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Abstract— We consider a linear Gaussian noise channel used
with delayed feedback. The channel noise is assumed to be
a ARMA (autoregressive and/or moving average) process. We
reformulate the Gaussian noise channel into an intersymbol
interference channel with white noise, and show that the
delayed-feedback of the original channel is equivalent to the
instantaneous-feedback of the derived channel. By generalizing
results previously developed for Gaussian channels with instan-
taneous feedback and applying them to the derived intersymbol
interference channel, we show that conditioned on the delayed
feedback, a conditional Gauss-Markov source achieves the feed-
back capacity and its Markov memory length is determined by
the noise spectral order and the feedback delay. A Kalman-Bucy
filter is shown to be optimal for processing the feedback. The
maximal information rate for stationary sources is derived in
terms of channel input power constraint and the steady state
solution of the Riccati equation of the Kalman-Bucy filter used
in the feedback loop.

I. I NTRODUCTION

For Gaussian noise channels used with feedback, the chan-
nel capacity has been characterized in various aspects. For
memoryless channels, Shannon [1] showed that feedback does
not increase the capacity, and Schalkwijk and Kalaith [2]
proposed a capacity achieving feedback code. For channels
with memory, bounds have been developed for the feedback
capacity [3], [4], [5], [6], [7]. In [8], the optimal feedback
source distribution is derived in terms of a state-space channel
representation and Kalman filtering. The maximal information
rate for stationary sources is derived in an analytically explicit
form in [9]. For first order moving-average (MA) Gaussian
noise channels, the feedback capacity is achieved by stationary
sources as shown in [10].

Here we consider a Gaussian noise channel used withde-
layedfeedback under an average-input-power constraint. Com-
pared to the instantaneous feedback case, fewer results have
been obtained on channels with delayed feedback. Yanagi [11]
derived an upper bound on the finite block length delayed
feedback capacity. In [12], it was shown that delayed feedback
capacity for finite-state machine channels can be determined
based on a method developed for instantaneous feedback by
augmenting the channel state to account for feedback delay.

We first re-formulate the Gaussian noise channel with
delayed feedback into an equivalent state-space channel model
with instantaneousfeedback and white noise. The delayed-
feedback information rate of the original Gaussian noise chan-
nel equals the instantaneous-feedback information rate ofthe

derived state-space channel. By generalizing the methodology
and results derived in [9], [8], we show that

1) a feedback-dependent Gauss-Markov source is optimal
for achieving the delayed-feedback capacity, and the
necessary Markov memory length equals the larger of

a) the moving average (MA) noise spectral order, and
b) the sum of the feedback delay and the autoregres-

sive (AR) noise spectral order;
2) a state estimator (Kalman-Bucy filter) for the derived

state-space channel model is optimal for processing
the (delayed) feedback information, and the solution of
its steady-state Riccati equation delivers the maximal
information rate for stationary sources.

Notation: Random variables are denoted by upper-case
letters, e.g.,Xt, and their realizations are denoted using lower
case letters, e.g.,xt. A sequencexi, xi+1, . . . , xj is shortly
denoted byxj

i . The letterE stands for the expectation. The
differential entropy of a random variableX is denoted by
h(X). Bold uppercase letters stand for matrices (e.g.,K),
while underlined letters stand for column vectors (e.g.,c).

II. CHANNEL MODEL REFORMULATION

Let Xt be channel input at timet. LetRt be channel output
at time t. We start by considering a Gaussian noise channel

Rt = Xt +Nt. (1)

The noiseNt is assumed to be an autoregressive moving
average (ARMA) random Gaussian process with a rational
power spectrum

SN (ω) = σ2
W

(

1−
M∑

m=1
ame−jmω

)(

1−
M∑

m=1
amejmω

)

(

1 +
K∑

k=1

cke−jkω

)(

1 +
K∑

k=1

ckejkω
) . (2)

The coefficientsam and ck are the spectral poles and zeros,
andM andK indicate the orders of the the moving-average
(MA) and autoregressive (AR) noise power spectral compo-
nents, respectively. Since the poles and zeros of (2) appearin
pairs symmetric with respect to the unit circle [13], without
loss of generality, we may assume that|am| < 1 and|ck| < 1.
Hence, the filter defined by

H(z) =

(

1−

M∑

m=1

amz−m

)/(

1 +

K∑

k=1

ckz
−k

)

(3)
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and its inverse are both causal, stable and invertible.
We make the following assumptions on the channel usage:

1) The power of the channel input process is constrained1

limn→∞ E
[∑n

t=1 X
2
t

]
/n = P .

2) Let ν > 1 be the feedback delay. The prior channel
outputs Rt−ν

−∞ are known to the transmitter (via the
feedback loop) before the transmission ofXt.

3) Transmission starts at timet = 1, i.e., Xt = 0 for
t ≤ 0. Thus, noise historyN−ν

−∞ is known to both the
transmitter and receiver.

Since the filterH(z) is invertible, we may applyH−1(z) to
the channel outputRt without changing the channel capacity.
The equivalent intersymbol interference (ISI) channel hasXt

as the channel input,Ut as the channel output, and white
Gaussian noiseVt (with powerσ2

W ).

U(z) = H−1(z) (X(z) +N(z))=H−1(z)X(z) + V (z). (4)

The original channel outputsRt
−∞ can be determined

from U t
−∞ using filterH(z).

To simplify notation for deriving the delayed information

rate, we change variablesYt
△
= Ut−ν and Wt = Vt−ν , and

further reformulate the ISI channel in terms ofXt andYt as

Y (z) = z−νU(z) = z−νH−1(z)X(z) +W (z). (5)

The ISI channel (5) with inputXt and outputYt = Ut−ν is
depicted in Fig 1. The channel is completely characterized by
the tap coefficientsam, ck andν. Without of loss of generality,
we can assume2 M = K + ν, and denote

c
△
=




 0, · · · , 0
︸ ︷︷ ︸

ν − 1 zeros

, 1, c1, c2, · · · , cK






T

. (6)

The channel depicted in Figure 1 has a state-space represen-
tation. Let the vector of values stored in the channel memory,

i.e., St

△
= [St(1), St(2), . . . , St(M)]T, be the channelstate

vector. The state space channel equations are

St = ASt−1 + bXt (7)

Yt = cTSt−1 +Wt, (8)

whereWt is white Gaussian noise with varianceσ2
W . The

constant square matrixA and vectorb are defined as

A
△
=










a1 a2 . . . aM−1 aM
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0










, b
△
=








1
0
...
0







. (9)

From channel assumptions 1)-3), we have the following:

1Since it has been shown [14] that the feedback capacity is a concave
function of P , it is not necessary to consider the inequality constraint
limn→∞ E

ˆ

P

n

t=1
X2

t

˜

/n ≤ P .
2If M < K+ ν, we letaM+1 = 0, · · · , aK+ν = 0 and then redefineM

to beK + ν. If M > K + ν, we let cK+ν+1 = 0, · · · , cM−ν = 0 and
then redefineK to beM − ν.

+

+ a1
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Fig. 1. Equivalent state space model for Gaussian channels with delayed
feedback.

I) SinceXt = 0 for t ≤ 0, the initial channel states0 = 0
is known to both the transmitter and the receiver.

II) The sequencesSt
1 andXt

1 determine each other uniquely
according to equation (7).

III) Given the channel stateSt−1 = St−1, the channel output
Yt is statistically independent of channel statesSt−2

0 , St

and outputsY t−1
1 , that is

P
Yt|St

0
,Y

t−1

1

(
yt
∣
∣st0, y

t−1
1

)
= P

Yt|St−1

(
yt
∣
∣st−1

)
. (10)

Since the variance of the processWt is σ2
W , the condi-

tional differential entropy of the channel output equals

h
(
Yt

∣
∣St

0, Y
t−1
1

)
= h

(
Yt

∣
∣St−1

)
=

1

2
log(2πeσ2

W ). (11)

IV) The instantaneous feedback ofYt in the above derived
channel is equivalent to the delayed feedbackRt−ν in
the original channel. Thus, we only need to consider the
following encoderXt = X

(
M, Y t−1

1

)
, whereM is

the message to transmit. For the source distribution, the
channel inputXt is causally dependent on all previous
channel statesSt−1

0 and channel outputsY t−1
1

Pt

(
xt

∣
∣st−1

0 , yt−1
1

)△
= P

Xt|St−1

0
,Y t−1

1

(
xt

∣
∣st−1

0 , yt−1
1

)
,(12)

or equivalently in terms of the channel states as

Pt

(
st
∣
∣st−1

0 , yt−1
1

)△
= P

S
t|S

t−1

0
,Y

t−1

1

(
st
∣
∣st−1

0 , yt−1
1

)
.(13)

We only need to consider Gaussian sources [4].

III. I NFORMATION RATE AND OPTIMAL SOURCES

We note that in the derived state-space channel model, the
first channel output that carries non-zero signal isY1+ν = U1.



The information rate equals

I(M;Y )
△
= lim

n→∞

1

n− ν
I (M;Y n

1 |s0 ) (14)

= lim
n→∞

1

n
I (M;Y n

1 |s0 ) (15)

= lim
n→∞

1

n
[h (Y n

1 |s0 )− h (Wn
1 )] (16)

= lim
n→∞

1

n
h (Y n

1 |s0 )−
1

2
log
(
2πσ2

W

)
, (17)

= lim
n→∞

1

n

n∑

t=1

[
h
(
Yt

∣
∣s0, Y

t−1
1

)

−h
(
Yt

∣
∣s0, Y

t−1
1 , St−1

)]
(18)

= lim
n→∞

1

n

n∑

t=1

[
I
(
St−1, Yt

∣
∣s0, Y

t−1
1

)]
. (19)

In the following analysis, we note that since the initial
channel states0 is known according to the channel assumption
in Section II, for notational simplicity, we will not explicitly
write the dependence ons0 when obvious.

We consider all feedback-dependent Gaussian sources de-
fined in (12) or (13)

P
△
= {Pt

(
st
∣
∣st−1

0 , yt−1
1

)
, t = 1, 2, . . .}, (20)

and the channel input is subject to the input power constraint

lim
n→∞

E

[

1

n

n∑

t=1

(Xt)
2

]

= P . (21)

The following two theorems can be conveniently general-
ized from [8] where they were originally derived for Gaussian
channels used with instantaneous feedback.

Theorem 1 (Gauss-Markov Source are Optimal):For the
power-constrained linear Gaussian channel, a feedback-
dependent Gauss-Markov source

PGM △
=
{
Pt

(
st
∣
∣st−1, y

t−1
1

)
, t = 1, 2, . . .

}
(22)

achieves the delayed-feedback channel capacity. (proof in
Appendix) �

By Theorem 1, without loss of optimality, in the sequel we
only consider feedback-dependent Gauss-Markov sources as
in (22).

Definition 1: We useαt(·) as shorthand notation for the
posterior pdf of the channel stateSt, that is

αt(µ)
△
= P

St|S0
,Y t

1

(
µ
∣
∣s0, y

t
1

)
, (23)

which is Gaussian due to Gaussian channel inputs. �

For a feedback-dependent Gauss-Markov sourcePGM, the
functionsαt(·) can be recursively computed as

αt

(
µ
)
=

∫
αt−1(v)Pt(µ|v,yt−1

1 )PYt|St−1,St
(yt|v,µ )dv

∫∫
αt−1(v)Pt(u|v,yt−1

1 )PYt|St−1,St
(yt|v,u )dudv

. (24)

The Gaussian functionαt(·) is completely characterized by the
conditional meanmt (vector of dimentionM ) and conditional

covariance matrixKt (of dimensionM by M )

mt = E
[
St

∣
∣s0, y

t
1

]
, (25)

Kt = E
[

(St −mt) (St −mt)
T ∣∣s0, y

t
1

]

. (26)

We note that the recursion (24) can be implemented by a
Kalman-Bucy filter.

Theorem 2:For the power-constrained linear Gaussian
channel, the delayed-feedback capacity is achieved by a
feedback-dependent Gauss-Markov sourcePGM

α defined as

PGM
α

△
=
{
Pt

(
st
∣
∣st−1, αt−1(·)

)
, t = 1, 2, . . .

}
, (27)

where the Markov transition probability depends only on
the posterior distribution function of the derived channel
state αt(·) instead of all prior channel outputs. (proof in
Appendix) �

Theorem 2 suggests that, for the task of constructing the
next signal to be transmitted, all the “knowledge” contained in
the vector of prior channel outputs is captured by the posterior
distributionαt−1(·) of the channel state.

By Theorem 1 and Theorem 2, we only need to consider
a feedback-dependent Gauss-Markov sourcePGM

α as defined
in (27).

IV. FEEDBACK CAPACITY COMPUTATION

The delayed feedback capacity thus can be derived in a
similar way as in [8], though the results slightly differ dueto
feedback delay.

A. Source Parameterization

Without loss of generality, a feedback-dependent Gauss-
Markov sourcePGM

α can be expressed as

Xt = dTt St−1 + etZt + gt, (28)

whereZt is a Gaussian random variable with zero-mean and
unit-variance and is independent ofZt−1

1 , Xt−1
1 and Y t−1

1 ,
and vectordt is of lengthM . The coefficientsdt, et and gt
are all dependent on the Gaussian pdfαt−1(·), or alternatively
on its meanmt−1 and covariance matrixKt−1. The set
of coefficients{dt, et, gt} completely determine the transi-
tion probabilities of the feedback-dependent Gauss-Markov
sourcePGM

α defined in (27).
Lemma 1:For the feedback-dependent Gauss-Markov

source as parameterized in (28), we have

h
(
Yt

∣
∣s0,y

t−1
1

)
−
1

2
log
(
2πeσ2

W

)
=

1

2
log

(

1+
cTKt−1c

σ2
W

)

, (29)

and

E
[
(Xt)

2
∣
∣s0, y

t−1
1

]
=
(

dTt mt−1+gt

)2

+ dTt Kt−1dt+(et)
2
, (30)

where the values ofdt, et, gt depend onmt−1 andKt−1. �



Proof: The first and second order moments of the channel
input Xt and outputYt can be computed as

E
[
(Xt)

2
∣
∣s0, y

t−1
1

]
=
(

dTt mt−1+gt

)2

+ dTt Kt−1dt+(et)
2(31)

E
[
Yt

∣
∣s0, y

t−1
1

]
=cTmt−1 (32)

E
[(
Yt − E

[
Yt

∣
∣s0, y

t−1
1

])2 ∣
∣s0, y

t−1
1

]

=cTKt−1c+σ2
W . (33)

Conditioned ons0 and yt−1
1 , the variableYt has a Gaussian

distribution with variance (33), thus we obtain (29).
Lemma 2:The parameters of the optimal feedback-

dependent Gauss-Markov source must satisfy

gt = −dTt mt−1. (34)
Proof: By Lemma 1 and equation (17), the value ofgt

does not affect the information rate, but choosinggt as in (34)
minimizes the average input power for givendt andet.

We note that this essentially follows the center of gravity
necessary condition for optimal sources as derived in [15].

B. Feedback Capacity for Stationary Sources

Definition 2 (Stationary sources):A stationary feedback-
dependent (Gauss-Markov) source is a source that induces sta-
tionary channel input and output processes. Anasymptotically
stationary feedback-dependent (Gauss-Markov) source, inits
limit as t → ∞, induces stationary channel input and output
processes. �

Lemma 3:For a stationary (or asymptotically stationary)
feedback-dependent Gauss-Markov source, the covariance ma-
trix Kt and source coefficientsdt andet converge, i.e.,

lim
t→∞

Kt = K, lim
t→∞

dt = d, lim
t→∞

et = e. (35)

Here, the matrixK satisfies the stationary Kalman-Bucy filter
equation (the algebraic Riccati equation)

K = QKQT + b bTe2 −
QKccTKQT

cTKc+ σ2
W

, (36)

where the matrixQ is defined asQ
△
= A + b dT. The

instantaneous channel input power converges as

lim
t→∞

E
[
(Xt)

2
∣
∣s0, y

t−1
1

]
=dTKt−1d+(e)

2
. (37)

�

Proof: Since the (asymptotically) stationary source in-
duces, in its limit ast → ∞, stationary channel input and
output processes, by definition the Kalman-Bucy filter has a
steady state, and thus the sequencesKt, dt and et converge.
The Riccati equation (36) is obtained as the stationary form
of the covariance matrix of the Kalman-Bucy filter. The limit
in (37) follows (30) and (35).

Theorem 3 (Feedback capacity for stationary sources):
For a power constrained Gaussian channel used withν-time
delayed feedback, the maximal information rate for stationary
sources equals

Cfb
ν = max

d,e

1

2
log

(

1 +
cTKc

σ2
W

)

(38)

where the maximization in (38) is taken under constraints

dTKd+ e2 = P (39)

K = QKQT + b bTe2 −
QKccTKQT

cTKc+ σ2
W

. (40)

The matrixQ is defined asQ
△
= A+ b dT, and the matrixK

is constrained to be non-negative definite. �

Proof: By Lemma 3, for any (asymptotically) stationary
Gauss-Markov source, the sequencesKt, dt and et converge
as t → ∞, so (17) and (29) turn into (38) asn → ∞.
Constraint (40) is the algebraic Riccati equation (36). Con-
straint (39) is the input power of the stationary source, and
subsequently utilizing Lemmas 2 and 3.

In general, the optimization problem in Theorem 3 in-
volves O(M2) variables and can be conveniently solved
analytically for smallM or numerically for largeM .

V. CONCLUSION

In this paper, we derived the delayed feedback capacity
of power-constrained stationary sources over linear Gaussian
channels with ARMA Gaussian noise. We first reformulated
the linear Gaussian noise channel into a state-space form that
is suitable for manipulating the delayed feedback information
rate. Then, we obtained the delayed feedback capacity for
stationary sources by generalizing and applying a method
that was originally developed for computing the instantaneous
feedback capacity. We showed that a feedback-dependent
Gauss-Markov source achieves the delayed-feedback chan-
nel capacity and that the Kalman-Bucy filter is optimal for
processing the feedback. The delayed-feedback capacity is
expressible as an optimization problem with constraints on
the conditional state covariance matrix of the Kalman-Bucy
filter.

APPENDIX

A. Sketch of Proof for Theorem 1

Let P1 be any valid feedback-dependent Gaussian source
distribution (not necessarily Markov) defined as

P1
△
=
{
Pt

(
st
∣
∣st−1

0 , yt−1
1

)
, t = 1, 2, · · ·

}
. (41)

FromP1, we construct a Markov (not necessarily stationary)
source distributionP2 as

P2 =
{
Qt

(
st
∣
∣st−1, y

t−1
1

)
, t = 1, 2, · · ·

}
. (42)

where the functionsQt

(
st
∣
∣st−1, y

t−1
1

)
are defined as the

conditional marginal pdf’s computed fromP1

Qt

(
st
∣
∣st−1, y

t−1
1

) △
= P

(P1)

St|St−1
,Y

t−1

1

(
st
∣
∣st−1, y

t−1
1

)
.(43)

We next show by induction that the the sourcesP1 andP2

induce the same distribution ofSt
t−1 andY t

1 , i.e.,

P
(P1)

St
t−1

,Y t
1 |S0

(
stt−1, y

t
1 |s0

)
= P

(P2)

St
t−1

,Y t
1 |S0

(
stt−1, y

t
1 |s0

)
. (44)



For t = 1, by the definition of sourceP2 we have

P
(P2)

S
1
,Y1|S0

(s1, y1 |s0 ) = Q1(s1 |s0 )PY1|S1

0

(
y1
∣
∣s10
)

(45)

= P1(s1 |s0 )PY1|S1

0

(
y1
∣
∣s10
)

(46)

= P
(P1)

S
1
,Y1|S0

(s1, y1 |s0 ) . (47)

Sinces0 is known, this directly implies

P
(P2)

S1

0
,Y1|S0

(
s10, y1 |s0

)
= P

(P1)

S1

0
,Y1|S0

(
s10, y1 |s0

)
. (48)

Now, assume that the equality (44) holds for up to timet− 1,
wheret > 1, particularly,

P
(P2)

S
t−1

t−2
,Y

t−1

1 |S0

(
st−1
t−2, y

t−1
1 |s0

)
=P

(P1)

S
t−1

t−2
,Y

t−1

1 |S0

(
st−1
t−2, y

t−1
1 |s0

)
(49)

=

∫ t−1∏

τ=1

Pτ

(
sτ
∣
∣sτ−1

0 , yτ−1
1

)
P
Yτ |Sτ

τ−1

(
yτ
∣
∣sττ−1

)
dst−3

1 . (50)

The induction step for timet is simply shown as follows

P
(P2)

St
t−1

,Y t
1 |S0

(
stt−1, y

t
1 |s0

)

= Qt

(
st
∣
∣st−1, y

t−1
1

)
× P

Yt|St
t−1

(
yt
∣
∣stt−1

)
×

∫

P
(P2)

S
t−1

t−2
,Y

t−1

1 |S0

(
st−1
t−2, y

t−1
1 |s0

)
dst−2 (51)

(a)
=

∫
"

t−1
Q

τ=1

Pτ (sτ|s
τ−1

0
,y

τ−1

1 )f
Yτ|Sτ

τ−1

(yτ |sττ−1)

#

Pt(st|s
t−1

0
,y

t−1

1 )dst−2
1

∫
"

t−1
Q

τ=1

Pτ (sτ|s
τ−1

0
,y

τ−1

1 )f
Yτ|Sτ

τ−1

(yτ |sττ−1)

#

dst−2
1

×

P
Yt|St

t−1

(
yt
∣
∣stt−1

)
×

∫
"

t−1
Q

τ=1

Pτ(sτ|s
τ−1

0
,y

τ−1

1 )f
Yτ|Sτ

τ−1

(yτ |sττ−1)

#

dst−21 (52)

(b)
=

∫ t∏

τ=1

Pτ

(
sτ
∣
∣sτ−1

0 , yτ−1
1

)
P
Yτ |Sτ

τ−1

(
yτ
∣
∣sττ−1

)
dst−2

1 (53)

= P
(P1)

St
t−1

,Y t
1 |S0

(
stt−1, y

t
1 |s0

)
, (54)

where(a) is the result of expanding the definition in (43) for
sourceP2 and the induction assumption (50) using the Bayes
rule and substituting them into (51), and(b) is obtained by
simplifying the expression in (52).

Thus, we have shown that the channel statesSt
t−1 and

outputsY t
1 induced by sourcesP1 and P2 have the same

distribution. It is therefore clear that the non-Markov source
P1 and Markov sourceP2 induce the same information rate
according to equality (19).

B. Sketch of Proof for Theorem 2

Suppose that two different feedback vectorsỹt−1
1 andyt−1

1

(ỹt−1
1 6= yt−1

1 ) induce the same posterior channel state pdf
αt−1(·), i.e., for any possible state valuest−1 = µ we have

P
St−1|S0

,Y
t−1

1

(
µ
∣
∣s0, ỹ

t−1
1

)
=P

St−1|S0
,Y

t−1

1

(
µ
∣
∣s0, y

t−1
1

)
. (55)

Now consider two distributions for the sourceSτ , for τ ≥
t, the first distribution conditioned onyt−1

1 , and the second

conditioned oñyt−1
1 . If we let these two distributions be equal

to each other forτ ≥ t, that is, if
{
Pτ

(
sτ
∣
∣sτ−1, ỹ

t−1
1 , yτ−1

t

)
, τ ≥ t

}

=
{
Pτ

(
sτ
∣
∣sτ−1, y

t−1
1 , yτ−1

t

)
, τ ≥ t

}
, (56)

then we have for anyk ≥ t

P
Y k
t ,Sk

t−1|S0
,Y

t−1

1

(
ykt , s

k
t−1

∣
∣s0, ỹ

t−1
1

)

= αt−1(st−1)

k∏

τ=t

Pτ

(
sτ
∣
∣sτ−1, y

τ−1
1

)
P
Yτ |Sτ

τ−1

(
yτ
∣
∣sττ−1

)

= P
Y k
t ,Sk

t−1|S0
,Y

t−1

1

(
ykt , s

k
t−1

∣
∣s0, y

t−1
1

)
. (57)

This shows that for anyk ≥ t the entropies are equal

h
(
Y k
t

∣
∣s0, ỹ

t−1
1

)
= h

(
Y k
t

∣
∣s0, y

t−1
1

)
, (58)

and for anyτ ≥ t the powers are equal

E
[
(Xτ )

2
∣
∣s0, ỹ

t−1
1

]
= E

[
(Xτ )

2
∣
∣s0, y

t−1
1

]
. (59)

Therefore, the optimal source distribution for timeτ ≥ t when
yt−1
1 is the feedback vector, must also be optimal whenỹt−1

1

is the feedback vector, and vice versa. Since timet is arbitrary,
we conclude that, for anyt > 0, the functionαt−1(·) extracts
from yt−1

1 all that is necessary for formulating the optimal
source distribution functionsPt

(
st
∣
∣st−1, y

t−1
1

)
.
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