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Abstract—We consider a linear Gaussian noise channel used derived state-space channel. By generalizing the metbggol
with delayed feedback. The channel noise is assumed to beand results derived in [9], [8], we show that

a ARMA (autoregressive and/or moving average) process. We ~ : . :
reformulate the Gaussian noise channel into an intersymbol 1) a feedback-dependent Gauss-Markov source is optimal

interference channel with white noise, and show that the for achieving the delayed-feedback capacity, and the
delayed-feedback of the original channel is equivalent tohe necessary Markov memory length equals the larger of
instantaneous-feedback of the derived channel. By generaing a) the moving average (MA) noise spectral order, and

results previously developed for Gaussian channels with stan- }
taneous feedback and applying them to the derived intersymiil b) the sum of the feedback dela¥ and the autoregres
interference channel, we show that conditioned on the delagd sive (AR) noise spectral order;

feedback, a conditional Gauss-Markov source achieves thedd- 2) a state estimator (Kalman-Bucy filter) for the derived

back capacity and its Markov memory length is determined by state-space channel model is optimal for processing
the noise spectral order and the feedback delay. A Kalman-Bey the (delayed) feedback information, and the solution of

filter is shown to be optimal for processing the feedback. The its steadv-state Riccati tion deli th imal
maximal information rate for stationary sources is derived in IS steady-Stale kiccali equation defivers the maxima

terms of channel input power constraint and the steady state information rate for stationary sources.

solution of the Riccati equation of the Kalman-Bucy filter used Notation: Random variables are denoted by upper-case

in the feedback loop. letters, e.g. X, and their realizations are denoted using lower
l. INTRODUCTION case letters, e.gxz;. A sequencer;,z;y1,...,z; IS shortly

denoted byz]. The letterE stands for the expectation. The
erential entropy of a random variabl& is denoted by
e ). Bold uppercase letters stand for matrices (eK),
fe underlined letters stand for column vectors (echy.,

For Gaussian noise channels used with feedback, the ch
nel capacity has been characterized in various aspects.
memoryless channels, Shannon [1] showed that feedback
not increase the capacity, and Schalkwijk and Kalaith [
proposed a capacity achieving feedback code. For channels [I. CHANNEL MODEL REFORMULATION
with memory, bounds have been developed for the feedback et X, be channel input at time Let R, be channel output
capacity [3], [4], [5], [6], [7]. In [8], the optimal feedb&c at timet. We start by considering a Gaussian noise channel
source distribution is derived in terms of a state-spacemdia R X 4N 1
representation and Kalman filtering. The maximal inforimati t = Ao+ Ne. (1)
rate for stationary sources is derived in an analyticallpliek The noise N; is assumed to be an autoregressive moving
form in [9]. For first order moving-average (MA) Gaussiaraverage (ARMA) random Gaussian process with a rational
noise channels, the feedback capacity is achieved by staiio power spectrum
sources as shown in [10]. M _ M _

Here we consider a Gaussian noise channel used deith <1 - amejm“) (1 - amejm“>
layedfeedback under an average-input-power constraint. CoSly (w) = o3, m:;( szl
pared to the instantaneous feedback case, fewer resuks hav (1 + 3 Cke—jkw) (1 + 3 ckejkw)
been obtained on channels with delayed feedback. Yanapi [11 k=1 k=1
derived an upper bound on the finite block length delayeéthe coefficients:,, and ¢, are the spectral poles and zeros,
feedback capacity. In [12], it was shown that delayed feeklbaand A/ and K indicate the orders of the the moving-average
capacity for finite-state machine channels can be detednin®lA) and autoregressive (AR) noise power spectral compo-
based on a method developed for instantaneous feedbacknbyits, respectively. Since the poles and zero§lof (2) appear
augmenting the channel state to account for feedback delayairs symmetric with respect to the unit circle [13], withou

We first re-formulate the Gaussian noise channel wilbss of generality, we may assume that,| < 1 and|c| < 1.
delayed feedback into an equivalent state-space chanmlma{ence, the filter defined by
with instantaneoudeedback and white noise. The delayed- M K
feedback information rate of the original Gaussian noissneh H(z) = (1 _ Z amz—m> /(1 + chz—k> ©)
nel equals the instantaneous-feedback information rataeof 1 1

(@)
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and its inverse are both causal, stable and invertible.

1) The power of the channel input process is constrined source

lim,, oo E [Z?:l Xﬂ /n=P.

2) Let v > 1 be the feedback delay. The prior channel

outputs R'" Y are known to the transmitter (via the
feedback loop) before the transmissionXf.

3) Transmission starts at time = 1, i.e., X; = 0 for

t < 0. Thus, noise historyV_2_ is known to both the
transmitter and receiver.

Since the filterH () is invertible, we may apply? —*(z) to
the channel outpuR; without changing the channel capacity.
The equivalent intersymbol interference (1SI) channel Kas
as the channel input)/; as the channel output, and white
Gaussian nois&; (with powero3,).

Uz)=H Y 2)(X(2)+ N()=H '(2)X(2) + V(). (4)

The original channel outputsk?! . can be determined
from UL using filter H(z).

To simplify notation for deriving the delayed information
rate, we change variablég 2 Ui_, andW,; = V,_,, and
further reformulate the ISI channel in terms & andY; as

Y(2)=27"U(z) =2 "H ' (2)X(2) + W(2). (5)

The ISI channel[{5) with inpufX; and outputY; = U;_, is
depicted in FigL. The channel is completely characterized b
the tap coefficients,,, ¢, andv. Without of loss of generality,
we can assu = K + v, and denote

T

F

A
g:

0,

v — 1 zeros

(6)

aO 717613625"'761(

The channel depicted in Figuré 1 has a state-space represen-
tation. Let the vector of values stored in the channel memoryv)

ie., S, = [S:(1), S¢(2),...,5,(M)]", be the channestate
vector. The state space channel equations are
S,
Y,

AS, | +0X;
QTﬁtfl + W4,

(@)
(8)

where W, is white Gaussian noise with varianeév. The
constant square matrix and vectorn are defined as

ay a2 ap—1 GM

1 0 0 0 (1)
A=] 01 )
0 O 1 0 0

From channel assumptions 1)-3), we have the following:

1Since it has been shown [14] that the feedback capacity isnaave
function of P, it is not necessary to consider the inequality constraint
limp 00 B [ X2] /n < P.

%f M < K+v,weletayry1 =0,---,ax4, = 0 and then redefind/
tobeK+v. If M > K+v,weletcxqipi1 =0,---,cpr—p, = 0 and
then redefinek to be M — v.

(noiseless feedback) —

L]

Xt

ig. 1. Equivalent state space model for Gaussian channitfs delayed

feedback.

I) Since X; = 0 for ¢t < 0, the initial channel statg, = 0
is known to both the transmitter and the receiver.
1) The sequenceS’ andX* determine each other uniquely
according to equatioi{7).
lll) Given the channelstat§,_;, = S,_;, the channel output
Y; is statistically independent of channel stagés?, S,
and outputs’/~!, that is

Py, syt (v [s0,017) = Pys, | (we]si-1) - (10)

Since the variance of the procels is a?,v, the condi-
tional differential entropy of the channel output equals

h(Ye]So, Yy ™") = h(Ye]S, ) = %bg(?weaﬁm. (11)

The instantaneous feedback bf in the above derived
channel is equivalent to the delayed feedbdtk , in

the original channel. Thus, we only need to consider the
following encoderX, = X (M,Y{™!), where M is

the message to transmit. For the source distribution, the
channel inputX, is causally dependent on all previous
channel states, ' and channel outputg/ "

t—1
1

)é

Pt (xt‘§1(5)—1 Y PXt|§B*17y1**1 ('rt‘ﬁé_la yi_l ) 7(12)

or equivalently in terms of the channel states as

)

We only need to consider Gaussian sources [4].

A
= P§t

t—1

P (§t’§t0_17y1

|84t vy (gt‘§6_1, yi_l ) .(13)

IIl. | NFORMATION RATE AND OPTIMAL SOURCES

We note that in the derived state-space channel model, the

first channel output that carries non-zero signdfis, = U;.



The information rate equals covariance matriXK; (of dimensionM by M)

(25)

I(M;Y) = lim I(M;Y{"|s,) (14) my =E[S, |so,v1 ]

n—oo N — UV

— _ _ T t
n—oo N
o1 n n We note that the recursiol_(24) can be implemented by a
- 7111—{20 n [ (Y1 |s0) = h (W) (16) Kalman-Bucy filter.
.1 1 Theorem 2:For the power-constrained linear Gaussian
= lim —h(Y{"[s) — = log (2707} 17
00 1 (Y7 lso) 2 og (27 ), (17) channel, the delayed-feedback capacity is achieved by a
" feedback-dependent Gauss-Markov souPée! defined as
= lim lz [h (Y, ‘§07Y1t71) p
n—oo N — A
= PEME P (se]sim1,001())  t=1,2,.. ), (27)

—h (i |so, {7, Si-1)] (18)
R _ where the Markov transition probability depends only on
= ,}EEOEZ (1 (Se-1,Ye |50, Y1 71)] - (19) the posterior distribution function of the derived channel
=1 state o () instead of all prior channel outputs. (proof in
In the following analysis, we note that since the initiaAppendix) O
channel statg, is known according to the channel assumption Theorem[ 2 suggests that, for the task of constructing the
in SectionI), for notational simplicity, we will not explity next signal to be transmitted, all the “knowledge” contdiire

write the dependence o) when obvious. the vector of prior channel outputs is captured by the puster
We consider all feedback-dependent Gaussian sources distributiona; _;(-) of the channel state.
fined in (12) or [(1B) By Theoren(]l and Theorefi 2, we only need to consider
A _ B a feedback-dependent Gauss-Markov sodpE@! as defined
P:{Pt(§t|§6 17y§ 1)at:1723"'}7 (20) in @)
and the channel input is subject to the input power congtrain
IV. FEEDBACK CAPACITY COMPUTATION
. IS
Jim E EZ(Xt)Q =P. (21)  The delayed feedback capacity thus can be derived in a
t=1

similar way as in [8], though the results slightly differ dtee
The following two theorems can be conveniently generdieedback delay.
ized from [8] where they were originally derived for Gaussia
channels used with instantaneous feedback. A. Source Parameterization
Theorem 1 (Gauss-Markov Source are Optimdhor the
power-constrained linear Gaussian channel, a feedba
dependent Gauss-Markov source

Without loss of generality, a feedback-dependent Gauss-
arkov sourceP$™M can be expressed as

POMELP (s, |59t 0= 1200} @) X=diSiatadita, @9
vYnereZt is a Gaussian random variable with zero-mean and
unit-variance and is independent gf ', X{~! and Y/,

By Theorentl, without loss of optimality, in the sequel w@nd vectord, is of length M. The coefficientsl,, ¢; and g

only consider feedback-dependent Gauss-Markov sources?S &l dependent on the Gaussian pdf, (-), or alternatively
in @) on its meanm, , and covariance matri¥, ;. The set

of coefficients{d,,e:,g:} completely determine the transi-

tion probabilities of the feedback-dependent Gauss-Marko
sourcePSM defined in [(2F).

o () 2 Pitlﬁme (E‘go,ﬁ% (23) Lemma 1:For thg feedback-dependent Gauss-Markov
source as parameterized [n}(28), we have

achieves the delayed-feedback channel capacity. (proof
Appendix)

Definition 1: We useay(-) as shorthand notation for the
posterior pdf of the channel stat, that is

which is Gaussian due to Gaussian channel inputs. [ -
For a feedback-dependent Gauss-Markov so@cd!, the h(Yy |50 —llog(%ea?y) _1 log (1+Q K;—]Q) . (29)
functionsa,(-) can be recursively computed as 2 2 Oy

B Jorr@ P (ployt ™) Py, g, s, (veleop )du and

Qy (E) = (24)

JJei—1(v) Py (ulvwi™")Py,js, 5 (welvu)dudy

2
E[(Xt)Q‘éov yiil]:(dtTMtfl +gt) + Ql;Fthldt‘i‘(et)Q , (30)
The Gaussian function; (-) is completely characterized by the
conditional meamn, (vector of dimention\/) and conditional where the values ai,, e;, g: depend onn,_; andK;_;. O



Proof: The first and second order moments of the channghere the maximization if(38) is taken under constraints
input X; and outputY; can be computed as

d'Kd+e* =P (39)

2 t—17 T 2 T % K TK T
T A
B [Yi s, '] =c"my 4 (32) ¢ Rerow
E [(Yt ~-E[Y; ’§07y§71])2 |50, yﬁ’l} =c"K;_1c+0%,. (33) The matrixQ is defined a®Q 2 A+bd", and the matrixK

N _ ~ is constrained to be non-negative definite. O
Conditioned ons, andy; ', the variableY; has a Gaussian Proof: By Lemmal3, for any (asymptotically) stationary

distribution with variance[(33), thus we obtaln [29). B  Gauss-Markov source, the sequenkgs d, ande, converge
Lemma 2:The parameters of the optimal feedbackast — oo, so [I7) and[(29) turn into (B8) as — oc.

dependent Gauss-Markov source must satisfy Constraint [[4D) is the algebraic Riccati equatipn] (36). Con
— —d™m (34) straint [39) is the input power of the stationary source, and
gt =~ M1 subsequently utilizing Lemmas 2 ahtl 3. []

Proof: By Lemmall and equatiof ({L7), the value gf
does not affect the information rate, but choosip@s in [34)
minimizes the average input power for givépnande;.

We note that this essentially follows the center of gravi
necessary condition for optimal sources as derived in [BB].

In general, the optimization problem in Theordém 3 in-
volves O(M?) variables and can be conveniently solved
tg:}nalytically for smallM or numerically for largeM .

V. CONCLUSION

B. Feedback Capacity for Stationary Sources In this paper, we derived the delayed feedback capacity
Definition 2 (Stationary sources)A stationary feedback- of power-constrained stationary sources over linear Gauiss
dependent (Gauss-Markov) source is a source that indumes shannels with ARMA Gaussian noise. We first reformulated
tionary channel input and output processes.asgmptotically the linear Gaussian noise channel into a state-space fain th
stationary feedback-dependent (Gauss-Markov) sourcits inis suitable for manipulating the delayed feedback inforomat
limit as ¢t — oo, induces stationary channel input and outpugite. Then, we obtained the delayed feedback capacity for
processes. [0 stationary sources by generalizing and applying a method
Lemma 3:For a stationary (or asymptotically stationaryjhat was originally developed for computing the instantarse
feedback-dependent Gauss-Markov source, the covariaace feedback capacity. We showed that a feedback-dependent

trix K; and source coefficientg, ande; converge, i.e., Gauss-Markov source achieves the delayed-feedback chan-
) ) ) nel capacity and that the Kalman-Bucy filter is optimal for
tlggo K=K, }ggo d; = d, }ggo er=e. (39) processing the feedback. The delayed-feedback capacity is

rexpressible as an optimization problem with constraints on
the conditional state covariance matrix of the Kalman-Bucy
filter.

Here, the matriXK satisfies the stationary Kalman-Bucy filte
equation (the algebraic Riccati equation)

QKcc'KQ'

_ T T 2
K = QKQ +pb7e - St

’ (36) APPENDIX

. . . A. Sketch of Proof for Theorem 1
where the matrixQ is defined asQ 2 A +0b dT. The _ e _
instantaneous channel input power converges as Let P, be any valid feedback-dependent Gaussian source

) distribution (not necessarily Markov) defined as
tlim E[(Xt)2|§0,yifl]:dTKtqd—i-(e) . (37 .
— 00 _ _
0 Pl:{Pt(ﬁtyﬁtO layi 1)at:172a"'}' (41)
Proof: Since the (asymptotically) stationary source inFrom P;, we construct a Markov (not necessarily stationary)
duces, in its limit ast — oo, stationary channel input andsource distributior?; as
output processes, by definition the Kalman-Bucy filter has a 1
steady state, and thus the sequeri€gesd, ande; converge. Po={Q¢ (s¢|80-1,00 ")t =1,2,---}. (42)
The Riccati _equatlori:(_;%) is obtained as the _statlonary_fo_rvr;rlhere the functions), (ét ‘§t_1’yi_1) are defined as the
of the covariance matrix of the Kalman-Bucy filter. The “m'tconditional marginal pdf's computed frof
in 37) follows [30) and[(35). - ginalp P 1
Theorem 3 (Feedback capacity for stationary sources): s |s t-1) 2 p(P1) s |s t=1Y (43
For a power constrained Gaussian channel used wiime ACTERR N ERENPR C (st |31 917") 43)
delayed feedback, the maximal information rate for st@ign  \ye next show by induction that the the sour@sand P,

sources equals induce the same distribution @fﬁ,l andY}, i.e.,
T
O™ — max 1 log ( 1+ ¢ Ke (38) pPv (St s ) — pP2) (st bls ) (44)
v e 0.‘2/[/ St YE|S, St—1-Y1 180 St YY[S, St—1>Y1 150 ) -



For ¢t = 1, by the definition of sourcé, we have
P.
P s = Qu(s1 ls0) Py, g1 (91 |s5) (45)
= Pi(s |§O)PY1|§[1) (v1 ‘ﬁ(l)) (46)

_ p(P1)
= Pgl,Yl 15, 47

(51,91 180)

(51,91 80) -

Sinces, is known, this directly implies

P2)
p!
Sh.v1]S,

(P1)

 vi[s, (s0:91180) - (48)

(s6-91180) =

Now, assume that the equalify {44) holds for up to titnel,
wheret > 1, particularly,

P(Pl)

P
P(t 21)Yr 1|S(St 273/1 1|30) St-1 vt 1|S(St 2ay1 1|50)(49)

Si o
HP s

The induction step for time is simply shown as follows

791- 1) PYT|§:71(?JT

s7_,)dsi ™. (50)

(P2) t t
§§721_’Y1t |§0 (§t717 yl |§0 )

= Qs ’ﬁt—layi_l) x Py, vi|st, (ye ‘ﬁi—l) x
/Pé?p%z Yt 1|S (_i %ayl

t—1 -
(a) /LDlPT(ﬁ o Wi O, valsT g lél,l)}Pt(ét|§g*{yi—1)d§§ 2

— X
t—1
/{TE[IPT(ﬁTIQS*I,yI ! Yl— g 7 }ds
Py, s: (ue]si)x / {tf:[llp (a5 7)1y o (et 1)} dst452)

¢
(:b)/HPT(sT s

P
ﬁ(rl) |8, (St 1YL |50)

! |50)d5t » (51)

§:71) d§§72 (53)

Ly PYT|§:71(yT

(54)

where(a) is the result of expanding the definition in{43) for [7
sourceP, and the induction assumptidn {50) using the Bayes
rule and substituting them int¢_(51), arfdl) is obtained by

simplifying the expression if_(52).

Thus, we have shown that the channel sta$és, and
induced by source$; and P, have the same
distribution. It is therefore clear that the non-Markov smJ |1
P, and Markov sourcéP; induce the same information rate

outputs Y7

according to equality({19).

B. Sketch of Proof for Theorelmh 2

Suppose that two different feedback vectgfs' andy!™*

conditioned onj: . If we let these two distributions be equal

to each other forr > ¢, that is, if

{PT (§T ’ﬁrflagl ,ytT 1)77—Zt}
:{PT (§T |§T—l’yl ayz- 1)772t},

then we have for any > ¢

(56)

Pyp st s,y Wi [s0.917)
k
= ap-1(84 )HP T(§T Sr1s yI_I)P Y| §:71(y7 §;1)
T=t

= PYtk SF L[S,V 1(yt,st 1‘50, = 1). (57)
This shows that for any > ¢ the entropies are equal

h (}/tk |§Oa gi_l) =h (}/tk ‘§07y§_1) ’ (58)
and for anyr > t the powers are equal

E[( 2|801~t 1]:E[( 2‘801 . 1}' (59)

Therefore, the optimal source distribution for time> ¢ when
yi~!is the feedback vector, must also be optimal wién'

is the feedback vector, and vice versa. Since tirisearbitrary,
we conclude that, for any > 0, the functiona;—1(-) extracts
from y!~! all that is necessary for formulating the optimal
source distribution functions; (s, |s,_, ;"

REFERENCES

[1] C. E. Shannon, “The zero error capacity of a noisy chghtieE Trans.
on Inform. Theoryvol. IT-2, pp. 112-124, Sept. 1956.

[2] J. Schalkwijk and T. Kailath, “A coding scheme for adeéi noise
channels with feedback—I: No bandwidth constraitEEE Transactions
on Information Theoryvol. 12, pp. 172-182, Apr. 1966.

[3] S. Butman, “A general formulation of linear feedback commications
systems with solutions|EEE Trans. Inform. Theoryol. 15, pp. 392—
400, May 1969.

[4] T. M. Cover and S. Pombra, “Gaussian feedback capacigEE
Trans. Inform. Theoryvol. 35, pp. 37—43, Jan 1989.

[5] M. Pinsker, “Talk delivered at the Soviet Information &dry Meeting.”
unpublished, 1969.

[6] P. Ebert, “The capacity of the Gaussian channel with fee#,” Bell

Syst. Tech. Jvol. 49, pp. 1705-1712, Oct 1970.

L. H. Ozarow, “Upper bounds on the capacity of Gaussiaanciels with

feedback,"IEEE Trans. Inform. Theorwol. 36, pp. 156-161, Jan 1990.

[8] S. Yang, A. Kavti¢, and S. Tatikonda, “On the feedbadpacity of
power constrained Gaussian noise channels with memoncepted
for publication bylEEE Transactions on Information Theory

[9] S. Yang, A. Kavgic, and S. Tatikonda, “Feedback cafyaof stationary

sources over Gaussian intersymbol interference chahireBroc. IEEE

GLOBECOM 2006(San Francisco, USA), Nov 2006.

Y.-H. Kim, “Feedback capacity of the first-order moviagerage gaus-

sian channel,” irProc. IEEE ISIT (Adelaide, Australia).

K. Yanagi, “On the capacity of the discrete-time Gaassthannel with

delayed feedback,JEEE Transactions on Information Theoryol. 41,

pp. 1051-1059, Jul. 1995.

S. Yang, A. Kav¢it, and S. Tatikonda, “The feedbackamity of finite-

state machine channelslEEE Transactions on Information Theory

vol. 51, pp. 799-810, Mar. 2005.

(11]

[12]

(y 75 yi 1) induce the same posterior channel state pgfs] A. V. Oppenheim and R. W. Schafdbjscrete-Time Signal Processing

as—1(-), i.e., for any possible state valyg ; = ;1 we have

S |§0=Y1t71 (ﬂ ‘§07 gi_l ):P§t71

Now consider two distributions for the sourég, for 7 >
t, the first distribution conditioned op!™*

15, vi-2 (1 [s0,017) - (55)

, and the second

Englewoods Cliffs, NJ: Prentice Hall, 1989.

K. Yanagi, H. W. Chen, and J. W. Yu, “Operator inequalaynd its

application to capacity of Gaussian channeldiwanese Journal of
Mathematics vol. 4, Sept. 2000.

J. Schalkwijk, “Center-of-gravity information feedtk,” IEEE Transac-

tions on Information Theoryol. 14, pp. 324-331, Mar. 1968.

[14]

[15]



	Introduction
	Channel Model Reformulation
	Information Rate and Optimal Sources
	Feedback Capacity Computation
	Source Parameterization
	Feedback Capacity for Stationary Sources

	Conclusion  
	Appendix
	Sketch of Proof for Theorem ??
	Sketch of Proof for Theorem ??

	References

