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Abstract—n source and destination pairs randomly located in
an area extending linearly with n want to communicate with each
other. Signals transmitted from one user to another at distance
r apart are subject to a power attenuation of »~® and random
phase changes. Classical multihop architectures that decode and
forward packets can deliver a /n-scaling of the aggregate
throughput, while recently proposed hierarchical cooperation
achieves n?~°/ 2_scaling, which is superior to multi-hop for o < 3.
The study of information theoretic upper bounds has revealed
the optimality of multi-hop for o > 4, while the moderate-
attenuation regime (2 < o < 4) remains uncharacterized. We
close this gap by deriving a tight upper bound on the scaling of
the aggregate throughput, valid for all o > 2. Our result shows
that the mentioned schemes are scaling-optimal, namely that no
other scheme can beat hierarchical cooperation when o < 3, nor
can it beat classical multi-hop when o > 3. The key ingredient
is a careful evaluation of the scaling of the cut-set bound.

I. INTRODUCTION

The seminal paper by Gupta and Kumar [1] initiated the
study of scaling laws in large ad-hoc wireless networks. Their
by-now familiar model considers n nodes randomly located in
the unit disk, each of which wants to communicate to a random
destination node at a rate R(n) bits/second. They ask what
is the maximally achievable scaling of the total throughput
T(n) = nR(n) with the system size n. They showed that
classical multihop architectures with conventional single-user
decoding and forwarding of packets cannot achieve a scaling
better than O(/n), and that this scaling is indeed achievable
by a multihop scheme that uses only nearest-neighbor com-
munication. Although their original set-up considers a fixed
area network, their results readily apply to the case where the
network size scales with n to cover an increasing geographical
area, keeping the density of nodes fixed.

A natural question is whether this result is a consequence of
the physical-layer assumptions or whether one can do better
using more sophisticated physical-layer processing. A recent
work [2] shows that the answer is the latter: authors exhibit a
hierarchichal cooperation scheme which yields a throughput
scaling of ©(n?~%/27¢) bits/second for any e¢ > 0, when
the signals transmitted from one user to another at distance r
apart are subject to a power attenuation of »~ and to random
phase changes. Therefore for a@ < 3, this scheme performs
strictly better than multihop strategies. However, it is not clear
if one can do even better. In fact, how does the information
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theoretic capacity of the network scale? Since the publication
of [1], there have been several works dealing with information
theoretic scaling laws for wireless adhoc networks [3], [4],
[51, [6], [7], [8]. For the deterministic channel model with
no random phases, [8] establishes a O(nﬁ v/n)-scaling for
the aggregate throughput, which is not much larger than the
O(y/n)-scaling achieved by multihop, even for small values
of . For the more general channel model with random phases
considered in this paper, the best result to date [7] shows that
whenever a« > 4 (a > 4.5 in [6], @ > 5 in [4]), nearest-
neighbour multihop is order-optimal. No scaling laws exist
for the moderate attenuation regime when 2 < a < 4. By
evaluating a cutset upper bound in the following, we identify
exactly the capacity scaling law in extended adhoc wireless
networks for all values of o > 2. Our result shows that the
threshold above which nearest neighbor multihop is order-
optimal is indeed o = 3. For 2 < o < 3, the hierarchical
cooperation scheme is the one meeting the upper bound.

II. MODEL

There are n nodes uniformly and independently distributed
in a square of area /n x y/n. Every node is both a source and a
destination. The sources and destinations are randomly paired
up one-to-one without any consideration on node locations.
Each source has the same traffic rate R(n) to send to its
destination node and a common average transmit power budget
of P Watts. The total throughput of the system is T'(n) =
nR(n).

We assume that communication takes place over a flat
channel of bandwidth W Hz around a carrier frequency of
fes fo > W. The complex baseband-equivalent channel gain
between node ¢ and node k at time m is given by:

Hi[m) = VG r*'? exp(j6x[m)) (1)

where 7, is the distance between the nodes, 6;;[m] is the
random phase at time m, uniformly distributed in [0, 27] and
{0ix[m];1 < i <n,1 <k <n}isacollection of i.i.d random
processes. The 6;[m]’s and the r;;’s are also assumed to be
independent. The parameters G and « > 2 are assumed to be
constants; « is called the power path loss exponent.

Note that the channel is random, depending on the location
of the users and the phases. The locations are assumed to



Fig. 1. The cut-set considered in the proof of Theorem 1. The communication
requests that pass across the cut from left to right are depicted in bold lines.

be fixed over the duration of the communication. The phases
are assumed to vary in a stationary ergodic manner (fast
fading). We assume that the channel gains are known at all
the nodes. The received signal at a node is the sum of the
signals received from all the nodes in the network plus white
circularly symmetric Gaussian noise of variance 1 per symbol.

III. CUTSET UPPER BOUND

The following theorem is the main result of this paper. The
rest of the paper is devoted to its proof.

Theorem 1: For any € > 0, the aggregate throughput of an
extended random network with n nodes is bounded above by

Kn2—a/2+s
K n1/2+e

2<a<3
a>3

7 < {

with high probability (w.h.p.) for a constant K > 0 indepen-
dent of n.

Proof of Theorem 1: We consider a cut dividing the /n X
\/n network area into two equal halves (see Figure 1). The
following lemma states several properties that will be used in
the sequel. We skip its proof due to space constraints.

Lemma 1: The random network with random source-
destination pairing satisfies the following properties w.h.p.:

a) Let the network area be divided into n squarelets of
unit area. Then, there are less than logn nodes inside
all squarelets.

b) Let the network area be divided into ﬁ squarelets
each of area 2logn. Then, there is at least one node
inside each squarelet.

¢) The number of communication requests with sources on
the left-half network and destinations on the right-half
network is between ((1 — §)n/4, (1 + §)n/4) for any 6 >
0.

We are interested in bounding above the sum of the rates of
communications passing through the cut from left to right. By
Part (c) of the lemma, this sum-rate is equal to 1/4’th of the
total throughput 7'(n) w.h.p. The maximum achievable sum-
rate between these S-D pairs is bounded above by the capacity
of the MIMO channel between nodes S located to the left of

the cut and nodes D located to the right. Under the fast fading
assumption, we have

Z R, < max E (logdet(I + HQ(H)H™))
4 Q(H)>0
keS,ieD E(Qrr(H))<P,VkeS
(2
where
G el Vi
Hik:%, keSieD
Tik

Q(-) is a mapping from the set of possible channel realizations
H to the set of positive semi-definite transmit covariance
matrices. The diagonal element Qx(H) corresponds to the
power allocated to the kth node at channel state H. A natural
way to upperbound (2) is by relaxing the individual power
constraint to a total transmit power constraint. In the present
context however, this is not convenient: some nodes in S are
close to the cut and some are far apart, so the impact of
these nodes on the system performance is quite different. A
total transmit power constraint allows the transfer of power
from the nodes far apart to those close to the cut, resulting
in a loose bound. Instead, we will relax the individual power
constraints to a total weighted power constraint, where the
weight assigned to a node is set to be the total received power
on the other side of the cut per watt of transmit power from
that node. However, before doing that, we need to isolate the
contribution of some nodes in D that are located very close
to the cut. Typically, there are few nodes on both sides of the
cut that are located at a distance as small as order % from
the cut. If included, the contribution of these few pairs to the
total received power would be excessive, resulting in a loose
bound in the discussion below.

Let Vp denote the set of nodes located on the 1 X /n
rectangular area immediately to the right of the cut. Note that
there are no more than +/nlogn nodes in Vp by Part (a) of
Lemma 1. By generalized Hadamard’s inequality, we have

logdet(I + HQ(H)H™)
< logdet( + HiQ(H)H{) + logdet(I + HyQ(H)Hy)

where H; and H, are obtained by partitioning the original
matrix H: H; is the rectangular matrix with entries H;i, k €
S,i € Vp and H, is the rectangular matrix with entries
Hii,k € S;i € D\ Vp. In turn, (2) is bounded above by

> Ry < omax E (logdet(I + H1Q(H:)H7))
keS,ieD ]E(Qkk(Hl)l)g_P,vkES
E (log det(I + H.Q(H2)H3)) (3
Q(I}IJEL)XEO (logdet(I + HoQ(H2)H3)) (3)

E(Qrk(Hz2))<P,VkES

The first term in (3) can be easily upperbounded by applying
Hadamard’s inequality once more or equivalently by consider-
ing the sum of the capacities of the individual MISO channels
between nodes in S and each node in Vp. Using moreover the
fact that the minimum distance between any two nodes in the
network is larger than ﬁ w.h.p for any § > 0, we get the



following upper bound for the first term

max
Q(H1)>0
E(Qrx(H1))<P,VkeS

< K+/n(logn)?

where K > 0 is a constant independent of n.

The second term in (3) is the capacity of the MIMO channel
between nodes in S and nodes in D\ V. This is the term that
dominates in (3) and thus its scaling determines the scaling
of (2). The result is given by the following lemma, which
completes the proof of Theorem 1.

Lemma 2: Let P,,;(n) be the total power received by all
the nodes in D \ Vp, when nodes in S transmit independent
signals at full power. Then for every € > 0,

E (log det(I + H1Q(H1)HY))

max
Q(H2)>0
E(Qrk (H2))<P,VkES

E (log det(I + HaQ(Hz)H2)) < n° Pro(n).

Moreover, the scaling of the total received power is upper-
bounded by

K n (logn)? a=2
Kn?* /2 (logn)? 2<a<3
<
Pio(n) < K v/n(logn)? a=3
K v/n(logn)? a>3

w.h.p. for a constant K > 0 independent of n. |

Lemma 2 identifies the total received power under inde-
pendent transmissions as the fundamental quantity limiting
performance. Depending on «, there is a dichotomy on how
this quantity scales with the system size. This dichotomy can
be interpreted as follows.

The total received power is dominated either by the power
transferred between nodes near the cut (order 1 distance) or
by the power transferred between nodes far away from the cut.
There are relatively fewer node pairs near the cut than away
from the cut (order \/n versus order n?), but the channels
between the nodes near the cut are considerably stronger than
between the nodes far away from the cut. When the attenuation
parameter « is less than 3, the received power is dominated by
transfer between nodes far away from the cut. The hierarchical
cooperation scheme [2], which involves at the top level of the
hierarchy MIMO transmissions between clusters of size n!~¢
at distance /n apart, achieves arbitrarily closely the required
power transfer and is therefore optimal in this regime. When
a > 3, the received power in the cutset bound is dominated
by the power transfer by the nodes near the cut. This can
be achieved by nearest neighbor multihop and multihop is
therefore optimal in this regime.

Proof of Lemma 2: We are interested in the scaling of the
second term in (3). Let us rescale each column k of the matrix
H> by the (square root of the) fotal received power on the right
from source node k on the left. Let indeed P denote the total
received power in D \ Vp of the signal sent by user k € S:

P.=PG Z ri = PGdy.
1€D\Vp

The second term in (3) is then equal to

E (1og det (I + EQ(FI)IEI*))

max
Q(H)>0
E(Qkk(H))< Py, VkES
where
= O 1 keSandieD\V,
k= —— ——, €S and € D.
' o2 \dy

The above expression is in turn bounded above by

E (log det(I + g@(ﬁ)f[*))

max
Q=0
E(TrQ(H))<Piot(n)

where Pioi(n) =D cq Pr = PGZKGS’ED\VD ril.

Let us now define, for given n > 1 and € > 0, the set
By ={|[H|* > n°}

where || A|| denotes the largest singular value of the matrix A.
Note that the matrix H is better conditioned than the original
channel matrix Hos: all the diagonal elements of HH* are
roughly of the same order (up to a factor logn), and it can be
shown that there exists K1 > 0 such that

E(|H|*) < K1 (logn)®

for all n. Actually, the following stronger statement holds,
whose proof is relegated to the Appendix.

Lemma 3: For any € > 0 and p > 1, there exists K; > 0
and independent of n such that for all n,

Ky

P(B,.) < —

It follows that
E <logdet(I + ﬁ@(ﬁ)ﬁ*))
< E (log det(I + HQ(H)H") an,E)

+E (Tr(HQ(H)H*) 1 B) (4)
The first term in (4) refers to the event that the channel matrix
H is accidentally ill-conditioned. Since the probability of such
an event is polynomially small by Lemma 3, the contribution
of this first term is actually negligible. In the second term in
(4), the matrix H is well conditioned, and this term is actually
proportional to the maximum power transfer from left to right.
Details follow below.

For the first term in (4), we use Hadamard’s inequality and
obtain

E (log det(I 4+ f[Q(f[)f[*) 1B,,L,E)

> log(1+ H,Q(H)H;)

1€D\Vp

< E Bn,s P(Bn,e)




where H; is the i*" row of H. By Jensen’s inequality, this

expression in turn is bounded above by

>~ tog (1+E (]2 Q)| Boc) ) P(Ba.o)

i€D\Vp

< > g (1 E(MELIPTIQUD) ) /B(Bo.)) B(Ba)

iED\VD
nPtOt(n)
< nlog (14 et pg
_nog( + F(B,.) (Bn,e)
since~||I§TZ-||2 = YresTin/dk < Ypegl < n oand

E(TrQ(H)) < P,t(n). The fact that the minimum distance
between the nodes in S and D \ Vp is at least 1 yields
Piot(n) < PGn?. Noting that z — zlog(l + 1/z) is
increasing on [0, 1] and using Lemma 3, we finally obtain
that for any p > 1, there exists K; > 0 such that

E (1og det(I + ﬁQ(EH))I:I*) ]‘Bn,s>

n3tp
K,
which decays polynomially to zero with arbitrary exponent as

n tends to infinity.
For the second term in (4), we simply have

B (T(AQUN") 15; ) < B (IHPTQU) 1y )
< nf Piy(n).

max
Q(H)>0
E(TrQ(H))< Prot(n)

< Kin'"Plog <1 +

Thus, the last thing that needs to be checked is the scaling of
Piot(n) =PG> dy=PG >  r;* (5

kes k€S, i€D\Vp

stated in Lemma 2. Note that the node locations are random
and hence P;,;(n) is a random quantity. However, the regular-
ity property in Part (a) of Lemma 1 allows to apply a binning
argument and get a high probability upper bound on Py (n).
Let us divide the network area into n squarelets of area 1.
By Part (a) of the lemma, there are no more than logn nodes
in each squarelet w.h.p. Note also that each of the (positive)
terms in the summation in (5) can only increase if we move the
left and right hand-side nodes towards the cut in the middle.
In fact, an argument based on moving the nodes inside each
squarelet onto the squarelet vertex, allows to conclude that
Piot(n) for the random network is w.h.p. less than the same
quantity computed for a regular network with logn nodes at
each left-hand side vertex and 2 log n nodes at each right-hand
side vertex.

The most convenient way to index the node positions in the
resulting regular network is to use double indices. The left-
hand side nodes are located at positions (—k, + 1,k,) and
those on the right at positions (is,%,) where kg, ky, iz, 1, =
1,...,4/n, so that

s 1
2 ((1z + ke — 1)2 + (iy — ky)?)

Tg,iy=1

dp = di, k, = /2 (6)

and the following upper bound on P, (n) holds for the
random network:

vn

Ptot(n)§2(logn)2PG Z di, k- 7
K oy =1

The following lemma establishes the scaling of dy, , -
Lemma 4: There exist constants Ko, K3 > 0 independent
of ks, ky and n such that

» { K5 logn

if =2,
dkuwky — K2 sza

if a > 2,

and

diy i, > Ksk2™®  for  a>2.

Due to space constraints, we do not give the proof of
the above lemma, but let us mention the following heuristic
argument, that can be obtained through Laplace’s principle.
The summation in dg, , scales the same as the maximum
term in the sum times the number of terms which have roughly
this maximum value. The maximum term is of the order of
1/k%. The terms that take on roughly this value are those for
which i, runs from 1 to the order of k; and ¢, runs from k,
to k, plus or minus the order of k,. There are roughly k2
such terms. Hence dy, i, ~ k2 - 1/k3 = k27,

The upper bound given in the above lemma now yields:

Jh Kynlogn if « =2,
i b < Kyn?=/? if2<a <3,
i @y — Ky+/nlogn if a =3,
R Ky/n if >3

for another constant K; > 0 independent of n. This upper
bound combined with (7) completes the proof of Lemma 2.

IV. CONCLUSION

In this paper, we have identified the capacity scaling law
of extended networks for all values of the power path loss
exponent o > 2. We have focused on the 2D setting, where
nodes are located on a planar area, but our results generalize
naturally to d-dimensional networks.
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V. APPENDIX

Proof of Lemma 3: Let us start by considering the 2mth
moment of the spectral norm of H given by (see [9, Ch. 5])

1 |*™ = p(A* H)™ = lim {Te((H*H)")}""
By the dominated convergence theorem and Jensen’s inequal-
ity, we have

E(| H||*™) < lim {E(Te((H"H)")}™/"



In the sequel, we are going to prove that the following upper
bound holds with high probability:

E(Te((H*H)Y) < t;n (K logn)3 8)

where ¢; = % are the Catalan numbers and K; > 0 is
a constant independent of n. By Chebyshev’s inequality, this
allows to conclude that for any m,

E(HﬁHQm) 1 . 3l\m/1
]P(Bn,s) < — gme < e llggo(tln(Kl logn) )
(4(K1 logn)B)m
= T yme

since lim;_, tll/ ' = 4. For any € > 0, choosing m sufficiently
large shows therefore that P(B,, ) decays polynomially with
arbitrary exponent as n — oo, which is the result stated in
Lemma 3.

There remains to prove the upperbound (8). Expanding the
expression gives

E(Tr((H*H)"))
Z ( 7,1k1 Hile H’izkz Hizk)g R Hilk}l 'lel) (9)

21,...,11,€D\VD
ki,....ki€S

Recall that the random variables ﬁik are independent and zero-
mean, so the expectation is only non-zero when the terms in
the product form conjugate pairs. From now on, we will focus
on the [ = 2 case, in order to give some intuition as to why
estimate (8) holds; for further details and a complete proof,
the reader is referred to [10]. We have

E E (ﬁilklﬁilkgﬁigkz sz}1> (10)
i1,i2€ D\Vp
k1,ko€S

= Z |f{i1’€‘2‘ﬁi2k|2+

E(Te((H*H)?)) =

Z |gik1|2|f{ik2|2 (11)

’il,igeD\VD iGD\VD

keS ki1#kz2€S
< | Hik*| Hisk” + | Hik, [P Hin, | (12)
> i1k iok ik1 ika
i1,i2€ D\ Vp i€D\Vp

kesS ki,k2€S

where (11) follows from the fact that the expectation in (10)
is non-zero only when either k; = ko = k or i1 = iy = i.
Note that we have removed the expectations since |H, k]2 i
a deterministic quantity in our case. The upper bound (12) is
obtained by doublecounting the terms with ¢; = i5 = ¢ and
k1 = ko = k, i.e. the terms of the form |Hz|*.

We need now an upper bound on the scaling of
Y ieD\Vh |H,1,|> and 3", g [Hix|?. Note that these are ran-
dom quantities due to the random positions of the nodes. How-
ever, a binning argument using parts (a) and (b) of Lemma 1
provides again a connection to regular networks. Skipping
the binning argument itself, let us directly concentrate on the
regular case when the matrix elements of H are given by

~ eJ Ok 1

H;, = — -
BT (e + ke — D2 (iy — ky)2)0 e

oy

and dy, k, is given in (6). By Lemma 4, we have dj, x, >
K3 k%“x for a constant K3 > 0 independent of n. This, in
turn, yields the upper bound
Y ke
N KS ((lw + kx -
1 1
K3 (ZT +ky — 1)2 + (Zy - ky)Q
Summing over either ¢ or k, and using the upper bound in
Lemma 4 with o = 2 yields

Z|Hﬁk| Z|sz‘ < K1 logn

k=1

| Hik|?

(13)

where K; = % with Ky and K3 being the constants

appearing in the lemma. For the random network, we have
an extra factor (logn)? arising from the binning argument:

Z | Hi|?, Z |Hir)? < K1(logn)3.

i€D\Vp keS

Therefore, we obtain from (12) that
E(Tr((H*H)?) < 2n(K, logn)®

which confirms estimate (8) in the case [ = 2.

For [ > 2, the non-vanishing terms in (9) can be associated
to rooted planted planar trees that have [ branches. This
analogy gives t; terms in the upper bound corresponding
to (12), with each term corresponding to one such tree. It
can be shown that each of these terms is upperbounded by
n(K1logn)3! by generalizing the approach for the case | = 2.
This in turn yields the upper bound (8).
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