ISIT2007, Nice, France, June 24 — June 29, 2007

On The Generalization of Error-Correcting WOM
Codes

Anxiao (Andrew) Jiang
Computer Science Dept., Texas A&M University, College Station, TX 77843, USA
Email: ajiang @ cs.tamu.edu

Abstract— WOM (Write Once Memory) codes are codes for
efficiently storing and updating data in a memory whose state
transition is irreversible. Storage media that can be classified
as WOM includes flash memories, optical disks and punch
cards. Error-correcting WOM codes can correct errors besides its
regular data updating capability. They are increasingly important
for electronic memories using MLCs (multi-level cells), where
the stored data are prone to errors. In this paper, we study
error-correcting WOM codes that generalize the classic models,
In particular, we study codes for jointly storing and updating
multiple variables — instead of one variable — in WOMs with
multi-level cells. The error-correcting codes we siudy here are
also a natural extension of the recently proposed floating cedes [7].

We analyze the performance of the generalized error-
correcting WOM codes and present several bounds, The number
of valid states for a code is an important measure of its
complexity. We present three optimal codes for storing two binary
variables in n g-ary cells, where n = 1,2, 3, respectively. We
prove that among all the codes with the minimum number of
valid states, the three codes maximize the total number of times
the variables can be updated.

I. INTRODUCTION

The Write Once Memory (WOM) was first introduced by
Rivest and Shamir [10] to model those memories where each
basic storage element can transit from a 0O-state to a 1-state but
not vice versa. Early examples of WOM include punch cards
and optical disks. In recent years, flash memories, which use
floating gates as storage cells, have emerged as an important
family of memories that can be modelled as WOMs. In flash
memories, every memory cell has a threshold voltage that
is one of ¢ possible values: 0,1,.--,g9 — 1. The threshold
voltage is the state of the cell. Moving the cell from a lower
state to a higher state can be realized efficiently using either
the hot-electron injection mechanism or the Fowler-Nordheim
tunneling mechanism. However, moving the cell from a higher
state to a lower state is much more expensive, because it
requires erasing and re-writing all the data in a memory block,
which typically consists of about 128 kilobytes. The erasure
and rewriting of a block are not only very slow, but also
degrade the cells’ quality and shorten the memory’s lifetime.
Currently, a flash memory’s lifetime is bounded by around
10° program-erase cycles. For this reason, the operation of
lowering a cell’s state should be delayed as much as possible.
When we consider the time period between two block erasure
operations, a cell’s state can only move upward in its g states.
When ¢ > 2, the cell is called a multi-level cell (MLC).

The data in memories often need to be updated, especially

1-4244-1429-6/07/$25.00 (€,2007 IEEE

for applications such as file systems, programs, etc. Since a
WOM'’s state transition is irreversible, the number of updates it
allows is limited. Many researchers have studied WOM codes,
where a single variable is stored in a WOM, and the WOM
code aims at maximizing the number of times the variable
can be rewritten (i.e., updated) [2], [3], [6], [8], [11]. Multiple
families of WOM codes, including linear codes [1], [10],
tabular codes [10], codes based on projective geometries [9],
etc., have been invented. WOM codes that can correct errors
have also been explored [4], [12].

The capability of error correction is especially important
for electronic memories using multi-level cells. Using MLC
is a fundamental approach for increasing the data density. In
flash memories, g-ary cells where ¢ = 4 up to 256 have been
implemented. It, however, brings reliability issues. Various
reasons can make the state of a cell be read incorrectly,
especially for adjacent states.

We model the problem we study as follows. The memory
consists of n cells, where each cell has ¢ states: 0,1, ..+, g—1.
A cell can change from state < to state j if and only if ¢ < 5.
0 < 4,7 < g —1.) k variables are stored in the memory,
where each variable takes its value from an alphabet of size
i 0,1, -,{ — 1}. By default, initially, all the cells are in
state 0, and all the variables have the value 0. Every write
changes the value of exactly one variable. We use ¢ to denote
the maximum number of writes allowed by the memory in the
worst case. Specifically, for any sequence of writes, the first ¢
of them are guaranteed to be implementable.

We use (c1,ca, ,cn) — called the cell state vector —
to denote the states of the n cells, where ; € [0,¢ — 1]
is the state of the i-th cell. The value of 3.7 | ¢; is called
the weight of the cell state vector. For any two cell state
vectors A = (cy,09, ,0,) and B = {c},d,, -, <), their
Ly distance is defined to be dr.(4,B) = 37| |e; — <] We
use (v1,va, -, v;) — called the variable vector — to denote
the values of the k variables, where v; & [0, —1] is the value
of the i-th variable.

Our error model has three parameters: At, A, and F.
Here, AT (resp., A7) is the maximum magnitude of a single-
cell error in the upward direction (resp., in the downward di-
rection), and F is the maximum total magnitude of the errors.
(Naturally, £ > AT > 0and E > A~ > 0.) Specifically,
let’s use {(e1,es, -+, e,) — called the error vector — to denote
the n additive errors in the n cells. For ¢ = 1,2,...,n, it
makes the state of the i-th cell, ¢, to be mistakenly read as

1391

Authorized licensed use limited to: Texas A M University. Downloaded on June 28,2010 at 21:47:02 UTC from IEEE Xplore. Restrictions apply.

e;+e; € [0, g—1]. The errors satisfy the following constraints:
—A~ <e; < At foralli, and >0, |e;| < E. It is a general
error model for memories using MLCs.

An error-correcting WOM code maps every cell state vector
{whether it contains errors or not) to a variable vector. That
is the decoding. We assume that errors happen only in the
read phase — which are errors caused by faults or noise in
the reading circuit — and therefore, the real states of the cells
are always correct. So for the writing circuit, the cells’ states
are always error-free. (Correcting errors in the real states of
the cells using rewriting is another fascinating topic, which we
will study later.) Given the current (error-free) cell state vector
and a write request, the code changes the cell state vector to a
new one corresponding to the new variable vector. That is the
encoding. The error-correcting WOM code should be able to
cotrect any error with parameters AT, A~ and E. Given these
constraints, the error-correcting WOM code that maximizes ¢
— the total number of writes — is called opfimal.

Our objective is to look for optimal error-correcting WOM
codes. The model we study generalizes the traditional WOM
codes, because here we consider the joint storage, update
and error correction of multiple variables instead of just one
variable. Having multiple variables (e.g., words) stored in a
memory is common in nearly all practices. By considering
the joint coding of multiple variables, we can often achieve
substantially better performance than separate coding for each
individual variable. This motivation has led to the study of
Jfloating codes — recently proposed in [7], — which generalize
traditional WOM codes by using joint coding of multiple
variables for data storage and update. The error-comrecting
codes we study here are a natural extension of the floating
codes.

An example of error-correcting WOM codes is given in
Fig. 1{a). The vector inside each circle is a (valid) cell state
vector, and the vector beside the circle, which is in the bold
font, is the corresponding variable vector. The two arrows
leaving a circle indicate the next two cell state vectors given
the 2 = k(I — 1) possible write requests. For example, if the
first write changes the second variable v5 to 1, and the second
write changes the first variable »; to 1, then the variable
vector changes as (0,0) — (0,1) — (1,1), and the cell
state vector changes as (0,0) — (0,3) — (3,3). The code
allows t = 2 writes, and can correct any error with parameters
AT = A~ = F = 1. For example, if the true cell state vector
is (c1 = 6,co = 0) and the error vector is {(e; = —1,e5 = 0),
then the cell state vector will be incorrectly read as (e; = 5,0).
Since there is only one wvalid cell state vector within [y
distance 1 from (5,0), which is (¢; = 6,02 = 0), the cell
state vector and the variable vector will be correctly decoded
as (6,0) and (0,0), respectively.

In this paper, we study both code construction and the
performance analysis of general error-correcting WOM codes.
We present several bounds for performance analysis. The
number of valid cell state vectors in a WOM code is an
important measure of the code’s complexity. We present three
codes for storing two binary variables in n g-ary cells, where

ISIT2007, Nice, France, June 24 — June 29, 2007

n = 1,2,3, respectively. The three codes have t = [11],
|%-°] and ¢ — 2 — |Z], respectively, which are provably
optimal among all the codes with the minimum number of
valid cell state vectors. The details are as follows.

II. BOUNDS AND SIMPLE CODE CONSTRUCTIONS

Two example codes are shown in Fig. 1(a), (b). In fact, they
show two basic ways to derive error-correcting WOM codes
from ordinary WOM codes. Both example codes are derived
from the ordinary WOM code in Fig. 1{c). The first code
(shown in Fig. 1(a)) is an example of the following approach:
given an ordinary WOM code, map the cell state ¢ to the cell
state i - (At + A~ + 1). In this way, any two valid states for
a cell are sufficiently far away, thus allowing error correction.
The second code (shown in Fig. 1(b)) is an example of the
following approach: given an ordinary WOM code, map every
cell to 212 + 1 cells and use the repetition code, which can
correct any E errors. Since both approaches change either g
or n, the appropriate ordinary WOM code need to be selected.
We will show later that when »n and ¢ are sufficiently large,
these two approaches — especially the first one — can actually
build codes quite close to optimal.

[SC N TE VR D) on 4y 0

(1,0) (0,1)

Fig. 1. (a) An errorcomecting WOM code withk =2 {=2n=2,¢=
7,6 =2, AT = A~ = E = 1. (b) An error-correcting WOM code with
E=21=2n=6¢g=231t=2AT =A"=F =1) A non-
error-correcting WOM code with k = 2,1 = 2 n = 2,9 = 3,¢ = 2. (For
non-error-correcting WOM codes, AT = A~ = E=10)

We first present in Theorem 1 a necessary and a sufficient
condition for a WOM code to be an error-correcting code.
Both conditions are tight.

Note that a valid cell state vector is a cell state vector that
can be truly reached by the memory after a sequence of writes,
when there is no error. For example, all the cell state vectors
shown in Fig. 1 are valid cell state vectors. Given a WOM
code, we use dpp to denote the minimum Ly distance between
two distinct valid cell state vectors.

Theorem 1: For a WOM code to be an error-correcting
WOM code, the following condition is sufficient:

the following condition is necessary:
dm'm 2 A+ +A_ + 1.

Proof: The sufficient condition can be very easily proved
with the standard ball packing argument. Now let’s consider
the necessary condition. The proof is by contradiction. Assume
that d,s, < AT+ A~. We need to show that for any two valid
cell state vectors A = {ay, a9, -, an}, B ={b1,b0, -6,
whose [y distance i8 di,, there are two error patterns that

1392

Authorized licensed use limited to: Texas A M University. Downloaded on June 28,2010 at 21:47:02 UTC from IEEE Xplore. Restrictions apply.

ISIT2007, Nice, France, June 24 — June 29, 2007

can lead A and B to the same cell state vector, thus creating
a case where decoding becomes impossible.

For ¢ =1,2,---,n, define S; to be such a set of integers:
S; = {s|min{as, b;} < s < min{ag, b} + AT, max{a;, b;} —
A7 < s < max{ag, b} Since max{ng, b} — min{ag, b} =
‘a;.; — bz| < Z?:]_ \aj — bj‘ = dpmin < AT+ AT, we get
8¢ #0.

Define P, Q to be such two sels of integers: P = {{[1 <

Choose wq,ws, -, wy, to be non-negative integers that
maximize the value of > 7, w; subject to the following two
constraints: (1) if ¢ € P, then a;+w; € ;; otherwise (namely,
ific@)a—w €8s (2> Jw < E.Itisnot difficult

to see that those integers wj,ws, -+, w, do exist.

Define two error vectors £4 = {ef',esl, - ,ef}, cp =
{eF, el ... e} as follows: if 4 € P, then ef! = w; and
ef = —(la; — bi| — wy); if ¢ € @, then e = —w; and
ef = |a; — b| — w;. Let’s call a valid error vector to be

an error vector that satisfies those constraints imposed by the
patameters AT, A=, . Tt is not hard to see that z 4 is a valid
error vector. Now we show that so is €g. By the definition
of §;, we can see that —A~ < eiB < At To show that
> 1 |ef| < B, consider three cases: Case I: > o | w; = E.
In this case, Yo, |ef| = dr (4, B) — 320, |eft| = dumin —
b w S ATHAT B <2E—FE = E. Case 2: there exists
g suchthat “5 € Pandw; = AT"or “j € Qandw; = A™",
In this case, Y ¢, |ef| = dr (4, B) — 320, |eft| = dumin —
S wi < dpgn — w; < AT+ AT —min{AT, AT} < B,
Case 3: it is neither of the previous two cases. In this case,
Yo w; < B Since wy,we, -+, wy, maximize Y ; , w; by
their definition, we get ef = 0 for all 4, so 3 | |[eF| < E.

S0 both £4 and g are valid error vectors; what’s more,
A+ e, =B+ep. So when the received (i.e., read) cell state
vector is A + £4, we camot tell if the true cell state vector
is A or B. Thus decoding fails, finishing the proof based on
contradiction. So the necessary condition is proved. [|

The following theorem shows the asymptotic performance
of error-correcting WOM codes when n — oo and ¢ — oo.

Theorem 2: Let a = AT + A~ + 1. Let k,{ be fixed, and
let n — o0, g — oo. Then, for any optimal error-correcting
WOM code,

%,O(qn)gtg M
a a
Proof: First, we show the lower bound to ¢. It has been

shown in [10] that when ¢ = 2 and n — oc, there is an
ordinary WOM code — named the tabular code — that achieves
t = n—o(n). Although the tabular code is for a single variable,
we can see the & variables here as one super variable from an
alphabet of size {*. In this way, the tabular code can be applied
to the % variables and still achieve ¢+ = n — o{n). Now when
g — oo, we first apply the tabular code to the cell states O
and 1; then, apply it to cell states 1 and 2; then to cell states
2 and 3; so on --- We obtain an ordinary WOM code with
t = gn — o(gn) in this way.

Now we use an approach of deriving error-correcting WOM
codes from ordinary WOM codes that we presented earlier.

The approach is to map the cell states 0,1,2,3 - to the cell
states 0,a,2a,3a - . By applying this approach, we get an
error-correcting WOM codes with ¢ = % — o{gn). So for the
optimal error-correcting WOM code, t > = — o(qn).

We now show the upper bound. By Theorem 1, dpip 2> 0.
So every write increases the weight of the cell state vector by
at least a. The weight of the cell state vector can never exceed
(g — 1)n. So the upper bound ¢ < @ holds. |

Theorem 2 shows that asymptotically, ¢ = % —
o(gn). In practice, the most common type of errors have AT =
A~ = 1. That is, only two adjacent cell levels may become
indistinguishable to the reading circuit. In such a case, we get
t = @ — ogn). It means that even if there are many
errors, the errors reduce the value of ¢ by only a factor of 3.

It has essentially been shown in the proof of Theorem 2 that
when r, g are sufficiently large, the first approach introduced
at the beginning of this section — which is for deriving error-
correcting WOM codes from ordinary WOM codes — con-
structs codes very close to optimal. It is simple to see that the
second approach introduced there can construct asympiotically
optimal codes. This can be regarded as a situation where the
separation between source coding and channel coding holds.

III. THREE OPTIMAL CODES WITH COMPLEXITY
CONSTRAINTS

Two basic approaches for code construction have been
shown in Section II. However, they usually produce codes that
are not optimal when n or ¢ is small. In fact, optimal codes
often exhibit irregular internal structures. For such codes, the
basic method for decoding is to use a lookup table, which
maps cell state vectors to variable vectors. The complexity of
this decoding method is proportional to the total number of
valid cell state vectors, which we shall call the cardinality of
the code. It is, therefore, useful to study codes with minimum
cardinalities.

In this section, we study error-correcting WOM codes for
two binary variables. That is, & = { = 2. Also, we let E =
AT = A= = 1. Namely, the code corrects any single error of
magnitude 1. It is of special interest to study binary variables
because in electronic memories, the 16 bits of a word are often
stored in 16 parallel blocks at the same address. Consequently,
writing a word becomes writing a bit in each block. For
i =0,1,2,3..., we define the cell state vectors of the i-th
generation to be the valid cell state vectors that the memory
can reach after exactly ¢ writes. (For example, in Figure 1 {a),
the cell state vectors in the 1st generation are (3,0, (0, 3),
and those in the 2nd generation are (6,0), (3, 3), (0, 6).) When
E=2and [= 2, it is simple to see that when ¢ > 0, the
cell state vectors in the -th generation correspond to exactly
two variable vectors: if ¢ is odd, the two variable vectors are
(1,0) and {0,1); if ¢ is even, they are (0,0) and (1,1). So
when ¢ > 0, the ¢-th generation contains at least two cell state
vectors. Therefore, the minimum cardinality of a code is 2¢+4-1.

We present three codes with the minimum cardinality 2¢+1,
respectively for n = 1, 2, 3 and arbitrary g. We show that they
are optimal among all the codes with cardinality 2¢4 1, in the

1393

Authorized licensed use limited to: Texas A M University. Downloaded on June 28,2010 at 21:47:02 UTC from IEEE Xplore. Restrictions apply.

ISIT2007, Nice, France, June 24 — June 29, 2007

sense that they maximize ¢, the number of writes. What’s more,
all the three codes have periodic internal structures, which
significantly reduces the decoding complexity using the lookup
method. In fact, the size of the lookup table is only 4, 9 and
15, respectively, regardless of how large ¢ is. In the following,
we first present the code for n = 3, then the codes for n =2
and 1.

A. Optimal Code for n =3

The code for n = 3 is shown in Fig. 2. Its internal structure
has a periodic pattermn, where every period consists of six
consecutive generations. To see it, observe the 2?nd generation
of cell state vectors and the 8th generation. The 2nd generation
consists of cell state vectors {c; = 2,00 = 3,¢3 = 1) and
(e1 = 3,02 = 2,05 = 2), while the 8th generation consists
of (¢f = 10,ch = 8,¢4 = 9) and (] = 9,5 = 9,5 =
10). The following simple mapping shows the relationship
between these two generations: ¢ = e + 7, b = o3+ 7,
cy = c1 + 7. More generally, the above mapping holds for the
i-th generation and the (¢+6)-th generation, fori =2,3,...,7.
S0 a period consists of six generations.

We keep building the code using such a pattern. The
code has the following property: for ¢ = 1,2,.-.,6 and
7 = 0,1,2,3. .., the above simple mapping holds for the
(67 +i+1)-th generation and the (6(5+1)+i+1)-th generation.
The code can have infinitely many generations. When ¢ is
finite, we truncate the code to the maximum generation subject
to the constraints that every cell’s state does not exceed ¢ — 1.

It is simple to prove that the code can correct any single
error of magnitude 1. (Note that here E = AT = A= =1))
For a code with the structure as shown in Fig. 2, it is sufficient
to verify that for any two cell state vectors either in the same
generation or connected by an arrow, their L, distance is at
least 3. Then by theorem 1, the code can correct single errors.

(0,0) (0,13 (0,0)

(0,13 (0,0) (0,1) (0,0) (0,1)

(1,0} (1,1) (L0 (L1

L (0,0 0,1) (0,0) (0,1) (0 U] (0 n
L

-w m 11112X121214 131514 131615
m‘ 0111 11211 131312 131315 151515

(L1 (1,0 (1,1) (L0 (L1) (1,0

1,0 (1,1 (1,0

Fig. 2. An error-correcting WOM code with k = 2,1 = 2,n = 3 At =
A~ = E =1 and arbitrary g. It has ¢ = g —2— | 2],

In the following, we prove that among all the codes with
the minimum cardinality 2¢ 4+ 1, the code in Fig. 2 has the
maximum value of 2.

Lemma I: For a code with cardinality 2¢ 4 1, let wy, we
denote the weights of the two cell state vectors in the 2nd
generation. Then, max{w1,w2} > 7.

Proof: Since the code can correct any single error, for
any two valid cell state vectors, their I,y distance must be at

least 3. So every write increases the weight of the cell state
vector by at least 3. Therefore, w; > 6, ws > 6.

Assume that w,; = we = 6. Then for the two cell state
vectors in the 1st generation, their weights are both 3. Since the
11 distance between those two vectors is at least 3, a simple
enumeration shows that without loss of generality, those two
vectors are one of the following seven pairs: (1,1,1) and
(3,0,0), (2,1,0) and (0,2,1), (2,1,0) and (1,0,2), (2,1,0)
and (0,1,2), (2,1,0) and (0,3,0), (2,1,0) and (0,0, 3),
(3,0,0) and (0,3,0). (Any missing case can be obtained by
combining one of the seven cases with a permutation of the
cells.y If those two vectors are (1,1,1) and (3,0,0), since
every vector in the 1st generation can reach every vector in
the 2nd generation through a write operation, we find that for
both vectors in the 2nd generation, the three cells’ states have
to be at least max{1, 3} = 3, max{1,0} = 1, max{1,0} =1,
respectively; since their weights are both 6, their [y distance
is less than 3, which is a contradiction. The other six cases
can be analyzed similarly. So the assumption cannot be true.
So we get max{wy, we} > 7. []

Lemma 2: For a code with cardinality 2¢ + 1, let wq,ws
denote the weights of the two cell state vectors in the -
th generation, where 7 = 1,2,3.... Then, max{wi, w2} >
7(z2 U 1 3if i is odd, and max{wl, we} > T if 4 is even.

Proof: By induction. When ¢ = 1, max{w;, we} > 3;
when ¢ = 2, by lemma 1, max{w;,ws} > 7. In both cases,
the lemma holds. This is the base case of induction.

Assume that the lemma holds for any ¢ < 2m, where m
is a positive integer. Let a be the cell state vector in the
2m-th generation whose weight is at least Trme. Consider the
two generations following the initial cell state vector (0,0, 0)
(namely, the 1st and the 2nd generations), and compare them
with the two generations following a (namely, the (2m+1)-th
and the (2m 4 2)-th generations). We see that the analysis in
the proof of lemma 1 also holds for the latter case, because all
the constraints on [y distance must also be satisfied for the
latter case. So when ¢ = 2m + 1, max{wi,we} > T+ 3 =
7(1 1) +3; when ¢ = 2m + 2, max{wi,wa} > Tm +7 = ﬁ

That completes the induction. l
Lemma 3: Por a code with cardinality 2t +1, ¢ < g¢—2—
ki

Proof: The weight of a cell status vector cannot exceed

3(g — 1). By Lemma 2, we see that if 3(g-1) mod 7 is less
than 3, then ¢ < 2- Lg(q;l)j otherwise, ¢ < 2 - LS b4
We consider seven cases: (1) g = Ti; (2) ¢ = Tz +1;-
(Hg="Ti+6. Here ¢ > 1 in cases (1), (2), and ¢ >> 0 in the
latter five cases. As an example, consider case (1): g = 7i. In
this case, 3(¢g — 1) = 3(Ti — 1) =21i — 3 = (21i — 7) + 4.
Sot<(32—1) 2+ 1==6i— 1. However, if £ = 67 — 1, then
the weights of the two cell state vectors in the ¢-th generation
are at least 7(37 — 1) +3 = 3(¢g — 1) — 1, so the L; distance
of those two vectors is less than 3, which is a contradiction.
Sot<6i—2=g—2— [1]. Sothe lemma holds. The other
8ix cases can be analyzed in a similar way. For simplicity, we
omit the details. [|
It is not hard to verify that the code presented in Fig. 2 has

1394

Authorized licensed use limited to: Texas A M University. Downloaded on June 28,2010 at 21:47:02 UTC from IEEE Xplore. Restrictions apply.

ISIT2007, Nice, France, June 24 — June 29, 2007

t=q—2— |#]. It achieves the upper bound to ¢ in lemma 3.
So we get:

Theorem 3: The code presented in Fig. 2 has t = ¢ — 2 —
'4|. It is optimal among all the codes with the minimum
cardinality 2¢ + 1, in the sense that it maximizes 2.

B. Optimal Codes for n =2 and 1

The codes for n = 2 and 1 are shown in Fig. 3 (a) and
{(b), respectively. The code for n = 1 is very simple and
clearly optimal. The code for n = 2 has a periodic internal
structure, where every period consists of four generations.
To see that, observe the 1st generation of cell state vectors
and the 5th generation. The 1st generation consists of vectors
(Cl = 3,62 = 0) and (Cl = 1,62 = 2), while the 5th
generation consists of (¢} = 7,¢, = 10} and (¢} =9, = 8).
The following simple mapping shows the relationship between
these two generalions: ¢ = e; + 7, ¢ = 7 + 7. More
generally, for z = 1,2,3,4 and 5§ = 0,1,2,3 ..., the above

simple mapping holds for the (4 + 7)-th generation and the
(4(5 + 1) + 4)-th generation.

o,m ©,1) (0,0 0,0 0,0 0,0
amn (s) (0.1)
>
w4, a4 L @,o (0,0
(LW (0,1
(L1 (0,0
1) 0m 0,0 0,0
7,10 (L,0p (0,1)
* 1,0 (0,0
) ’ ’

a,m (L1) 1m 1.1 . e

(@})
Fig. 3. Two error-correcting WOM codes with k=2 { =2, AT = A~ =

145E3:|_q£find arbitrary g. (@ m = 2 and ¢t = L@j; M n = 1 and
=Ll I

These two codes can be analyzes in a similar way as the
code for n = 3. For simplicity, we skip the details. We present
the final conclusion:

Theorem 4: The two codes presented in Fig. 3 has ¢ =
[%%] (when n =2) or t = || (when n = 1). They are
optimal among all the codes with the minimum cardinality
2¢ + 1, in the sense that they maximize ¢.

IV. EXTENDED ANALYSIS ON GENERAL
ERROR-CORRECTING WOM CODES

In section II, we have presented a bound to ¢ when n and
q are sufficiently large. In this section, we present a bound
for general error-correcting WOM codes. When n is small, i
can be {much) better than the following simple bound: ¢ <
(q—1)n/(AT + A~ +1). For example, when k=1 =3, n =
2 A+ = A7l = F =1, Theorem 5 gives ¢ < 3[4== 11
while the simple bound only gives ¢ < =

=

2

2 333’

Theorem 5: leta = AT+ A +1. Leth = La_lj Lete =
S o () (I=1)% | 551 41]. Let d denote the smallest positive
integer such that (”+d) > e(™) 1 b(e—1). Then, if d—b > O,
every error-correcting WOM code has t < k - ((q Dn}

Progf: Starting with any valid cell state vector, k consec-
utive writes can make the variable vector reach or go through
any of the {* possible values (including the current variable
vector). There are (’f)(l — 1) variable vectors at Hamming
distance ¢ from the current variable vector, and every such
variable vector can be reached after 4, i+2, i+4 - . - writes, with
the corresponding cell state vector’s weight monotonically
increasing. So k consecutive writes can make the cell state
vector reach or go through ¢ or more distinct values (including
the current value). Let’s pick ¢ such cell state vectors, and
denote them by s1, s, -+, 8. In particular, let 57 denote the
current (the starting) cell state vector.

For ¢ = 1,2,---,¢, let B; denote the ball of radius &
(measured by the L, distance) centered at s;. By theorem 1,
when ¢ # j, the two balls B; and B; are disjoint. There are
(”J“b) elements in B; that are ahove s;: and if ¢ > 1, there are
at least b elements in B; that are above s; and whose weights
are less than the weight of s; by 1,2, -, b, respectively. All
the c(”;fb) +b(c—1) elements (which are all cell state vectors)
discussed above are above s;. It is not hard to see that among
those ¢(™!*) + b(c — 1) elements, one of them has a weight
that is greater than the weight of sy by at least d. So there
exists a sequence of at most & writes that can raise the weight
of the cell state vector by at least d — b. By partitioning ¢
writes into such sequences, where each sequence contains at
most & writes, we get the conclusion.]

REFERENCES

[1] G.D. Cohen, P. Godlewski and F. Merkx, “ Linear binary code for write-
once memories,” IEEE Transactions on Information Theory, vol. IT-32,
pp. 697-700, September 1986.

[2] A. Fiat and A. Shamir, “Generalized ‘write-once’ memories,” IEEE
Transactions on Information Theory, vol. IT-30, pp. 470-480, May 1984,

[3] F. Fu and A. J. Han Vinck, “On the capacity of generalized write-once
memory with state transitions described by an arbitrary directed acyclic
graph”” IEEE Transactions on Information Theory, vol. 45, no. 1, pp.
308-313, 1999.

[4] F. Fu and R. W. Yeung, “On the capacity and error-correcting codes of
write-efficient memories,” IEEE Transactions on Information Theory, vol.
46, no. 7, pp. 2299-2314, 2000.

[5] S. Gregori, A. Cabrini, O. Khowri and G. Torelli, “On-chip error correct-
ing techniques for new-generation flash memories,” Proceedings of The
IEEE, vol. 91, no. 4, April 2003,

[6] C.Heegard, “On the capacity of permanent memory,” IEEE Transactions
on Information Theory, vol. IT-31, pp. 34-42, January 1985,

[7]1 A. Jiang, V. Bohossian and J. Bruck, “Floating codes for joint informa-
tion storage in write asymmetric memories,” Proc. IEEE International
Symposium on Information Theory (ISIT), Nice, France, June 2007,

[8] A. V. Kuznetsov and A. J. H. Vinck, “On the general defective channel
with informed encoder and capacities of some constrained memories,”
IEEE Trans. Inform. Theory, vol. 40, no. 6, pp. 1866-1871, Nov. 1994.

[9] F. Merkx, “WOMcodes constructed with projective geometries,” Traite-
ment du Signal, vol. 1, no. 2-2, pp. 227231, 1984.

[10] R. L. Rivest and A. Shamir, “How to reuse a “write-once’ memory,”
Information and Confrol, vol. 55, pp. 1-19, 1982,

[11] I. K. Wolf, A. D. Wyner, J. Ziv and J. Korner, “Coding for a wiite-once

For any two cell state vectors C' = (61,62,-- ,Cn) and memory,” AT&T Bell Labs. Tech. J., vol. 63, no. 6, pp. 1089-1112, 1984,
=),y e,), we say that ' is above O if and only [12] G. Zemor and G. D. Cohen, “Emor-correcting WOM-codes,” JEEE
?'l .
if fore=1,2,--,n, ¢ > Ci' Trans. Information Theery, vol. 37, no. 3, pp. 730-734, 1991.
1395

Authorized licensed use limited to: Texas A M University. Downloaded on June 28,2010 at 21:47:02 UTC from IEEE Xplore. Restrictions apply.

