mes-
(hyi, ha), and assuméh, } is a stationary and ergodic vectorsages for both receivers, and only has confidential messages

random process. The noise proces§ds} and{V;} are i.i.d. for receiver 1, the fading BCC becomes the fading wire-tap
proper complex Gaussian wiiliy; andV; having variances? channel. For this channel, Corollaty 2 and Theofdm 2 give

and 2, respectively. The input sequenéé;} is subject to the secrecy capacity and the optimal source power allatatio
the average power constraift, i.e., %Z?:l E[Xﬂ <P obtained in [12]_, [13] and_[14] (full CSI case). _

We assume that the channel state information (i.e., the'Ve now provide numerical results for the fading BCC. We
realization ofh,) is known at both the transmitter and th&onsider the Rayleigh fading BCC, whefig¢ andh, are zero
receivers instantaneously. The fading BCC can be viewed a&'§2n Proper complex Gaussian random variables. Hence
parallel Gaussian BCC with each fading state corresportding"jmd|h2|2 are exponentially distributed with parametessand
one subchannel. Thus, the following secrecy capacity regig2- e assume the source power= 5 dB, and fixo; = 1.1n

of the fading BCC follows from Theoref 1. Fig.[2, we plot the boundaries of the secrecy capacity reggion
Corollary 2: The secrecy capacity region of the fadin orresponding ter; = 0.4,0.7, 1, respectively. It can.be seen
BCC is hat aso, decreases, the secrecy rdte of the confidential
message improves, but the rally of the common message
Cs = U decreases. This fact follows because smaileimplies worse
(Po(h),p1(h)EP channel from the source node to receiver 2. Thus, confidentia
(Ro, Ry) : information can be forwarded to receiver 1 at a larger rate.

po(h)|h1|? However, the rate of the common information is limited by
112 +p1(b)|h—1|2) the channel from the source node to receiver 2, and hence

Ry < min {EheA log (1 +
decreases as, decreases.

2
+Epcaclog | 1+ % , For the Rayleigh fading BCC with; = 1 andos = 0.4, we
» (h/ﬁ|h 2 plot the boundary of the secrecy capacity region in Eig. & Th
Epealog (1 + %) three cases (see TheorEm 2) to derive the boundary achieving
v +p1(ﬁ)|f;2| . power allocations are also indicated with the correspandin
+Epeac log (1 + pO(ﬁ)lhﬂ > boundary points. It can be seen that the boundary points with
- v large R, are achieved by the power allocations derived from

p1(R)|h |2 Case 1, and are indicated by the line with circle on the graph.
Ry < Epea | log (1 + 72) The boundary points with largk, are achieved by the optimal
K ) power allocations derived from Case 2, and are indicated by
—log <1 + piBlhal” ) the line with square. Between the boundary points achieved
V2 by Case 1 and Case 2, the boundary points are achieved by
(13) the power allocations derived from Case 3, and are indicated
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IV. CONCLUSIONS

1.2 - gigi 1 We have established the secrecy capacity region for the
— 9,710 parallel Gaussian BCC, and have characterized the optimal
oo W2=vi=1 1 power allocations that achieve the boundary of this region.
. — po® | interesting result we have established is the secrecy itgpac
' Il e region of the Gaussian case of the Céisand Korner BCC

2 ~x/c,
|h2| lloze 2

R1 (bps/Hz)

0.4 B

0.2r : 4

0 | | | |
0 0.2 0.4 0.6 0.
R

0

8 1 1.2
(bps/Hz)

Fig. 2. Secrecy capacity regions for Rayleigh fading BCCs

1.4 T

—6— Case 1
—&— Case 2
| — Case3

‘|J2:V2:1
P =5dB
Ih |2~efx

Ih,” ~ 1/0.4¢ ]

R, (bps/Hz)

0.2r

| |
0.6 0.8 1 1.4

R0 (bps/Hz)

0.4 12

Fig. 3. Three cases in power allocation optimization to eshithe boundary
of the secrecy capacity region for a Rayleigh fading BCC

by the plain solid line.

An intuitive reason why the three cases associate withl
the boundary points is given as follows. To achieve large

secrecy rateR;, most channel states in the sdt where

model.

We have further applied our results to obtain the ergodic
secrecy capacity region for the fading BCC. Our results
generalize the secrecy capacity of the fading wire-tap icblan
that has been recently obtained in [12], [13] and [14] (full
CSI case). We have also studied the outage performance of
the fading BCC, the results of which are not presented in this
paper due to space limitations; details can be found in [16].
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