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Abstract

Consider a source that produces independent copies of a triplet of jointly distributed
random variables, {Xi, Yi, Zi}

∞

i=1
. The process {Xi} is observed at the encoder, and

is supposed to be reproduced at two decoders, decoder Y and decoder Z , where {Yi}
and {Zi} are observed, respectively, in either a causal or non-causal manner. The
communication between the encoder and the decoders is carried in two successive stages.
In the first stage, the transmission is available to both decoders and they reconstruct
the source according to the received bit-stream and the individual side information
({Zi} or {Yi}). In the second stage, additional information is sent to both decoders and
they refine the reconstructions of the source according to the available side information
and the transmissions at both stages. It is desired to find the necessary and sufficient
conditions on the communication rates between the encoder and decoders, so that the
distortions incurred (at each stage) will not exceed given thresholds. For the case of non-
degraded causal side information at the decoders, an exact single-letter characterization
of the achievable region is derived for the case of pure source-coding. Then, for the
case of communication between the encoder and decoders carried over independent
memoryless discrete channels with random states known causally/non-causally at the
encoder and with causal side information about the source at the decoders, a single-letter
characterization of all achievable distortion in both stages is provided and it is shown
that the separation theorem holds. Finally, for non-causal degraded side information,
inner and outer bounds to the achievable rate-distortion region are derived. These
bounds are shown to be tight for certain cases of reconstruction requirements at the
decoders, thereby shading some light on the problem of successive refinement with non-
degraded side information at the decoders.

Index terms - causal/non-causal side information, channel capacity, degraded side-
information, joint source-channel coding, separation theorem, source coding, successive
refinement.

1 Introduction

We consider an instance of the multiple description problem, which is successive refine-

ment (SR) of information. The term “successive refinement of information” is applicable
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to systems where the reconstruction of the source is done in a number of stages. In such

systems, a source is encoded by a single encoder which communicates with either a single

decoder or a number of decoders in a successive manner. At each stage, the encoder sends

some amount of information about the source to the decoder of that stage, which also has

access to all previous transmissions. The decoder bases its reconstruction on all available

transmissions, and, possibly, on some additional side information (SI). The quality of recon-

struction at each stage (at each decoder) is measured with respect to a predefined distortion

measure. In the case of pure source coding, the information transmitted by the encoder at

each stage arrives at the decoder noiselessly, while in the case of noisy channels connecting

the encoder and decoders, the transmission received at the decoder is corrupted and thus,

joint source-channel coding should be applied.

A number of works have dealt with the problem of successive refinement [1]-[4], and the

related problem of hierarchical coding [5]-[7]. In [4], the problem of successive source coding

was studied for the Wyner-Ziv setting, i.e., when SI is available to each decoder non-causally

[8]. The encoder transmits a source sequence, X, to two decoders in two successive stages.

Necessary and sufficient conditions were provided in [4], in terms of single-letter formulas,

for the achievability of information per-stage rates corresponding to given distortion levels

of each communication step. For the case of identical SI available at all decoders, the two-

stage coding scheme was extended to include any finite number of stages. Also, conditions

for a source to be successively refinable with degraded SI were introduced in [4] for the

two-stage case. Generally speaking, the notion of degraded SI means that the quality of SI

available at the decoders of later stages is better than that of earlier stages.

In [6], the problem of successive refinement with SI available non-causally at each de-

coder was studied from a different viewpoint. Instead of considering per-stage communica-

tion rates, the analysis of successive refinement was performed with respect to cumulative

(sum-) rates achievable at each stage, under per-stage source restoration assumptions. A

single-letter characterization of the achievable region with successive coding sum-rates and

distortions was provided for the case of degraded SI at the decoders. It turned out that

when the rate-sums are analyzed, it is possible to characterize an achievable rate-distortion

region for any number of stages as long as the SI at the decoders is degraded.

In [7], the problem of successive refinement was investigated for the case of SI available

causally at the decoders. It turned out that, unlike the above described non-causal settings,
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when SI is available causally, the characterization of the achievable per-stage rate-distortion

region is possible without constraining SI to be degraded.

The works reported in the field of successive refinement thus far have considered refine-

ment of information when the transmission at each stage has been addressed to a single

decoder. There are, however, many applications where a single encoder conveys informa-

tion to several decoders in a single transmission. Heegard and Berger [9] and Kaspi [13]

studied independently the following scenario: a single encoder communicates via a single

transmission with two decoders one of which accesses the transmission only, while the other

has a non-causal access to some SI correlated with the source. The source sequence should

be reconstructed at both decoders with a certain accuracy and, under these distortion con-

straints, it is desired to reduce the communication rate as much as possible.

The minimum achievable communication rate, i.e., the rate-distortion function obtained

for this setup is referred to as the Heegard-Berger rate-distortion function. It was also

extended in [9] to include a coding theorem for more that two decoders, each having access

to a different SI with a degraded structure. Now, assume that there is a demand for a better

reconstruction at either one or both decoders, i.e., the source is required to perform a multi-

level successive refinement, still communicating with all decoders via a single transmission.

A question of obvious interest is the following: is it possible to characterize the achievable

rate-distortion region for this generalized problem of successive refinement?

In this work, we jointly extend the works of [9], [4], [6] and [7]. Specifically, we study the

scenario of two-decoders, two-stage successive refinement of information, with SI available

at all decoders in either a causal1 or non-causal manner. For the causal case, we provide

a single-letter characterization of the achievable rate-distortion region, which is straightfor-

wardly extendable to any number of decoders accessible in each stage and any finite number

of stages. For the case of non-causal SI, we provide inner and outer bounds to the achievable

rate-distortion region for the case of degraded SI. Note that although the SI is degraded at

each stage, when both stages are viewed jointly, SI is no longer degraded (same SI is used at

both stages and thus it is not longer possible to say that at the later stage the SI is of better

1There are few reasons for our interest in the scenario of causal SI at the decoders. The first motivation
is an attempt to include the concept of SR in zero-delay sequential coding systems. Schemes with causal
SI can be also viewed as denoising systems, where each decoder performs SI sequential filtering with the
aid of rate-constrained information provided by the encoder. Introducing SR to such systems is of practical
importance, as it simplifies the decoding process in the sense of performing denoising of the SI symbols
causally, in a number of steps, rather than using the entire SI sequence.
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quality), and therefore this setting is of particular interest. When considering the case of

causal SI, we provide the exact achievable region in terms of the per-stage rates, while for

the case of non-causal SI, we refer to the sum-rates. The difficulty in characterizing the

per-stage rates for a general scheme here is similar to that faced in [4].

For the case of causal SI we then extend the noise-free setting into a problem of com-

munication over noisy discrete memoryless channels with random states known causally

or non-causally at the encoder at all stages of communication. We obtain a single-letter

characterization of the region of all achievable distortions for both decoders at both stages

of communication. This characterization reveals that the separation principle is applicable

for this problem, i.e., it is possible to separately encode the source sequence with a good

SR source code and then to transmit the obtained bitstreams with a good channel code

at each stage of communication, without losing asymptotic optimality. This part of the

paper extends the results of [10] and [11] to the multi-stage multi-decoder communication.

Specifically, in [10] it was shown that the separation principle holds for a single-stage single

encoder-decoder communication over a simple discrete memoryless channel. This setting

has been extended in [11] to communication over a channel with random parameters known

causally or non-causally at the encoder and decoder having non-causal access to the SI

correlated with the source and there also it was shown that separate source channel coding

is, in fact, optimal.

Note that all known closed form (single-letter) results regarding SR (and its variations)

for decoders having non-causal access to different SI data, such as [9], [3], [4] and [6], treat

the case of degraded SI at the decoders. Thus, there is a special interest in the following sub-

case of the problem treated in this paper - SR with non-causal degrades SI at the decoders,

when decoders are accessed in the reversed order of degradedness of SI. Specifically, for

the two-stage scheme, assume that in the first stage some information is to be conveyed

to the decoder that has access to SI of a better quality. Then, at the refinement stage,

the decoder with less informative SI should reconstruct the source sequence based on the

transmissions of both stages. This problem has been also addressed in [14]. Specifically,

in [14], inner and outer bounds on the achievable rates and distortions have been derived

and it was shown that these bounds coincide when reconstruction at either stage should be

lossless at the matching decoder. The work presented in [14] has been performed in parallel

to the researched described in this paper and the inner bounds presented in [14] can be
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easily derived from the results of this paper. The outer bound provided in this paper is

more precise than that provided in [14] as is discussed in detail in Section 4.

The outline of the paper is as follows: In Section 2, we give notation conventions used

throughout the paper. A formal definition of the problem is provided in Section 3. In

Section 4, for the case of causal SI at the decoders, we give the exact characterizations of

the achievable rate-distortion region and formulate the coding theorems for the successive-

refinement two-stage source coding and the joint source-channel coding; for the case of

non-causal SI at the decoders, we provide inner and outer bounds to the rate-distortion

region and show that in some cases these bounds are tight. The proofs are provided in

Sections 5 and 6 for the cases of causal and non-causal SI, respectively.

2 Notation Conventions and Preliminaries

Throughout the paper, random variables will be denoted by capital letters, specific values

they may take will be denoted by the corresponding lower case letters, and their alphabets

will be denoted by calligraphic letters. Similarly, random vectors, their realizations, and

their alphabets will be denoted, respectively, by boldface capital letters, the corresponding

boldface lower case letters, and calligraphic letters, superscripted by the dimensions. The

notations xji andXj
i , where i and j are integers and i ≤ j, will designate segments (xi, ..., xj)

and (Xi, ...,Xj), respectively, where for i = 1, the the subscript will be omitted. For

example, a random vector X = XN
1 = (X1, ...,XN ), (N -positive integer) may take a specific

vector value x = xN1 = (x1, ..., xN ) in XN , the Nth order Cartesian power of X , which is

the alphabet of each component of this vector. The cardinality of a finite set A will be

denoted by |A|.

Sources and channels will be denoted generically by the letter P , subscripted by the name

of the random variable and its conditioning, if applicable, e.g., PX(x) is the probability of

X = x, PY |X(y|x) is the conditional probability of Y = y given X = x, and so on. Whenever

clear from the context, these subscripts will be omitted. The class of all discrete memoryless

sources (DMSs) with a finite alphabet X will be denoted by P(X ), with PX denoting a

particular DMS in P(X ), i.e., P(X ) = {PX :
∑

x∈X PX(x) = 1; ∀x ∈ X : PX(x) ≥ 0}.

For a given positive integer N , the probability of an N -vector x = (x1, ..., xN ) drawn from
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a DMS PX , is given by

Pr{Xi = xi, i = 1, ..., N} =

N
∏

i=1

PX(xi)
△
= PX(x). (1)

A Markov chain formed by a triplet of random variables (RVs) (X,Y,Z) with a joint

distribution PXY Z(x, y, z) will be denoted by X ÷ Y ÷ Z.

A distortion measure (or distortion function) is a mapping from the set X ×Y into the

set of non-negative reals: d : X × Y → R+. The additive distortion d(x,y) between two

vectors x ∈ XN and y ∈ YN is given by: d(x,y) = 1
N

∑N
i=1 d(xi, yi).

The information-theoretic quantities, used throughout this paper, are denoted using the

conventional notations [12]: For a pair of discrete random variables (X,Y ) with a joint

distribution PXY (x, y) = PX(x)PY |X(y|x), the entropy of X is denoted by H(X), the joint

entropy - by H(X,Y ), the conditional entropy of Y given X - by H(Y |X), and the mutual

information by I(X;Y ), etc., where logarithms are defined to the base 2.

We next describe the notation related to the method of types, which is used throughout

this paper in the direct proofs. For a given memoryless source PX and a vector x ∈ XN ,

the empirical probability mass function is a vector Px = {Px(a), a ∈ X}, where Px(a) is the

relative frequency of the letter a ∈ X in the vector x. For a scalar δ > 0, the set T δ
PX

of all

δ-typical sequences is the set of the sequences x ∈ XN such that |Px(a)− PX(a)| ≤ δ for

every a ∈ X . In this paper, we use some known results from [12]. First, for every x ∈ T δ
PX

,

2−N [H(X)+ǫ1] ≤ PX(x) ≤ 2−N [H(X)−ǫ1], (2)

where ǫ1 = ǫ1(δ) vanishes as δ → 0 and N → ∞. It is also well-known (by the weak law of

large numbers) that:

Pr
{

X /∈ T δ
PX

}

≤ ǫ2 (3)

where ǫ2 = ǫ2(δ), ǫ2 → 0 as N → ∞.

For a given conditional distribution PY |X and for each x ∈ T δ
PX

, the set T δ̃
PXY

of all

sequences y that are jointly δ-typical with x, is the set of all y such that:

∣

∣Pxy(a, b)− Px(a)PY |X(b|a)
∣

∣ ≤ δ̃ (4)

for all a ∈ X , b ∈ Y, where Pxy(a, b) denotes the fraction of occurrences of the pair (a, b) in

(x,y). For any x ∈ T δ
PX

and any δ̃ > δ,

2−N [I(X;Y )+ǫ3)] ≤
∑

y:(x,y)∈T δ̃
PXY

PY (y) ≤ 2−N [I(X;Y )−ǫ3], (5)
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where ǫ3 = ǫ3(δ, δ̃) vanishes as δ, δ̃ → 0 and N → ∞. These typicality definitions and

properties, are straightforwardly extendable for jointly typical sequences which come in

triplets, quadruplets and so on and we use these in the paper.

3 System Description and Problem Definition

We refer to the communication system depicted in Figure 1. Consider a source that produces

Encoder
1 2, ,..., NX X X

Decoder Y

Decoder Z

1 2
ˆ ˆ ˆ, ,..., NX X X

1 2, ,..., NX X Xɶ ɶ ɶ

Transmission at rate R1

1 2, ,..., NZ Z Z

1 2, ,..., NY Y Y

Decoder Y

Decoder Z

1 2, ,..., NX X X
⌣ ⌣ ⌣

1 2, ,..., NX X X
Transmission at rate R2 - R1

1 2, ,..., NY Y Y

1 2, ,..., NZ Z Z

Stage 1

Stage 2

Figure 1: Two-stage communication scheme.

independent copies {Xi, Yi, Zi}i≥1 of a triplet of RV’s, (X,Y,Z), taking values in a finite

alphabet X × Y × Z, and drawn under a joint distribution PXY Z . The process {Xi} is

observed at the encoder and is supposed to be reproduced at the decoders, where {Yi}

and {Zi} are observed at decoders Y and Z, respectively. The source is available at the

encoder non-causally and at the decoders either causally or non-causally, at all stages. At

the first stage of SR, the reproductions at decoders Y and Z take values in the finite sets,

X̂ and X̃ , respectively, while at the second stage, the reproduction finite sets are X̌ and X̄ ,
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respectively.

The coding scheme with causal/non-causal SI at the decoders operates as follows: at the

first transmission, the encoder sends some amount of information to both decoders over the

channel. We consider block coding, i.e., an N -vector X (N is a positive integer) is encoded

at rate R1 into a binary sequence of length M1, where R1 =
1
N
log2M1. The binary sequence

then takes values in {0, 1, ..., 2NR1 −1}. At the first stage, when non-causal SI is considered,

decoder Y receives the binary bitstream and reconstructs X̂ = (X̂1, ..., X̂N ) ∈ X̂N , based on

it and the SIY, while in the case of causal SI, the reconstruction of the i-th component, X̂i, is

based on the encoder transmission and only i first symbols of the SI, i.e., Y i
1 . Similarly, with

non-causal SI, decoder Z uses the encoder transmission and Z in its entirety and reproduces

X̃ = (X̃1, ..., X̃N ) ∈ X̃N , while in the case of causal SI, only the bitstream and Zi
1 are used

for reproduction of X̃i. The quality of reconstruction at each of the decoders is judged in

terms of the expectations of additive distortion measures dy,1(X, X̂) = 1
N

∑N
i=1 dy,1(Xi, X̂i)

and dz,1(X, X̃) = 1
N

∑N
i=1 dz,1(Xi, X̃i), where dy,1(X, X̂) and dz,1(X, X̃), X ∈ X , X̂ ∈ X̂ ,

X̃ ∈ X̃ , are non-negative, bounded distortion measures. At the second stage, the encoder

sends, at rateR2−R1, an additional information about the source sequence to both decoders,

also in the form of a binary bitstream, this time of length M2
△
= 2N(R2−R1), taking values in

{0, 1, ..., 2N(R2−R1)−1} . The decoders reconstruct the source sequence with better accuracy

(in terms of the distortion measures) according to both transmissions of the encoder and

the individual SI’s. The distortions measures used at the decoders Y and Z at this stage

are also additive, dy,2(X, X̌) = 1
N

∑N
i=1 dy,2(Xi, X̌i) and dz,2(X, X̄) = 1

N

∑N
i=1 dz,2(Xi, X̄i),

where dy,2(X, X̌) and dz,2(X, X̄), X ∈ X , X̌ ∈ X̌ , X̄ ∈ X̄ , are non-negative, bounded

distortion measures. This setting can be straightforwardly extended to any number of

refinement stages as well as any number of decoders at each stage. We confine ourselves to

the case of two decoders and two stages.

We begin with the case of non-causal SI.

Definition 1. An (N,M1,M2, {∆y,k,∆z,k}
2
k=1) source code for a single encoder, two de-

coders and two-stage successive refinement with non-causal SI at the decoders, for the source

PXY Z , consists of a first-stage encoder-decoder triplet (f1, gy,1, gz,1):

f1 : X
N → {1, 2, ...,M1}, (6)

gy,1 : Y
N × {1, 2, ...,M1} → X̂N , (7)

gz,1 : Z
N × {1, 2, ...,M1} → X̃N , (8)
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and a second-stage encoder-decoder triplet (f2, gy,2, gz,2):

f2 : X
N → {1, 2, ...,M2}, (9)

gy,2 : Y
N × {1, 2, ...,M1} × {1, 2, ...,M2} → X̌N , (10)

gz,2 : Z
N × {1, 2, ...,M1} × {1, 2, ...,M2} → X̄N , (11)

such that

Edy,1(X, X̂) ≤ N∆y,1 Edz,1(X, X̃) ≤ N∆z,1

and

Edy,2(X, X̌) ≤ N∆y,2 Edz,2(X, X̄) ≤ N∆z,2.

When SI is available to the decoders causally, in analogy to Definition 1, it is possible

to define an (N,M1,M2, {∆y,k,∆z,k}
2
k=1), source code for coding with causal SI, where the

first-stage decoder pair (gy,1, gz,1) is now presented via {gy,1,i}
N
i=1 and {gz,1,i}

N
i=1, where

gy,1,i and gz,1,i denote the reconstruction functions for the i − th symbol of X̂N and X̃N ,

respectively:

gy,1,i : Y
i
1 × {1, 2, ...,M1} → X̂ , (12)

gz,1,i : Z
i
1 × {1, 2, ...,M1} → X̃ . (13)

Similar adjustments of definitions should be applied to the second stage, considering now

(gy,2, gz,2) presented in terms of {gy,2,i}
N
i=1 and {gz,2,i}

N
i=1:

gy,2,i : Y
i
1 × {1, 2, ...,M1} × {1, 2, ...,M2} → X̌ , (14)

gz,2,i : Z
i
1 × {1, 2, ...,M1} × {1, 2, ...,M2} → X̄ . (15)

The sum-rate pair (R1, R2) of the (N,M1,M2, {∆y,k,∆z,k}
2
k=1) code for two stage successive

refinement for two decoders is given by R1 =
1
N
log2(M1) and R2 =

1
N
log2(M1 ·M2).

Definition 2. Given a distortion quadruplet D = {∆y,k,∆z,k}
2
k=1, a rate pair (R1, R2)

is said to be achievable with SI (Y,Z) if for every ǫ > 0, there exists a sufficiently large

block length N , for which there is an (N, 2N(R1+ǫ), 2N(R2+ǫ), ∆y,1 + ǫ, ∆z,1 + ǫ ,∆y,2 + ǫ,

∆z,2 + ǫ), source code for successive refinement with non-causal SI at the decoders for the

source PXY Z.
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The definition of the notion of an achievable region with causal SI per-stage rates can

be straightforwardly modified in parallel to Definition 2, referring to the first stage rate

R1 and the second-stage rate ∆R = R2 − R1 = 1
N
log2(M2). The collection of all D-

achievable rate pairs is the achievable rate-region for successive-refinement coding with

non-causal (respectively, causal) SI and is denoted by R(D)nc (respectively, R(D)c). The

collection of all (R1, R2, {∆1,k,∆2,k}
2
k=1)-achievable rate-distortion tuples is the achievable

rate-distortion region, and is denoted by RDnc and RDc, referring to non-causal and causal

settings, respectively. In this work, we propose strategies for (asymptotically) achieving any

given point in RDc and certain points in RDnc.

It is also interesting to investigate the scenario where communication between the en-

coder and the decoders is carried over a noisy media. In this case, the source block X is fed

into a joint source-channel encoder, whereas the corresponding blocks of Y and Z are fed as

side information in either a causal or non-causal manner into the Y and Z decoders, respec-

tively. In the sequel, we confine ourself to the case of causal source SI at both decoders.2

In this paper, at each stage of communication, the noisy media is modeled by a discrete

memoryless channel whose output is governed by its input and a random parameter which

is known at the encoder either causally or non-causally.

Consider the communication scheme depicted in Figure 2. The channel used at the first

stage is channel 1, PB|A,S, and at the second stage is used channel 2, PB̄|Ā,S̄ . The channels

are independent and we denote their capacities by C1 and C2, respectively. The channels

work as follows: The input of Channel 1 is a vector pair (An
1 , S

n
1 ), where n is a positive

integer and where A and S take values in the finite sets, A and S, respectively. Channel

1 produces a vector output Bn, whose components take values in the finite set B. The

conditional probability of (Bn) given (An, Sn) is characterized by PBn|An,Sn(bn|an, sn) =
∏n

i=1 PB|A,S(bi|ai, si). The vector A
n is referred to as the channel input and Sn is referred to

as the channel state sequence, governed by another discrete memoryless process PSn(sn) =
∏n

i=1 Ps(si), independently of (XN , Y N , ZN ). The operation of Channel 2 is described in

a similar fashion by the triplet (Ām, B̄m, S̄m, ) instead of (An, Bn, Sn) and corresponding

marginal and conditional probabilities. Note that in the context of Channel 2, all blocks

are of length m, where m is a positive integer. We denote the source-channel rate ratios by

2Since the complete characterization of RDnc is still open, there is no point in analyzing the scenario of
communication over noisy channels for the case of non-causal source SI at the decoders.
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ρ1
△
= n

N
and ρ2

△
= m

N
.

Encoder
NX Decoder Y

Decoder Z

( )ˆ ˆ ,i n
i iX X Y B=

( ),i n
i iX X Z B=
ɶ ɶ

Decoder Y

Decoder Z

1 2, ,..., iY Y Y

1 2, ,..., iZ Z Z

Stage 1

Stage 21 2, ,..., iY Y Y

1 2, ,..., iZ Z Z

( ), ,
mi n

i iX X Y B B=

⌣ ⌣

( ), ,
mi n

i iX X Z B B=

Channel 1

Channel 2

nA nB

nS

m
S

m
A

m
B

Figure 2: Communication over noisy channels with causal SI.

Now, instead of the binary bitstream generated in the noise-free case, the first-stage

joint source-channel encoder implements a deterministic function an = f1(x
N , sn) and the

second-stage joint source-channel encoder implements another deterministic function ām =

f2(x
N , s̄m). If the channel states are available at the encoder causally, each channel symbol

ai depends only on xN , ai−1 and si, and each āi depends only on xN , āi−1 and s̄i. In the

non-causal case, each channel symbol ai depends on xN , ai−1 and sn, and each āi depends

xN , āi−1 and s̄m. The first-stage decoders Y and Z are defined now by deterministic

functions gy,1(y
N , an) and gz,1(z

N , an), respectively, and the second stage decoders Y and

Z are defined by deterministic functions gy,2(y
N , bn, b̄m) and gz,2(z

N , bn, b̄m), respectively.

The channel states S and S̄ are independent and we interpret the independence of the

channels via the Markov relation (S,B)÷X÷ (S̄, B̄).

In parallel to Definitions 1 and 2, we define the following:
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Definition 3. For a given memoryless source PXY Z and two memoryless channels with

random states PB|A,S and PB̄|Ā,S̄ an (N,n,m,∆y,1,∆z,1,∆y,2,∆z,2) joint source-channel

code for successive refinement with causal state information at the encoder and causal side

information at the decoders consists of a sequence of n first-stage encoding functions:

f1,i : X
N × Si → Ai, i = 1, ..., n, (16)

a sequence of N first-stage decoding functions

gy,1,i : Y
i × Bn → X̂ , i = 1, ..., N, (17)

and

gz,1,i : Z
i × Bn → X̃ , i = 1, ..., N, (18)

a sequence of m second-stage encoder functions

f2,i : X
N × S̄i → Āi, i = 1, ...,m, (19)

and a sequence of N second-stage decoding functions:

gy,2,i : Y
i × Bn × B̄m → X̌ , i = 1, ..., N, (20)

and

gz,2,i : Z
i ×Bn × B̄m → X̄ , i = 1, ..., N, (21)

such that

Edy,1(X, X̂) ≤ N∆y,1 Edz,1(X, X̃) ≤ N∆z,1

and

Edy,2(X, X̌) ≤ N∆y,2 Edz,2(X, X̄) ≤ N∆z,2,

where the expectations are w.r.t. the source and the channels.

Definition 4. Given the source-channel rate ratios ρ1 and ρ2, a distortion quadruplet D =

{∆y,k,∆z,k}
2
k=1 is said to be achievable if for every ǫ > 0, there exist sufficiently large N , n

and m, with ρ1 = n/N and ρ2 = m/N , and there exists an (N,n,m,∆y,1+ǫ,∆z,1+ǫ,∆y,2+

ǫ,∆z,2+ ǫ) joint source-channel code for successive refinement with causal/non-causal state

information at the encoder and causal side information at the decoders for the source PXY Z

and the channels PB|A,S, PB̄|Ā,S̄. The distortion region, denoted D, is the closure of the set

of all achievable quadruplets D.

12



We provide a single-letter characterization of D for the cases of causal/non-causal chan-

nel state information availability at the encoder. In particular, we show that any given

point in D can be achieved by separate source coding for the source PXY Z (achieving RDc)

and capacity-achieving channel coding (independently of the source).

4 Main Result

4.1 Causal Side Information

4.1.1 Pure Source Coding

We begin with the case where availability of SI at the decoders is restricted to be causal.

Let a distortion quadruplet D
△
= ({∆y,k,∆z,k}

2
k=1) be given. Define R∗(D)c to be the set of

all rate pairs (R1, R2) for which there exist RVs (W1,W2), taking values in finite alphabets,

W1,W2, respectively, s.t the following holds simultaneously:

1. The following Markov chain holds:

(W1,W2)÷X ÷ (Y,Z). (22)

2. There exist deterministic decoding functions Gy,1 : Y ×W1 → X̂ , Gz,1 : Z ×W1 → X̃ ,

and Gy,2 : Y ×W1 ×W2 → X̌ , Gz,2 : Z ×W1 ×W2 → X̄ , such that

Edy,1(X,Gy,1(Y,W1)) ≤ ∆y,1 (23)

Edz,1(X,Gz,1(Z,W1)) ≤ ∆z,1 (24)

Edy,2(X,Gy,2(Y,W1,W2)) ≤ ∆y,2 (25)

Edz,2(X,Gz,2(Z,W1,W2)) ≤ ∆z,2 (26)

3. The alphabets W1 and W2 satisfy:

|W1| ≤ |X |+ 5, |W2| ≤ |X | · |W1|+ 2 (27)

4. The rates R1 and R2 satisfy

R1 ≥ I(X;W1) R2 −R1 ≥ I(X;W2|W1). (28)

The main result of this subsection is the following:

13



Theorem 1. For any DMS PXY Z,

R(D)c = R∗(D)c. (29)

The proof of Theorem 1 appears in Section 5. Note that when SI is available at the

decoders causally, there is no degradedness assumption on SI, which is very different from

the case of SR with non-causal SI even when a single decoder is considered at each stage

[4]-[6], as well as for the multi-group SR discussed in the next section.

The relative simplicity of characterization of R(D)c is better understood when studying

the achievability scheme: The direct part is based on the fact that the encoder transmits a

concatenation of indexes of the auxiliary codewords 3 instead of bin numbers transmitted

in the non-causal setting [4]-[6]. Hence, each decoder can access all the auxiliary codewords

directly and, unlike in the non-causal setting, it does not use its SI to retrieve codewords, but

only for reconstruction. Unlike in the case of coding with non-causal SI at the decoders, the

results obtained for the two-decoder two-stage coding with causal SI are straightforwardly

extendable to any number of decoders and refinement stages and the number of auxiliary

RVs is determined solely by the number of communication stages4.

4.1.2 Joint Source-Channel Coding

We next address the problem of joint source channel coding, where at each communication

stage the encoder conveys its information to two decoders over a noisy stationary memoryless

channel governed by a random state, which is known causally or non-causally to the encoder.

The general scheme is described in Fig. 2. The necessary and sufficient conditions for

(∆1,∆2) to be the achievable distortion levels are summarized in the following Theorem:

Theorem 2. Given a DMS PXY Z , the distortion levels ({∆y,k,∆z,k}
2
k=1) are achievable for

successively refinable communication with causal SI at the decoders over noisy stationary

memoryless channels PB,O|A,S and PB̄,Ō|Ā,S̄ with channel states known at the encoder either

causally or non-causally if and only if there exist auxiliary RVs W1 and W2, taking values

in finite alphabets W1 and W2, of cardinalities given by (27) and satisfying (22), and de-

terministic decoding functions Gy,1, Gz,1, Gy,2 and Gz,2, satisfying (23) - (26), respectively,

3The direct use of indexes of the auxiliary codewords, similarly as is done for coding without SI at the
decoder, was first introduced in [15], in the achievability proof of the characterization of the rate-distortion
function with causal SI at the decoder.

4While, as we show in the next section, in the non-causal setting, at each stage, for each decoder, at least
one auxiliary codeword is added to the direct scheme.
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such that

I(X;W1) ≤ ρ1C1, (30)

I(X;W2|W1) ≤ ρ2C2. (31)

There is an obvious similarity between the characterization of Dc and the character-

ization of the region of all achievable distortion levels described in Theorem 2, both for

the cases of causal and non-causal state information at the encoder. The only difference

in characterizations is the following: in the case of communication over noisy channel the

upper-bounds in (30) and (31) are ρ1C1 and ρ2C2, while in the noise-free case, these bounds

are substituted by R1 and R2−R1, respectively. Therefore, a possible achievability scheme

is the one based on separate source and channel coding.

The direct proof of Theorem 2 comes from a concatenation of the asymptotically opti-

mal source code designed for multi-group successive refinement, which is independent of the

channels, and a reliable channel codes, independent of the source, designed for each of the

channels (with channel state informations available to the encoder either causally or non-

causally). The channel codes should achieve (at least asymptotically) the capacity of the

relevant channels. Now, if such source and channel codes are used and the distortion con-

straints are maintained by the source code, as soon as I(X;W1) ≤ ρ1C1 and I(X;W2|W1) ≤

ρ2C2, it is always possible to select source and channel rates Rs1 and Rc1 for the first stage

and Rs2 − Rs1 and Rc2 for the second stage such that NI(X;W1) ≤ NRs1 = nRc1 ≤ nC1

and NI(X;W2|W1) ≤ N [Rs2 − Rs1] = mRc2 ≤ mC2. Now, it is possible to compress the

source sequence into Rs1 bits per symbol for the first stage and into Rs2 − Rs1 bits per

symbol for the refinement stage, such that the distortions {(∆y,j ,∆z,j)}
2
j=1 are satisfied

and then map the obtained bitstreams of length NRs1 and N [Rs2−Rs1] into channel code-

words of length nRc1 and mRc2, respectively. Since Rc1 ≤ C1 and Rc2 ≤ C2, from the

standard coding theorem ([18] or [17]), there exist channel codes that cause asymptotically

negligible distortions. Also, by the source coding theorem (Theorem 1) all the distortions

for which NI(X;W1) ≤ NRs1 and NI(X;W2|W1) ≤ N [Rs2 − Rs1] are achievable. Thus,

the distortions {(∆y,j ,∆z,j)}
2
j=1 such that NI(X;W1) ≤ nC1 and NI(X;W2|W1) ≤ mC2

are achievable. The details of the converse proof are provided in Section 5, and, similarly

as in the noise-free case, the proof is easily extendable to more than two communication

stages and more than two decoders at each stage.
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4.2 Non-Causal Degraded Side Information

Unlike in the case of causal SI, in the noncausal case, a closed-form characterization of the

achievable rate-distortion region with non-causal SI at the decoders is yet to be derived.

In this subsection, we provide outer and inner bounds to the achievable region, discuss the

differences between the bounds and show that in certain cases, the bounds coincide, i.e.,

the rate-distortion region is fully characterized for these special cases. We begin with the

outer bound.

4.2.1 Outer Bound

Define R∗∗(D)nc to be the set of all rate pairs (R1, R2) for which there exist RVs {Wi}
4
i=1

and V , taking values in finite alphabets, {Wi}
4
i=1 and V, respectively, such that (s.t.) the

following conditions are satisfied:

1.

(W1,W2,W3,W4, V )÷X ÷ Z ÷ Y (32)

is a Markov chain.

2. There exist deterministic decoding functions Gy,1 : Y ×W1 → X̂ , Gz,1 : Z×W1×W2×

V → X̃ , Gy,2 : Y ×W1 × W3 × V → X̌ and Gz,2 : Z × W1 ×W2 ×W3 × W4 × V → X̄ ,

such that

Edy,1(X,Gy,1(Y,W1)) ≤ ∆y,1 (33)

Edz,1(X,Gz,1(Z,W1,W2, V )) ≤ ∆z,1 (34)

Edy,2(X,Gy,2(Y,W1,W3, V )) ≤ ∆y,2 (35)

Edz,2(X,Gz,2(Z,W1,W2,W3,W4, V )) ≤ ∆z,2 (36)

3. The alphabets {Wk}
4
k=1 and V satisfy:

|W1| ≤ |X |+ 5, (37)

|V| ≤ |X | · |W1|+ 4, (38)

|W2| ≤ |X | · |W1| · |V|+ 3, (39)

|W3| ≤ |X | · |W1| · |W2| · |V|+ 2, (40)
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|W4| ≤ |X | · |W1| · |W2| · |W3| · |V|+ 1. (41)

4. The rates R1 and R2 satisfy

R1 ≥ I(X;W1|Y ) + I(X;W2, V |W1, Z) (42)

R2 ≥ I(X;W1,W3, V |Y ) + I(X;W2,W4|W1,W3, V, Z) (43)

The outer bound to the rate-distortion region is summarized in the following Theorem:

Theorem 3. For any DMS PXY Z s.t. X ÷ Z ÷ Y , and a quadruplet of distortions D =

{∆y,k,∆z,k}
2
k=1, R(D)nc ⊆ R∗∗(D)nc.

The proof of this result follows the lines of the converse proof of Theorem 1 in [4] and

it is provided in Section 6. Consider now to the case where the distortion requirements are

∆y,1 = ∞ and ∆z,2 = ∆z,1, i.e., the case where at the first stage only Z-decoder is required

to reconstruct the source and at the second stage the Y-decoder is required to reconstruct

the source while Z-decoder is not required to improve its source reconstruction any further.

Define the degraded region R(D)nc of all rates and distortions matching ∆y,1 = ∞ and

∆z,2 = ∆z,1 by R(∆y,2,∆z,1). This special instance of our problem has been studied in [14].

The outer bound obtained in [14] is the following: Define the region Rout(∆1,∆2) to be

the set of all rate pairs (R1, R2) for which there exist random variables (W1,W2) in finite

alphabets W1, W2 s.t. the following conditions are satisfied:

1) (W1,W2)÷X ÷ Z ÷ Y .

2) There exist deterministic maps G1 : Z × W1 → X̃ and G2 : Y × W2 → X̂ s.t.

Edz,1(X, f1(Z,W1)) ≤ ∆1 and Edy,2(X, f2(Y,W2)) ≤ ∆2.

3) |W1| ≤ |X |(|X | + 3) + 2, |W2| ≤ |X |+ 3.

4) The non-negative rate vectors satisfy:

R1 ≥ I(X;W1|Z), R1 +R2 ≥ I(X;W2|Y ) + I(X;W1|Z,W2).

Theorem 4. [14] For any discrete memoryless stochastic source with SIs under the Markov

condition X ÷ Z ÷ Y , R(∆1,∆2) ⊆ Rout.

Note that this outer bound is straightforwardly obtainable from the outer bound of this pa-

per by taking W1 = const., V = const., W4 = const. and renaming the pair (W2,W3) to be

(W1,W2) as well as setting (∆y,1,∆z,1,∆y,2,∆z,2) to be equal (∞,∆1,∆2,∆1), respectively,

and also disregarding (Gy,1, Gz,2) while renaming (Gz,1, Gy,2) to be (G1, G2).
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4.2.2 Inner Bound

Let a distortion quadruplet D
△
= {∆y,k,∆z,k}

2
k=1 be given. Define R∗(D)nc to be the set

of all rate pairs (R1, R2) for which there exist RVs {Wi}
4
i=1 and V , taking values in finite

alphabets, {Wi}
4
i=1 and V, respectively, s.t. the following conditions are satisfied:

1. The following Markov conditions hold:

(W1,W2,W3,W4, V )÷X ÷ Z ÷ Y (44)

W2 ÷ (X,W1, V )÷W3 (45)

2. There exist deterministic decoding functionsGy,1 : Y×W1 → X̂ , Gz,1 : Z×W1×W2×V →

X̃ , Gy,2 : Y ×W1 ×W3 × V → X̌ , Gz,2 : Z ×W1 ×W2 ×W3 ×W4 × V → X̄ such that

Edy,1(X,Gy,1(Y,W1)) ≤ ∆y,1 (46)

Edz,1(X,Gz,1(Z,W1,W2, V )) ≤ ∆z,1 (47)

Edy,2(X,Gy,2(Y,W1,W3, V )) ≤ ∆y,2 (48)

Edz,2(X,Gz,2(Z,W1,W2,W3,W4, V )) ≤ ∆z,2 (49)

3. The alphabets {Wk}
4
k=1 and V satisfy:

|W1| ≤ |X |+ 6, (50)

|V| ≤ |X | · |W1|+ 5, (51)

|W2| ≤ |X | · |W1| · |V|+ 4, (52)

|W3| ≤ |X | · |W1| · |W2| · |V|+ 3, (53)

|W4| ≤ |X | · |W1| · |W2| · |W3| · |V|+ 2. (54)

4. The rates R1 and R2 satisfy

R1 ≥ I(X;W1|Y ) + I(X;W2, V |W1, Z) (55)

R2 ≥ I(X;W1, V,W3|Y ) + I(X;W2|W1, V, Z)

+ I(X;W4|W1,W2,W3, V, Z) (56)

The inner bound to the rate-distortion region is summarized in the following Theorem:
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Theorem 5. For any DMS PXY Z s.t. X ÷ Z ÷ Y , and a quadruplet of distortions D =

{∆y,k,∆z,k}
2
k=1, R

∗(D)nc ⊆ R(D)nc.

The inner bound provided in this section demonstrates tradeoffs between various schemes

which are based on the notion of (strong or weak) typicality. Recall that in the achievabil-

ity schemes of successive refinement treated in [4] and [6] the generation of the auxiliary

codebooks is sequential: First, the codebook used at the first stage is generated; then, for

each codeword of that codebook another codebook conditional on the codeword is gener-

ated, and so on. Every generation of a codebook is conditioned on codewords of previously

generated codebooks. The encoder chooses the auxiliary codewords in a sequential manner,

first finding a good codeword in the first codebook; then in the second codebook (which was

generated conditioned on that good codeword), it finds another good codeword, and so on.

The encoder proceeds until it has found all codewords needed to describe the source at the

desired accuracy at all stages of successive refinement. The decoding process at each stage

is also performed in a sequential manner, i.e., first, the codeword in the first codebook is

found. Then, in a second codebook (matching that codeword), a second codeword is found

and so on.

When multi-group successive refinement is considered, it is unclear if the auxiliary code-

books achieving rate-distortion bounds should be generated “sequentially” (in the sense

described above) or “in parallel”, with two or more codebooks generated unconditioned on

one another. The achievability scheme of this paper demonstrates a semi-parallel approach

where some of the codebooks are generated sequentially and some in parallel. We proceed

with discussing the meaning of degraded SI at the decoders and then we briefly describe

the idea standing behind the achievability scheme.

When referring to degraded SI, the term usually used is that the stronger Z-decoder

(that has access to SI of higher quality) can do whatever the weaker Y-decoder can do

[4]-[7], i.e., the Z-decoder can find all the codewords that were addressed to Y-decoder.

To understand this property, consider the following scenario: Assume that one performs

Wyner-Ziv (W-Z) coding [8] for a pair (X,Y ) where X is known at the encoder and Y is

known at the Y-decoder. Now, assume that the source generating the (X,Y ) pair is, in

fact, a ternary source, generating a triplet (X,Y,Z), X ÷Z ÷ Y and that Z is known at Z-

decoder. Finally, assume that the W-Z coding for Y-decoder is performed with a codebook

of auxiliary codewords generated independently of each other and each symbol of which is
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generated according to PW1
, s.t. W1 ÷X ÷ Z ÷ Y . Obviously, the long Markov chain also

satisfies the shorter Markov chain W1 ÷X ÷ Y required by W-Z scheme for coding for the

Y-decoder. But, due to the Markov chain W1÷X÷Z÷Y , I(Z;W1) ≥ I(Y ;W1), and thus,

Z-decoder is able to find the correct codeword in the bin of size 2NI(Y ;W1) generated for the

Y-decoder. The question is the following - given that Z-decoder can always find codewords

addressed to the Y-decoder, how we can exploit this property rigorously?

We interpret the degradedness of SI as follows: bins associated with a code designed

for the Z-decoder are divided into bins associated with a code designed for the Y-decoder.

Specifically, a codebook of about 2NI(X;W1) codewords is partitioned twice - first into “large”

bins of about 2NI(Z;W1) codewords matching W-Z code for the Z-decoder, and each of these

bins is further partitioned into smalle bins of about 2NI(Y ;W1) codewords each.

In W-Z coding designed for communication with Y-decoder only, the indexes of the

smaller bins are directly transmitted to the Y-decoder. Note that alternatively, one can

first send to Y-decoder an index of the larger bin and then “refine” it with the “internal”

index of the matching small bin. This observation immediately leads to the following con-

clusion: if a single codeword is simultaneously good for communication with both decoders

(in the sense of satisfying the reconstruction requirements), the encoder can communicate

with both decoders in a two-stage successive manner, by first transmitting the index of

a large bin (that contains a good codeword) to both decoders (the index is fully usable

only by the Z-decoder), and then, in a separate additional transition, sending the match-

ing “internal” index which is crucial for communication with the Y-decoder (and does not

provide new information to Z-decoder). The obvious question that arises is what hap-

pens when a single codeword is not sufficient for communication with two decoders and

more codebooks must be created. Firstly, under certain Markov conditions, the principle of

such an hierarchical (or nested) binning can be applied as well to conditional W-Z codes.

Specifically, when the Markov condition (W1,W2...,Wi)−X −Z − Y holds, we obtain that

I(Z;Wi|W1, ...,Wi−1) ≥ I(Y ;Wi|W1, ...,Wi−1). Secondly, the real problem arises when not

all codewords sent to the Z-decoder must be revealed to the Y-decoder in the next step, and

in this case, sequential/hierarchical codesbooks generation is no longer obviously optimal.

The coding scheme is based on the following concept: At the first stage, three codebooks

are generated, essentially, according to the hierarchical Wyner-Ziv coding scheme. First a

codebook Cw1
of ∼ 2NI(X;W1) codewords is generated according to PN

W1
, and is partitioned
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into bins of size of ∼ 2NI(Y ;W1). Thus, there are ∼ 2N [I(X;W1)−I(Y ;W1)] such bins. Due to the

Markov chain W1 ÷X ÷ Y , I(X;W1)− I(Y ;W1) = I(X;W1|Y ). Next, for each w1 ∈ Cw1
,

a codebook Cv(w1) of ∼ 2NI(X;V |W1) codewords is generated according to PN
V |W1

and is

partitioned into bins of size of ∼ 2NI(Z;V |W1), and each of these bins is partitioned into

smaller bins of size ∼ 2NI(Z;V |W1) each. Thus, there are ∼ 2N [I(X;V |W1)−I(Z;V |W1)] large bins

and ∼ 2N [I(Z;V |W1)−I(Y ;V |W1)] small bins within each large bin. Due to the Markov chain

(44), the number of bins: ∼ 2NI(X;V |W1,Z) large bins and ∼ 2NI(Z;V |W1,Y ) small bins within

each large one. Finally, a codebook Cw2
(w1, v) of ∼ 2I(X;W2|W1,V ) codewords is generated

for each w1 ∈ Cw1
and v ∈ Cv(w1) according to PN

W2|W1,V , and is partitioned into bins of

size ∼ 2NI(Z;W2|W1,V ), so by (44), there are ∼ 2NI(X;W2|W1,V,Z) such bins.

At the second stage, another two codebooks are generated - for each w1, v(w1) and

w2(w1, v), in codebook Cw3
(w1, v), the codewords are generated according to PN

W3|W1,V
, and

in codebook Cw4
(w1, v,w2,w3), the codewordsW4 are generated according to PN

W4|W1,V,W2,W3
.

These codebooks are also partitioned into bins, specifically, Cw4
(·) is partitioned into

∼ 2NI(X;W3|W1,V,Y ) bins of size ∼ 2NI(Y ;W3|W1,V ) each. Similarly, C5 is partitioned into

∼ 2NI(X;W4|W1,V,W2,W3,Z) bins, each of them of size ∼ 2NI(Z;W4|W1,V,W2,W3). The key feature

of this scheme is in fact that the Cw3
(·) does not take into consideration statistics of W2.

Since its codewords must yet be used by the Z-decoder, rising typicality considerations dur-

ing the encoding/decoding process, the additional Markov condition (45) is imposed on the

achievability scheme.

If the encoder succeeds to find good codewords in all five codebooks (the details appear

in the formal proof of Theorem 5), the rate of the first transmission, R1, is composed of

three indexes of the bins that contain good codewords in the codebooks Cw1
, Cv(·) and

Cw2
(·), where for Cv(·) only the index of the large bin is used. In this manner, similarly

to the classical W-Z coding, only the codeword of Cw1
serves the Y-decoder, while all

three codewords are decoded by Z-decoder. Hence, R1 ≃ I(X;W1|Y ) + I(X;V |W1, Z) +

I(X;W2|W1, V, Z) as is given by eq. (55). At the second transmission, the encoder first

refines the description of the bin of codebook Cv(·), and then transmits the indexes of the

chosen bins in codebooks Cw3
(·) and Cw4

(·). Thus, the codewords in codes Cw1
, Cv(·)

and Cw3
(·) serve the reconstruction in the Y-decoder and all five codewords are retrieved

correctly by Z-decoder and are used for reconstruction of the source. The incremental rate

at the second stage is I(Z;V |W1, Y ) + I(X;W3|W1, V, Y ) + I(X;W4|W1, V,W2,W3) and
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therefore, the cumulative rate at the second stage is as given by eq. (56).

The scheme that leads to the inner bound is interesting due to the following: The code-

book generation is not fully sequential, but some of the codebooks are generated in parallel

and are independent (unconditioned) of each other. Unfortunately, with this approach the

rate expressions of the inner and outer bounds obtained at the second stage are not identical

and the bounds differ in additional Markov conditions imposed on the auxiliary RVs of the

direct scheme. Yet, for the case of lossless reconstruction at either the first or the second

stage, i.e., ∆z,1 = 0 or ∆y,2 = 0, respectively, the achievability scheme achieves communi-

cation rates suggested by the outer bound and thus closes the gap between the inner and

the outer bounds.

4.2.3 Special Cases

We now confine our attention to a number of special cases in which the gap between the outer

bound and the inner bound vanishes. First, we consider the case of distortion requirements

∆z,1 ≥ ∆y,1 or ∆y,2 = ∆y,1, that is, SR with respect to only one of the decoder at either the

first or the second stages, respectively. We then consider the case of distortion requirements

∆z,1 = 0 or ∆y,2 = 0, that is, lossless reconstruction at Z-decoder at the first stage, or at

the Y-decoder at the second stage, respectively. For these cases, the achievability scheme

achieves the boundary curve of the outer bound.

Successive Refinement

When ∆z,1 ≥ ∆y,1 or ∆y,2 = ∆y,1,, the multi-decoder SR problem degenerates to the

problem of refinement of information with respect to only one decoder at either the first

or the second stage, respectively. The requirement ∆z,1 ≥ ∆y,1 fits the scenario where the

Z-decoder performs reconstruction of the source on the basis of the same transmission that

served the Y-decoder, so the average distortion it achieves is at least as small as that of

the Y-decoder. The requirement ∆y,2 = ∆y,1, fits the scenario where the Y-decoder is not

required to refine its reconstruction at the second stage. For these cases, the inner and the

outer bounds coincide, as is summarized in the following theorem:

Theorem 6. If ∆z,1 ≥ ∆y,1 or ∆y,2 = ∆y,1,, then R(D)nc = R∗∗(D)nc = R∗(D)nc.

Specifically, when ∆z,1 ≥ ∆y,1, R(D)nc is given as in the Subsection 4.2.1 with the rate
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inequalities replaced by

R1 ≥ I(X;W1|Y ) and R2 ≥ I(X;W1,W3|Y ) + I(X;W4|W1,W3, Z), (57)

for the auxiliary RV’s satisfying (W1,W3,W4)÷X ÷ Z ÷ Y .

When ∆y,2 = ∆y,1, R(D)nc is given as in the Subsection 4.2.1 with the rate inequalities

replaced by

R1 ≥ I(X;W1|Y ) + I(X;W2|W1, Z) and R2 ≥ I(X;W1|Y ) + I(X;W2,W4|W1, Z). (58)

for the auxiliary RV’s satisfying (W1,W2,W4)÷X ÷ Z ÷ Y .

The proof of the achievability part of Theorem 6 can easily be done by setting W2 =

V = const. for ∆z,1 ≥ ∆y,1 and setting W3 = V = const. for the requirement ∆y,2 = ∆y,1 in

R∗(D)nc. The converse proof follows by considering a three-stage communication scheme

in the converse proof of [6] and combining two of its stages into a single stage for each of

the above cases. For the case ∆z,1 ≥ ∆y,1, the first stage of Theorem 6 is essentially the

first stage of [6], with the transmission addressed to the Y-decoder. The second stage of

Theorem 6 is a combination of the second and the third stages in [6], where at the second

stage of [6], SR is performed with respect to the Y-decoder, and at the third stage of [6],

SR is performed with respect to the Z-decoder. For the case ∆y,2 = ∆y,1, the the first stage

of Theorem 6 matches cumulative rates of two stages of [6], there the first stage consists

of transmission of the Y-decoder and the second stage performs SR with respect to the Z-

decoder. The second stage of Theorem 6 consists of the third stage of [6] with SR performed

(again) with respect to the Z-decoder.

Lossless Reconstruction

Consider the case of lossless reconstruction at either the Z-decoder at the first stage or the

Y-decoder at the second stage. Similarly as in [14], it turns out that in these cases, the

inner and outer bounds coincide. This observation is summarized in the following theorem:

Theorem 7. If ∆y,2 = 0 or ∆z,1 = 0, then R(D)nc = R∗∗(D)nc = R∗(D)nc. Specifically,

when ∆z,1 = 0, R(D)nc is given as in the Subsection 4.2.1 with the rate inequalities replaced

by

R1 ≥ I(X;W1|Y ) +H(X|W1, Z) and R2 ≥ I(X;W1,W3|Y ) +H(X|W1,W3, Z), (59)
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for the auxiliary RVs satisfying (W1,W3)÷X ÷ Z ÷ Y .

When ∆y,2 = 0, R(D)nc is given as in the Subsection 4.2.1 with the rate inequalities replaced

by

R1 ≥ I(X;W1|Y ) + I(X;W2|W1, Z) and R2 ≥ H(X|Y ), (60)

for the auxiliary RVs satisfying (W1,W2)÷X ÷ Z ÷ Y .

The proof of the achievability part of Theorem 7 can easily be done by setting W4 =

const. andW2 = X and V = W3 for the requirement ∆z,1 = 0 and setting V = W2 andW3 =

X for the requirement ∆y,2 = 0 in the inner bound R∗(D)nc. The converse proof follows by

applying the Heegard-Berger rate-bounds [9] at both stages with the corresponding demand

of lossless reconstruction at either the first or the second stage. When the outer bound is

considered for each of the stages independently, it degenerates to the Heegard-Berger bound

and thus an intersection of the Heegard-Berger bounds for the two stages provides a trivial

outer bound to the outer bound obtained in this paper. Since the direct scheme achieves

the communication rates suggested by the intersection, the bounds coincide.

The key property of these special cases is the fact that not all auxiliary RV’s that

determine both inner and outer bounds are active simultaneously. Specifically, V , which

stands for the information transmitted to the Z-decoder at the first stage and then repeated

for the Y-decoder at the second stage, takes very specific values. The requirement ∆z,1 = 0

means perfect reconstruction of the source performed by the Z-decoder at the first stage.

For this case, the Z-decoder obviously needs the full information about the source, in the

spirit of Slepian-Wolf [16] lossless coding. Therefore, the optimal scheme presents the

information sent to Z-decoder at the first stage as if consisting of two (mutually dependent)

parts - information V which is then revealed (refined) to the Y-decoder at the second

stage (W3 = V ) and the information needed by the Z-decoder, i.e., W2 = X. For the

requirement ∆y,2 = 0, it is expected that the Y-decoder will receive at the second stage

all the information about the source, also in the spirit of [16]. As some of this information

is already revealed to the Z-decoder at the first stage, all this information is refined to

Y-decoder at the second stage (W2 = V ) and then all remaining information is transmitted

to Y-decoder directly (W3 = X). Interestingly, the cases considered in Theorem 7 are

characterized by the same property: in both cases, the second stage transmission serves

only the weaker Y-decoder. In the case ∆y,2 = 0, it is obvious that ∆z,2 = 0 can be
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achieved as well. In the case ∆z,1 = 0, it is trivially obtained that ∆z,2 = 0 as well and

thus, only the Y-decoder benefits from the second stage transmission.

5 Proofs for the Causal Case

5.1 Proof of the Converse Part of Theorem 2

The pure source-coding problem is a special case of the joint source-channel problem. We

provide a proof of the converse part of Theorem 2, which includes the converse of Theorem

1 as a special case.

Let (f1, gy,1, gz,1, f2, gy,2, gz,2) be given encoder and decoder functions for which the

distortion constraints are satisfied at both stages. In the proof, for the first and the second

steps of the communication protocol, we examine the mutual information I(X;B) and

I(X; B̄), respectively.

Firstly, for the case of causal state information at the encoder, we obtain

I(X;B) =

n
∑

i=1

I(X;Bi|B
i−1)

=

n
∑

i=1

[I(X, Bi−1;Bi)− I(Bi−1;Bi)]

≤
n
∑

i=1

I(X, Bi−1, Sn
i+1;Bi)

(a)
=

n
∑

i=1

I(U1,i;Bi)

(b)
= nI(U1,T ;BT |T )

(c)
= nI(U1,T ;B|T )

≤ nI(U1,T , T ;B)

(d)
= nI(U1;B)
(e)

≤ nC1, (61)

where (a) follows by denoting U1,i
△
= (X, Bi−1, Sn

i+1) for i ∈ {1, 2, ..., n} (note that U1,i and Si

are independent); (b) - by defining a time-sharing auxiliary random variable T , distributed

uniformly over {1, 2, ..., n} independently of all other random variables in the system and

noting that
∑n

i=1 I(U1,i, Bi) = n
∑n

i=1
1
n
I(U1,i, Bi) = nI(U1,T , BT |T ); (c) - by noting that

B = BT since the DMC is stationary; (d) - by denoting random variable U1
△
= (U1,T , T );
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and finally, (e) - by the standard channel coding theorem with causal state information at

the encoder [17] since U1 ÷ (A,S)÷B.

For non-causal availability of state information at the encoder, note that the above

defined RV’s {U1,i} are, in fact, the same RV’s as these used by Gelfand and Pinsker in [18]

with X substituting the message V of [18]. In fact, with X substituting the message V , the

converse proof of [18] is straightforwardly applicable to our case as all the conditions of the

proof still hold. Therefore, we can as well upper-bound I(X;B) by

I(X;B)
(a)
= n[I(U1;B)− I(U1;S)]

(b)

≤ nC1, (62)

where (a) and (b) follow by [18] and C1 stands for the Gel’fand-Pinsker channel capacity.

On the other hand,

I(X;B) = H(X)−H(X|B) (63)

=

N
∑

i=1

[H(Xi|X
i−1
1 )−H(Xi|X

i−1
1 ,B)] (64)

(a)
=

N
∑

i=1

[H(Xi)− (65)

− H(Xi|X
i−1
1 , Y i−1

1 , Zi−1
1 ,B)]

=
N
∑

i=1

I(Xi;X
i−1
1 , Y i−1

1 , Zi−1
1 ,B) (66)

(b)
=

N
∑

i=1

I(Xi;W1,i) (67)

(c)
= NI(XT̃ ;W1,T̃ |T̃ ) (68)

(d)
= NI(X;W1,T̃ |T̃ ) (69)

= N [I(X;W1,T̃ , T̃ )− I(X; T̃ )] (70)

(e)
= NI(X;W1,T̃ , T̃ ) (71)

(f)
= NI(X;W1), (72)

where (a) follows from the fact that the source is memoryless and from the Markov chain

Xi ÷ (Xi−1
1 ,B) ÷ (Y i−1

1 , Zi−1
1 ); (b) - by denoting W1,i

△
= (Xi−1

1 , Y i−1
1 , Zi−1

1 ,B); (c) - by

defining a time-sharing auxiliary random variable T̃ , distributed uniformly over {1, 2, ..., N}

independently of all other random variables in the system; (d) - by noting that X = XT̃

since the DMS is stationary; (e) - is again due to the fact that the source is stationary and

thus I(X; T̃ ) = 0; and finally, (f) - by denoting random variable W1
△
= (W1,T̃ , T̃ ).
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Thus, for the first stage, we obtain NI(X;W1) ≤ nC1 and by dividing both sides of the

inequality by N we end up with I(X;W1) ≤ ρ1C1, where C1 denotes the channel capacity

for the case of causal or non-causal state availability at the encoder. I.e, condition (30) of

Theorem 2 is satisfied.

As for the second stage, by similar considerations as in (61) and (62), we obtain that

I(X; B̄) ≤ mC2, where C2 stands for the channel capacity of the second channel with state

information available at the encoder (again, either causally or non-causally). Also,

I(X; B̄) = H(B̄)−H(B̄|X) (73)
(a)

≥ H(B̄|B)−H(B̄|X) + I(B; B̄|X) (74)

= H(B̄|B)−H(B̄|X,B) (75)

= I(X; B̄|B) (76)

=

N
∑

i=1

I(Xi; B̄|Xi−1
1 ,B) (77)

=

N
∑

i=1

[H(Xi|X
i−1
1 ,B) (78)

− H(Xi|X
i−1
1 ,B, B̄)] (79)

(b)
=

N
∑

i=1

[H(Xi|X
i−1
1 ,B, Y i−1

1 , Zi−1
1 ) (80)

− H(Xi|X
i−1
1 ,B, B̄, Y i−1

1 , Zi−1
1 )] (81)

=

N
∑

i=1

I(Xi; B̄|Xi−1
1 ,B, Y i−1

1 , Zi−1
1 ) (82)

(c)
=

N
∑

i=1

I(Xi;W2,i|W1,i) (83)

(d)
= NI(X;W2,T̃ |W1,T̃ , T̃ ) (84)

(e)
= NI(X;W2|W1) (85)

where (a) follows from the fact that conditioning reduces entropy and independence of the

channels described by the following Markov chain (B,S)÷X÷ (B̄, S̄); (b) from the Markov

chains Xi ÷ (Xi−1
1 ,B)÷ Y i−1

1 Zi−1
1 and Xi ÷ (Xi−1

1 ,B, B̄)÷ Y i−1
1 Zi−1

1 ; (c) come from using

the above-defined auxiliary random variables {W1,i}
N
i=1 and denoting W2,i

△
= B̄;(d) comes

from using the above-defined random variables T̃ as well as stationarity of the source, and

finally, (e) comes from using the above defined random variable W1 and letting W2
△
= W2,T̃ .

We obtain, hence, that NI(X;W2|W1) ≤ mC2 and division of both sides of the inequality
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by N results in I(X;W2|W1) ≤ ρ2C2, which is exactly the condition (31) of Theorem 2.

Also, note that the Markov structure (W1,i,W2,i) ÷ Xi ÷ (Yi, Zi) holds for every i =

1, ..., N . Due to this structure and the fact that the source PXY Z is stationary and memo-

ryless, the Markov chain (W1,W2) ÷X ÷ (Y,Z) also holds, and thus, the condition given

by (22) is satisfied.

We next show that there exist functions Gy,1, Gz,1, Gy,2 and Gz,2 that satisfy (23)

- (26), respectively. Denote by gy,k,i and gz,k,i the output of the decoders Y and Z, re-

spectively, at stages k = 1, 2 and times i = 1, ..., N . The random variable W1 contains

(Xi−1
1 , Y i−1

1 , Zi−1
1 ,B) and W2 contains B̄. Choose the functions Gy,1, Gy,2, Gz,1 and Gz,1

as follows:

Gy,1,T̃ (Y,W1) = gy,1,T̃ (Y
T̃
1 ,B), (86)

Gz,1,T̃ (Z,W1) = gz,1,T (Z
T̃
1 ,B), (87)

Gy,2,T̃ (Y,W1,W2) = gy,2,T̃ (Y
T̃
1 ,B, B̄), (88)

Gz,2,T̃ (Z,W1,W2) = gz,2,T̃ (Z
T̃
1 ,B, B̄). (89)

We then have for the average distortions5

Ed(X,Gy,1(Y,W1)) =
1

N

N
∑

i=1

Ed(X, gy,1,i(Y
i
1 ,B)) ≤ ∆y,1, (90)

Ed(X,Gz,1(Z,W1)) =
1

N

N
∑

i=1

Ed(X, gz,1,i(Z
i
1,B)) ≤ ∆z,1, (91)

Ed(X,Gy,2(Y,W1,W2)) =
1

N

N
∑

i=1

Ed(X, gy,2,i(Y
i
1 ),B, B̄) ≤ ∆y,2 (92)

and

Ed(X,Gz,2(Z,W1,W2)) =
1

N

N
∑

i=1

Ed(X, gz,2,i(Z
i
1),B, B̄) ≤ ∆z,2, (93)

5The definitions in (86)-(89) determine the outputs of the decoders functions at “stochastic” time T̃ . For
example, the output of the Y-decoder at the first stage at time T̃ is governed by the first T̃ symbols of the

source SI, i.e., Y T̃
1 , and the channel output B.
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i.e., the distortion constraints are satisfied.

In order to complete the proof, it is left to show that the cardinality of the alphabets

of auxiliary RVs W1 and W2 is limited. We use the support lemma [19], which is based on

Carathéodory’s theorem, according to which, given J real valued continuous functionals qj,

j = 1, ..., J on the set P(X ) of probability distributions over the alphabets X , and given any

probability measure µ on the Borel σ-algebra of P(X ), there exist J elements Q1, ...QJ of

P(X ) and J non-negative reals, α1, ..., αJ , such that
∑J

j=1 αj = 1 and for every j = 1, ..., J

∫

P(X )
qj(Q)µ(dQ) =

J
∑

i=1

αiqj(Qi). (94)

Before we actually apply the support lemma, we first rewrite the relevant conditional mutual

informations and the distortion functions in a more convenient form for the use of this

lemma, by taking advantage of the Markov structures. We begin with I(X;W1):

I(X;W1) = H(X)−H(X|W1), (95)

and in the same manner, I(X;W2|W1) becomes

I(X;W2|W1) = H(X|W1)−H(X|W1,W2). (96)

For a given joint distribution of (X,Y,Z), H(X) is given and unaffected by W1 and

W2. Therefore, in order to preserve prescribed values of I(X;W1) and I(X;W2|W1), it is

sufficient to preserve the associated values of H(X|W1) and H(X|W1,W2).

We first invoke the support lemma in order to reduce the alphabet size of W1, while

preserving the values of H(X|W1) and H(X|W1,W2), as well as the distortions in both

decoders at both stages of communication. The alphabet of W2 is still kept intact at this

step. Define the following functionals of a generic distribution Q over X ×W2, where X is

assumed, without loss of generality, to be {1, 2, ..., α}, α
△
= |X |:

qi(Q) =
∑

w2

Q(x,w2), i
△
= x = 1, 2, ..., α − 1, (97)

qα(Q) = −
∑

x,w2

Q(x,w2) log
∑

w2

Q(x,w2), (98)

and

qα+1(Q) = −
∑

x,w2

Q(x,w2) logQ(x|w2). (99)
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Also, we define

qα+2(Q) =
∑

y

min
x̂

∑

x,w2

Q(x,w2)P (y|x)dy,1(x, x̂), (100)

qα+3(Q) =
∑

z

min
x̃

∑

x,w2

Q(x,w2)P (z|x)dz,1(x, x̃), (101)

qα+4(Q) =
∑

y

min
x̌

∑

x,w2

Q(x,w2)P (y|x)dy,2(x, x̌) (102)

and

qα+5(Q) =
∑

z

min
x̄

∑

x,w2

Q(x,w2)P (z|x)dz,2(x, x̄), (103)

which along with (98) and (99) help us to preserve the rate and distortion constraints.

Applying now the support lemma for the above defined functionals, we find that there

exists a random variable W1 (jointly distributed with (X,Y,Z,W2), whose alphabet size is

|W1| = |X |+ 5 and it satisfies simultaneously:

∑

w1

Pr{W1 = w1}qi(P (·|w1)) = PX(x), i = 1, 2, ..., α − 1, (104)

∑

w1

Pr{W1 = w1}qα(P (·|w1)) = H(X|W1), (105)

∑

w1

Pr{W1 = w1}qα+1(P (·|w1)) = H(X|W1,W2), (106)

∑

w1

Pr{W1 = w1}qα+2(P (·|w1)) = min
Gy,1

Ed(X,Gy,1(Y,W1)), (107)

∑

w1

Pr{W1 = w1}qα+3(P (·|w1)) = min
Gz,1

Ed(X,Gz,1(Z,W1)), (108)

∑

w1

Pr{W1 = w1}qα+4(P (·|w1)) = min
Gy,2

Ed(X,Gy,2(Y,W1,W2)) (109)

and

∑

w1

Pr{W1 = w1}qα+5(P (·|w1)) = min
Gz,2

Ed(X,Gz,2(Z,W1,W2)). (110)
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Having found a random variable W1, we now proceed to reduce the alphabet of W2 in a

similar manner, where this time, we have β = |X | · |W1| − 1 constraints to preserve the

joint distribution of (X,W1), just defined, and 3 more constraints to preserve the second-

stage rate and distortions. Applying the support lemma, we obtain that W2 satisfies all the

desired rate-distortion constraints and the necessary alphabet size of W2 is upper-bounded

by

|W2| ≤ |X | · |W1|+ 2. (111)

This completes the proof of the converse part of Theorem 2.

5.2 Proof of the Direct Part of Theorem 1

Let W1, W2, Gy,1, Gy,2, Gz,1 and Gz,2 be some elements in the definition of R∗(D)c that

achieve a given point in that region. We next describe the mechanisms of random code

selection and the encoding and decoding operations.

Code Generation:

Let ǫ1 > 0, ǫ2 > 0 and δ > 0 be arbitrary small and select R1 ≥ I(X;W1) + ǫ1 + δ and

∆R
△
= R2 −R1, ∆R ≥ I(X;W2|W1) + ǫ2 + δ. For the first stage, 2NR1 , sequences of length

N , {W1(k)}, k ∈ [1, ..., 2NR1 ], are drawn independently from T δ
PW1

. Let us denote the set

of these sequences by C1. For each codeword W1(k) = w1, a set of 2N∆R second-stage

codewords {W2(k, j)}, j ∈ [1, ..., 2NR2 ], are independently drawn from T δ
PW2|W1

(w1). We

denote this set by C2(k) and its elements by {W2(k, j)}. Note that the 2NR1 sets {C2(·)}

may not be all mutually exclusive.

Encoding:

Upon receiving a source sequence x, the encoder acts as follows:

1. If x ∈ T δ
PX

and the codebook C1 contains a sequence W1(k) = w1 s.t. the pair

(x,w1) ∈ T 2δ
PXW1

, the fist such index k is chosen for transmission at the first stage.

Next, if the codebook C2(k) contains a sequence W2(k, j) = w2 s.t. (x,w1,w2) ∈

T 3δ
PXW1V W2

, the first such index j is chosen for transmission at the second stage.

2. If x /∈ T δ
PX

, or 6 ∃W1(k) = w1 s.t. (x,w1) ∈ T 2δ
PXW1

, or 6 ∃W2(k, j) = w2 s.t. (x,w1,w2) ∈

T 3δ
PXW1V W2

, an arbitrary error message is transmitted at both stages.

31



Decoding:

The decoders of the first stage retrieves the first-stage codeword according to its index

and generates the reproduction by X̂i = Gy,1 (Yi,W1,i(k)) and X̃i = Gz,1 (Zi,W1,i(k)),

i ∈ [1, 2, ..., N ]. Similarly, the decoders of the second stage retrieve both the first-stage

and the second-stage codewords and creates the reconstruction of the source according to

X̌i = Gy,2 (Yi,W1,i (k) ,W2,i (k, j)) and X̄i = Gz,2 (Zi,W1,i (k) ,W2,i (k, j)), i ∈ [1, 2, ..., N ].

We now turn to the analysis of the error probability and the distortions. For each x and

a particular choice of codes C1 and {C2(·)}, the possible causes for error message are:

1. x /∈ T δ
PX

. Let the probability of this event be defined as Pe1 .

2. x ∈ T δ
PX

, but in the codebook C1 6 ∃w1 s.t. (x,w1) ∈ T 2δ
PXW1

. Let the probability of

this event be defined as Pe2 .

3. x ∈ T δ
PX

, and the codebook C1 contains w1 s.t. (x,w1) ∈ T 2δ
PXW1

, but 6 ∃w2 ∈ C2(w1)

s.t. (x,w1,w2) ∈ T 3δ
PXW1V W2

. Let the probability of this event be defined as Pe3 .

Note that if none of those events occur, then, for the sufficiently large N , by the Markov

Lemma [12, pp. 436, Lemma 14.8.1] applied twice, the following is satisfied at both stages:

with high probability (X,Z, X̂) ∈ T
5δ|W1×W2|
P
XZX̂

and (X,Y, X̃) ∈ T
5δ|W1×W2|
P
XY X̃

. In particular,

the first application of the Markov Lemma occurs due to the Markov chain (W1,W2) ÷

X ÷ (Y,Z): Note that by the way of creation, X, Y and Z are jointly typical with high

probability and also, with high probability, X, W1 andW2 are jointly typical. Therefore, by

the Markov Lemma, (X,Y,Z,W1,W2) are also jointly typical with high probability. Also,

note that due to the fact that the source is memoryless and by the way of creation of the

reconstructions, the following Markov chains hold: X÷ (Y,W1)÷ X̂ and X÷ (Z,W1)÷ X̃,

and also, at the second stage, X ÷ (Y,W1,W2) ÷ X̌ and X ÷ (Z,W1,W2) ÷ X̄. By the

second application of the Markov Lemma, we obtain that with high probability X is jointly

typical with X̂ and X̃ at the first stage and with X̌ and X̄ at the refinement stage. The

probability that one or more of the above typicality relations do not hold vanishes as N

becomes infinitely large. The joint typicality of (X, X̂), (X, X̃), (X, X̌) and (X, X̄) imposes

that the distortion constraints (23)-(26) are satisfied when N is large enough.

It remains to show that the probability of sending an error message, Pe, vanishes when
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N is large enough. Pe is bounded by

Pe ≤ Pe1 + Pe2 + Pe3 . (112)

The fact that Pe1 → 0 follows from the properties of typical sequences [12]. As for Pe2 , we

have:

Pe2

△
=

2NR1
∏

k=1

Pr
{

(x,W1(k)) /∈ T 2δ
PXW1

}

. (113)

Now, for every k:

Pr
{

(x,W1(k)) /∈ T 2δ
PXW1

}

= 1− Pr
{

(x,W1(k)) ∈ T 2δ
PXW1

}

(114)

= 1−
|T 2δ

PXW1

|

|T δ
PW1

||T δ
PX

|

≤ 1− 2−N [I(X;W1)+ǫ1],

where the last equation follows from the size of typical sequences as are given in [12].

Substitution of (159) into (158) and application of the well-known inequality (1 − v)N ≤

exp(−vN), provides us with the following upper-bound for N → ∞:

Pe2 ≤
[

1− 2−N [I(X;W1)+ǫ1]
]2nR1

≤ exp
{

−2NR1 · 2−N [I(X;W1)+ǫ1]
}

→ 0, (115)

double-exponentially rapidly since R1 ≥ I(X;W1) + ǫ1 + δ.

To estimate Pe3 , we repeat the technique of the previous step:

Pe3

△
=

2NR2
∏

j=1

Pr
{

(x,w1,W2(w1, j)) /∈ T 3δ
PXW1V W2

}

. (116)

Again, by the property of the typical sequences, for every j:

Pr
{

(x,w1,W2(w1, j)) /∈ T 3δ
PXW1V W2

}

≤ 1− 2−N [I(X;W2|W1)+ǫ2], (117)

and therefore, substitution of (162) into (161) gives

Pe3 ≤
[

1− 2−N [I(X;W2|W1)+ǫ2]
]2NR2

≤ exp
{

−2NR2 · 2−N [I(X;W2|W1)+ǫ2]
}

→ 0, (118)

double-exponentially rapidly since R2 ≥ I(X;W2|W1) + ǫ2 + δ.

Since Pei → 0 for i = 1,2,3, their sum tends to zero as well, implying that there

exist at least one choice of a codebook C1 and related choices of sets {C2(·)}, that give

rise to the reliable source reconstruction at both stages with communication rates R1 and

∆R = R2 −R1.
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6 Proofs for the Non-Causal Case

6.1 Outer Bound

The proof of the outer bound follows the lines of the proof of Theorem 1 in [4]. Assume that

we have an (n,M1,M2, {∆y,k, (∆z,k}
2
k=1)) SR code for the source X with SI (Y,Z), as in

Definition 1. We will show the existence of a quintuplet (W1,W2,W3,W4, V ) that satisfies

the conditions 1–4 in the definition of R∗∗(D)nc. First, note that

NR1 ≥ H(f1) ≥ I(X; f1|Y) = I(X; f1,Z|Y)− I(X;Z|f1,Y)

=
n
∑

i=1

[

I(Xi; f1,Z|X
i−1,Y)− I(X;Zi|f1,Y, Zi−1)

]

. (119)

For notational convenience, we denote Zi−1ZN
i+1 = ZN\i, and use a similar notation for X

and Y . Since (Xi, Yi) and (Xi−1, Y N\i) are independent, we have, for the first term in the

summand of (119):

I(Xi; f1,Z|X
i−1,Y) = H(Xi|Yi,X

i−1, Y N\i)−H(Xi|Yi,X
i−1, Y N\i, f1,Z)

= H(Xi|Yi)−H(Xi|Yi,X
i−1Y N\i, f1,Z)

= I(Xi;X
i−1, Y N\i, f1,Z|Yi). (120)

Next, due to the Markov structure

Zi ÷ (Xi, Yi)÷ (XN\i, f1, Z
i−1, Y N\i) (121)

we have, for the second term in the summand of (119):

I(X;Zi|f1,Y, Zi−1) = H(Zi|f1,Y, Zi−1)−H(Zi|X, f1,Y, Zi−1)

= H(Zi|f1,Y, Zi−1)−H(Zi|Xi, f1,Y, Zi−1)

= I(Xi;Zi|f1,Y, Zi−1). (122)

Substituting (120) and (122) in (119), we obtain

NR1 ≥

N
∑

i=1

[

I(Xi;X
i−1, Y N\i, f1,Z|Yi)− I(Xi;Zi|f1,Y, Zi−1)

]

=

N
∑

i=1

[

I(Xi;Y
N\i, f1, Z

i−1|Yi) + I(Xi;X
i−1, ZN

i |Yi, f1, Y
N\i, Zi−1)− I(Xi;Zi|f1,Y, Zi−1)

]

=

n
∑

i=1

[

I(Xi; f1, Y
N\i, Zi−1|Yi) + I(Xi;X

i−1, ZN
i+1|Yi, Zi, f1, Y

N\i, Zi−1)
]

. (123)
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The Markovity of X ÷ Z ÷ Y implies

Yi ÷ Zi ÷ (Xi, f1, Y
N\i, Zi−1), (124)

and we have for the second term in (123)

I(Xi;X
i−1, ZN

i+1|f1,Y, Zi)

= H(Xi|f1,Y, Zi)−H(Xi|f1,Y,Z,Xi−1)

= H(Xi, Yi|f1, Y
N\i, Zi)−H(Yi|f1, Y

N\i, Zi)−H(Xi|f1,Y,Z,Xi−1)

= H(Yi|Xi, f1, Y
N\i, Zi) +H(Xi|f1, Y

N\i, Zi)−H(Yi|f1, Y
N\i, Zi)−H(Xi|f1,Y,Z,Xi−1)

(a)
= H(Xi|f1, Y

N\i, Zi)−H(Xi|f1,Y,Z,Xi−1)

= I(Xi;Yi, Z
N
i+1,X

i−1|f1, Y
N\i, Zi)

(b)
= I(Xi;Z

N
i+1,X

i−1|f1, Y
N\i, Zi) (125)

where in (a) was used the Markov chain Xi ÷ (f1, Y
N\i, Zi)÷ Yi. To justify (b), note that

f1 is a function of X and due to this feature, the fact that the source is a DMS and the

Markov condition X ÷ Z ÷ Y , we obtain that Xi ÷ (f1, Y
N\i,Z,Xi−1)÷ Yi.

Substituting (125) in (123), we get

NR1 ≥
N
∑

i=1

[

I(Xi; f1, Y
N\i, Zi−1|Yi) + I(Xi;Z

N
i+1,X

i−1|f1, Y
N\i, Zi)

]

(126)

≥

N
∑

i=1

[

I(Xi; f1, Y
N\i, Zi−1|Yi) + I(Xi;Z

N
i+1|f1, Y

N\i, Zi)
]

(127)

(a)
=

N
∑

i=1

[

I(Xi; f1, Y
N\i|Yi) + I(Xi;Z

i−1|f1,Y) + I(Zi;Z
i−1|f1,Y,Xi) + I(Xi;Z

N
i+1|f1, Y

N\i, Zi)
]

=

N
∑

i=1

[

I(Xi; f1, Y
N\i|Yi) + I(Xi, Zi;Z

i−1|f1,Y) + I(Xi;Z
N
i+1|f1, Y

N\i, Zi)
]

=
N
∑

i=1

[

I(Xi; f1, Y
N\i|Yi) + I(Zi;Z

i−1|f1,Y) + I(Xi;Z
i−1|f1,Y, Zi) + I(Xi;Z

N
i+1|f1, Y

N\i, Zi)
]

≥

N
∑

i=1

[

I(Xi; f1, Y
N\i|Yi) + I(Xi;Z

i−1|f1,Y, Zi) + I(Xi;Z
N
i+1|f1, Y

N\i, Zi)
]

(b)
=

N
∑

i=1

[

I(Xi; f1, Y
N\i|Yi) + I(Xi;Z

i−1|f1, Y
N\i, Zi) + I(Xi;Z

N
i+1|f1, Y

N\i, Zi)
]

=

N
∑

i=1

[

I(Xi; f1, Y
N\i|Yi) + I(Xi;Z

N\i|f1, Y
N\i, Zi)

]

, (128)
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where (a) is due to the Markov relation Zi ÷ (f1,Y,Xi) ÷ Zi−1 and (b) is due to the

Markov chain Yi ÷ Zi ÷ (f1, Y
N\i, Zi−1,Xi) that implies Yi ÷ (f1, Y

N\i, Zi) ÷ Zi−1 and

Yi ÷ (f1, Y
N\i, Zi,Xi)÷ Zi−1.

Before defining the auxiliary random variables, we bound R2 from below. We do that

by repeating the steps (119)-(126) of lower-bounding R1 with a pair (f1, f2) substituting f1

in each step:

NR2 ≥ H(f1, f2) ≥ H(X; f1, f2|Y) ≥ I(X; f1, f2,Z|Y)− I(X;Z|f1, f2,Y)

≥

N
∑

i=1

[

I(Xi; f1, f2, Y
N\i, Zi−1|Yi) + I(Xi;Z

N
i+1,X

i−1|f1, f2, Y
N\i, Zi)

]

(129)

Define the random variables W1,i = (f1, Y
N\i), Vi = Zi−1, W2,i = ZN

i+1, W3,i = f2 and

W4,i = Xi−1. With these definitions 6, we have the Markov structure

(W1,i,W2,i,W3,i,W4,i, Vi)÷Xi ÷ Zi ÷ Yi (130)

and the bounds (128) and (129) become

R1 ≥
1

N

N
∑

i=1

[I(Xi;W1,i|Yi) + I(Xi;W2,i, Vi|W1,i, Zi)] (131)

R2 ≥
1

N

N
∑

i=1

[I(Xi;W1,i, Vi,W3,i|Yi) + I(Xi;W2,i,W4,i|W1,i,W3,i, Vi, Zi)] . (132)

Let J be a random variable, independent of X, Y , and Z, and uniformly distributed over the

set {1, 2, . . . , N}. Define the random variables W1 = (J,W1,J ), V = (J, VJ ), W2 = (J,W2,J),

W3 = (J,W3,J) and W4 = (J,W4,J). The Markov relations (130) still hold, that is

(W1,W2,W3,W4, V )÷X ÷ Z ÷ Y, (133)

and therefore the condition 1 in the definition of R∗∗(D)nc is satisfied.

We proceed to show the existence of functions Gy,1, Gz,1, Gy,2 and Gz,2 satisfying the

second condition. Denote by gy,k,l and gz,k,l the output of the Y and Z decoders, respectively,

at iteration k and time l, k = 1, 2, 1 ≤ l ≤ N . The random variable W1 contains f1Y
N\J .

At the same time, the triplet (W1, V,W2) contains f1Z
N\J and so on. Therefore, let us

6Note that different choices of auxiliary RVs are possible. For example, one may choose: W1,i = f1, Y
N\i,

Vi = (W1,i, Z
i−1), W2,i = (Vi, Z

N
i+1), W3,i = (Vi, f2), W4,i = (W2,i,W3,i, X

i−1). This choice would result in
the following Markov chain: W1,i ÷ Vi ÷ (W2,i,W3,i)÷W4,i ÷Xi ÷ Zi ÷ Yi.
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choose the functions Gy,1, Gz,1, Gy,2 and Gz,2 as follows

Gy,1,J(Y,W1) = gy,1,J(Y, f1) (134)

Gz,1,J(Z,W1,W2, V ) = gz,1,J(Z, f1). (135)

Gy,2,J(Y,W1,W3, V ) = gy,2,J(Y, f1, f2) (136)

Gz,2,J(Z,W1,W2,W3,W4, V ) = gz,2,J(Z, f1, f2). (137)

Then, for the distortions we have

Edy,1(X,Gy,1(Y,W1)) =
1

N

N
∑

j=1

Edy,1(X, gy,1,j(Y, f1)) ≤ ∆y,1 (138)

Edz,1(X,Gz,1(Z,W1,W2, V )) =
1

N

N
∑

j=1

Edz,1(X, gz,1,j(Z, f1)) ≤ ∆z,1 (139)

Edy,2(X,Gy,2(Y,W1,W3, V )) =
1

N

N
∑

j=1

Edy,2(X, gy,2,j(Y, f1, f2)) ≤ ∆y,2

(140)

Edz,2(X,Gz,2(Z,W1,W2,W3,W4, V )) =
1

N

N
∑

j=1

Edz,2(X, gz,2,j(Z, f1, f2)) ≤ ∆z,2

(141)

Hence, condition 2 in the definition of R∗∗(D)nc is satisfied.

To prove that condition 4 of that definition holds, we have to show that the bounds (42)

and (43) can be written in a single letter form with W1, W2, W3 and W4. The following

chain of equalities holds

I(X;W1|Y ) = H(W1|Y )−H(W1|X,Y )

= H(W1|Y )−H(W1|X)

= I(W1;X)− I(W1;Y )

= H(X)−H(X|W1)−H(Y ) +H(Y |W1)

= H(X)−H(X|J,W1,J )−H(Y ) +H(Y |J,W1,J)

=
1

N

N
∑

i=1

H(Xi)−
1

N

N
∑

i=1

H(Xi|W1,i)−
1

N

N
∑

i=1

H(Yi) +
1

N

N
∑

i=1

H(Yi|W1,i)

=
1

N

N
∑

i=1

I(Xi;W1,i|Yi) (142)
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where the last equality is due to (130). In a similar manner, we get

I(X;W2, V |W1, Z) = I(X;J,W2,J , J, VJ |J,W1,J , Z) = I(X;W2,J , VJ |J,W1,J , Z)

= H(X|J,W1,J , Z)−H(X|J,W1,J ,W2,J , VJ , Z)

=
1

N

N
∑

i=1

H(Xi|i,W1,i, Zi)−
1

N

N
∑

i=1

H(Xi|i,W1,i,W2,i, ViZi)

=
1

N

N
∑

i=1

I(Xi;W2,i, Vi|W1,i, Zi). (143)

In view of (142), (143), the bound (131) can be written as

R1 ≥ I(X;W1|Y ) + I(X;W2, V |W1, Z). (144)

In a similar manner, we shown that (132) can be written as

R2 ≥ I(X;W1,W3, V |Y ) + I(X;W2,W4|W1,W3, V, Z). (145)

Specifically,

I(X;W1,W3, V |Y ) = H(W1,W3, V |Y )−H(W1,W3, V |X,Y )

= H(W1,W3, V |Y )−H(W1,W3, V |X)

= H(W1,W3, V )−H(W1,W3, V |X)

− (H(W1,W3, V )−H(W1,W3, V |Y ))

= I(W1,W3, V ;X) − I(W1,W3, V ;Y )

= H(X) −H(X|W1,W3, V )−H(Y )

+ H(Y |W1,W3, V )

= H(X) −H(X|J,W1,J , J,W3,J , J, VJ )−H(Y )

+ H(Y |J,W1,J , J,W3,J , J, VJ )

=
1

N

N
∑

i=1

H(Xi)−
1

N

N
∑

i=1

H(Xi|W1,i,W3,i, Vi)−
1

N

N
∑

i=1

H(Yi)

+
1

N

N
∑

i=1

H(Yi|W1,i,W3,i, Vi)

=
1

N

N
∑

i=1

I(Xi;W1,i,W3,i, Vi|Yi) (146)
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where the last equality is due to (130). In a similar manner, we get

I(X;W2,W4|W1,W3, V, Z) = I(X;J,W2,J , J,W4,J |J,W1,J , J,W3,J , V, Z)

= I(X;W2,J ,W4,J |J,W1,J ,W3,J , V, Z)

= H(X|J,W1,J ,W3,J , VJ , Z)

− H(X|J,W1,J ,W2,J ,W3,J ,W4,J , VJ , Z)

=
1

N

N
∑

i=1

H(Xi|i,W1,i,W3,i, Vi, Zi)

−
1

N

N
∑

i=1

H(Xi|i,W1,i,W2,i,W3,i,W4,i, Vi, Zi)

=
1

N

N
∑

i=1

I(Xi;W2,i,W4,i|W1,i,W3,i, Vi, Zi). (147)

It is left to prove that the cardinality of the auxiliary RVs satisfies the third condition.

This step of the proof extends the converse proof of [4] and conceptually is very similar

to the above-detailed part of the converse proof of Theorem 2 which is related to reducing

cardinality of the alphabets of auxiliary RVs. The detailed proof of this part is thus omitted

and to complete the proof of the converse we merely outline it. Here also we use the support

lemma [19] and rewrite the relevant conditional mutual informations and the distortion

functions in a more convenient form for the use of this lemma. Similarly as in [4], we

begin with the first term, I(X;W1|Y ), in the lower bound to R1, using the Markov chain

W1 ÷X ÷ Y :

I(X;W1|Y ) = H(W1|Y )−H(W1|X,Y )

= H(W1|Y )−H(W1|X)

= H(W1)− I(Y ;W1)−H(W1) + I(X;W1)

= H(Y |W1)−H(Y )−H(X|W1) +H(X). (148)

Next, we decompose the second term in the lower bound to R1, I(X;V,W2|W1, Z), into

I(X;V |W1, Z) and I(X;W2|W1, V, Z), and for I(X;V |W1, Z) we have due to the Markov

chain (W1, V )÷X ÷ Z:

I(X;V |W1, Z) = H(X|W1, Z)−H(X|W1, V, Z)

= H(X|W1)− I(X;Z|W1) + I(X;Z|W1, V )−H(X|W1, V )

= H(X|W1)−H(Z|W1) +H(Z|W1,X) −H(X|W1, V )
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+ H(Z|W1, V )−H(Z|W1, V,X)

= H(X|W1)−H(Z|W1) +H(Z|W1, V )−H(X|W1, V ). (149)

Using the Markov chain (W1,W2, V )÷X ÷ Z for I(X;W2|W1, V, Z), we have:

I(X;W2|W1, V, Z) = H(X|W1, V )−H(Z|W1, V )

+ H(Z|W1,W2, V )−H(X|W1,W2, V ). (150)

Similarly, I(X;W1,W3, V |Y ) can be decomposed into I(X;W1|Y ), I(X;V |W1, Y ) and

I(X;W3|W1, V, Y ), with two later terms, in turn, expressed as

I(X;V |W1, Y ) = H(X|W1)−H(Y |W1) +H(Y |W1, V )−H(X|W1, V ), (151)

and

I(X;W3|W1, V, Y ) = H(X|W1, V )−H(Y |W1, V )

+ H(Y |W1,W3, V )−H(X|W1,W3, V ). (152)

The second term in the lower bound to R2 is I(X;W2,W4|W1, V,W3, Z) and it can also be

decomposed into

I(X;W2|W1,W3, V, Z) = H(X|W1,W3, V )−H(Z|W1,W3, V )

+ H(Z|W1,W2,W3, V )−H(X|W1,W2,W3, V ). (153)

and

I(X;W4|W1,W2,W3, V, Z) = H(X|W1,W2,W3, V )−H(Z|W1,W2,W3, V )

+ H(Z|W1,W2,W3,W4, V )−H(X|W1,W2,W3,W4, V ).(154)

Thus, the lower bounds to R1 and R2 can be expressed as following:

I(X;W1|Y ) + I(X;V,W2|W1, Z) =
[

H(X)−H(Y )
]

+
[

H(Y |W1)−H(Z|W1)
]

+
[

H(Z|W1,W2, V )−H(X|W1,W2, V )
]

(155)

and

I(X;W1,W3, V |Y ) + I(X;W2,W4|W1,W3, V, Z) =
[

H(X)−H(Y )
]

+
[

H(Y |W1,W3, V )−H(Z|W1,W3, V )
]

+
[

H(Z|W1,W2,W3,W4, V )

− H(X|W1,W2,W3,W4, V )
]

. (156)
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Since [H(X) −H(Y )] is a constant that depends only on the given statistics of the source

and SI Y , in order to preserve prescribed values of the above lower bounds, it is suf-

ficient to preserve the associated values of [H(Y |W1) − H(Z|W1)] + [H(Z|W1,W2, V ) −

H(X|W1,W2, V )] and [H(Y |W1,W3, V ) −H(Z|W1,W3, V )] + [H(Z|W1,W2,W3,W4, V ) −

H(X|W1,W2,W3,W4, V )].

From here on the proof is essentially similar to the one provided for Theorem 2: The

support lemma is first used to reduce the alphabet size of W1, while preserving the values

of (155) and (156) and the distortions at both stages. The alphabets of the remaining

auxiliary RVs are kept intact at this stage of the proof. There are |X | − 1 functionals to be

defined that help to preserve the source distribution, 2 more to preserve (155) and (156) and

4 more functionals to preserve all the distortions at both stages. Thus, it is easy to show

that it is possible to find auxiliary RV W1 which necessary alphabet size is upper-bounded

by |X | + 5. Next, we reduce the alphabet size of V , where now in addition to the values

of the lower bounds and distortions ∆z,1, ∆y,2 and ∆z,2, it is desired to preserve the joint

distribution (X,W1). There are |X ||W1| − 1 + 2 + 3 constraints imposed on V and thus its

alphabet size is upper-bounded by |X |(|X | + 5) + 4. In a similar manner, the reduction of

the alphabet cardinality is further performed for W2, W3 and W4 where at each stage, the

support lemma is applied in so that the statistics of the source and all already “reduced”

RVs are maintained as well as lower bounds to the relevant rates and distortions.

6.2 Inner Bound

6.2.1 Code-book generation

First, randomly generate, according to PW1
(·), a codebook Cw1

of 2[N(I(X;W1)+ǫ1+δ)] inde-

pendent codewords {w1,i} of length N , where the coordinates are also generated i.i.d. Then,

partition the codewords into 2[N(I(X;W1|Y )+ǫ2+δ)] bins (ǫ2 > ǫ1).

Next, for each {w1,i}, randomly generate a codebook Cv(w1,i) consisting of

2[N(I(X;V |W1)+ǫv+δ)] codewords {vi,j}, where the generation of each coordinate is according

to PV |W1
(·) and partition this codebook into 2[N(I(X;V |W1,Z)+ǫv′+δ)] bins, Cv(w1,i), (ǫv′ > ǫv).

Each bin in the codebook of {vi,j} contains a little less than 2[N(I(Z;V |W1))] codewords. Par-

tition each such bin into sub-bins, Cb
v(w1,i), each of a size of a little less than 2[N(I(Y ;V |W1))].

There are about 2[N(I(Z;V |W1)−I(Y ;V |W1))] such sub-bins.

For each pair {w1,i, vi,j} randomly generate a codebook Cw2
(w1,i, vi,j) consisting of
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2[N(I(X;W2|W1,V )+ǫ3+δ)] codewords {w2,i,j,k}, where the generation of each coordinate is ac-

cording to PW2|W1,V (·) and partition Cw2
(w1,i, vj) into 2[N(I(X;W2|W1,V,Z)+ǫ4+δ)] bins (ǫ4 >

ǫ3).

Now, randomly generate for each pair (w1,i, vi,j) a codebook Cw3
(w1,i, vi,j) of

2[N(I(X;W3|W1,V )+ǫ5+δ)] codewords {w3,i,j,l} according to PW3|W1,V (·) and partition Cw3
(w1,i, vj)

into 2[N(I(X;W3|W1,V,Y )+ǫ6+δ)] bins (ǫ6 > ǫ5).

Finally, for each quadruplet {w1,i,w2,i,j,k,w3,i,j,l, vi,j}, randomly generate a codebook

Cw4
(w1,i, vi,j,w2,i,j,k,w3,i,j,l) of 2

[N(I(X;W4|W1,W2,W3,V )+ǫ7+δ)] codewords {w4,i,j,k,l,m} accord-

ing to PW4|W1,W2,W3,V (·) and partition it into 2[N(I(X;W4|W1,W2,W3,V,Z)+ǫ8+δ)] bins (ǫ8 > ǫ7).

For clarity of exposition, the generation of codebooks is demonstrated in Fig. 3.

1wC

( )1,v iC w

( )
2 1, ,w i jC w v ( )3 1, ,w i jC w v

( )4 1, 2, 3,, , ,w i j k lC w v w w

Figure 3: Achievability Scheme - Code Generation.

6.2.2 Encoding

Given a source sequence x, the encoder seeks a vector in Cw1
such that x and w1,i are jointly

typical. If such w1,i is found, in Cv(w1,i), the encoder seeks a vector vi,j such that the source

sequences x and w1,i will be jointly typical with it. The encoder proceeds this way, seeking

w2,i,j,k in Cw2
(w1,i, vi,j) so that (x,w1,i, vi,j ,w2,i,j,k) are jointly typical. The encoder then

seeks in Cw3
(w1,i, vi,j) a codeword w3,i,j,l so that (x,w1,i, vi,j,w3,i,j,l) are jointly typical.

Due to the Markov chain W2 ÷ (X,W1, V ) ÷ W3, had the encoder managed to find such
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sequences, (x,w1,i, vi,j,w2,i,j,k,w3,i,j,l) will be jointly typical with high probability.

If the encoder found jointly typical sequences (x,w1,i, vi,j,w2,i,j,k,w3,i,j,l), it seeks in

Cw4
(w1,i, vi,j,w2,i,j,k,w3,i,j,l) a sequence w4,i,j,k,l,m which will be jointly typical with all the

above-mentioned sequences. If at any stage of its search the encoder fails to find a “good

sequence”, it declares an error. As is shown in the sequel, the probability of such an

event is very low, due to the typicality properties of the scheme. Otherwise, i.e., if all

the jointly typical sequences are found, the encoder acts as follows: At the first stage, it

conveys to the decoders a single transmission consisting of the following concatenated in-

dexes: the index B1 of the bin to which w1,i belongs, of length of about NI(X;W1|Y )

bits; the index B2 of Cv(w1,i), s.t., vi,j ∈ Cv(w1,i), which can be described by about

NI(X;V |W1, Z) bits and the index B3 of the bin to which w2,i,j,k belongs, which requires

about NI(X;W2|W1, V, Z) bits. At the refinement stage, it transmits the index B∗
4 of

Cb
v(w1,i) to which vi,j belongs within Cv(w1,i) (previously described by B2), which requires

about N [I(Z;V |W1) − I(Y ;V |W1)] bits, concatenated with the indexes B5 and B6 of the

bins containing w3,i,j,l and w4,i,j,k,l,m, in Cw3(w1,i, vi,j) and Cw4(w1,i, vi,j,w2,i,j,k,w3,i,j,l), of

about NI(X;W3|W1, V, Y ) and NI(X;W4|W1,W2,W3, V, Z) bits, respectively. The trans-

mission rates at both stages are as defined by R∗(D)nc up to {ǫi}.

6.2.3 Decoding

First stage: The first decoder accesses (B1, B2, B3), but performs W-Z decoding procedure

with respect to B1 only. Specifically, in Cw1
, in the bin indexed by B1, the decoder seeks a

unique sequence w1,i that was chosen by the encoder. Due to the Markov chain W1÷X÷Y ,

as the block-length becomes infinitely large, the decoder will find with probability tending

to 1 the correct sequence w1,i. Since in each bin in Cw1
there are less than 2NI(Y ;W1)

codewords, and these codewords were generated i.i.d, the probability of existing at the bin

indexed by B1 of another codeword jointly typical with Y vanishes as N → ∞.

The second decoder uses three indexes (B1, B2, B3) to retrieve all three codewords chosen

by the encoder. Specifically, it retrieves w1,i similarly as Y-decoder does, since, as it has

access to a more informative SI, it can do whatever the Y-decoder can do. Afterwards, it

retrieves correctly vi,j ∈ Cv(w1,i) in the bin indexed by B2, which is possible due to the

Markov chain (V,W1) ÷X ÷ Z. The Z-decoder does not find in bin indexed by B2 other

codewords which are jointly typical with z since there are less than 2NI(Z;V |W1) codewords in
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that bin. Finally, following similar considerations, after retrieving (w1,i, vi,j), the Z-decoder

retrieves correctly w2,i,j,k ∈ Cw2
(w1,i, vi,j) in the bin indexed by B3.

Second Stage: Note that after the first transmission Y-decoder is able to find all

codewords v which are jointly typical with y in the bin indexed by B2 in the codebook

Cb
v(w1,i). This is due to the Markov chain (W1, V ) ÷X ÷ Y . But, it cannot reveal which

of these codewords was chosen by the encoder, as there are more than 2NI(Y ;V |W1) such

codewords (there are a bit less then 2NI(Z;V |W1) such codewords, as is required by the W-Z

coding designed for Z-decoder). When the Y-decoder receives the index B∗
4 of Cb

v(w1,i), since

vi,j ∈ Cb
v(w1,i) ⊆ Cv(w1,i), it searches vi,j among a group of codewords of a size less than

2NI(Y ;V |W1) codewords, and thus, it is is able to retrieve vi,j correctly by the W-Z decoding

argument. After Y-decoder has found vi,j, it performs W-Z decoding of the codeword

w3,i,j,l ∈ Cw3
(w1,i, vi,j) according to the bin-index B5 and (w1,i, vi,j). It now improves the

reconstruction of the source sequence with an aid of the triplet (w1,i, vi,j,w3,i,j,l), which is

possible within the defined distortion due to the typicality properties of the scheme.

The Z-decoder, which after the first step has retrieved correctly (with probability tending

to 1, as N → ∞) the sequences (w1,i, vi,j,w2,i,j,k), makes no use of index B∗
4 , as it serves

Y-decoder only. The Z-decoder uses its knowledge of (w1,i, vi,j) as well as the fact that its

SI is more informative to decode correctly w3,i,j,l in the bin of Cw3
(w1,i, vi,j) indexed by B5.

Finally, it uses all the codewords it managed to find thus far to perform conditional W-Z

decoding and to find the correct codeword w4,i,j,k,l,m according to the index B6 of a bin in

Cw4
(w1,i, vi,j,w2,i,j,k,w3,i,j,l).

At each stage, after each of the decoders has found correct codewords, it performs recon-

struction of the source sequence x. Due to the typicality properties of the scheme, i.e., X÷

(W1, Y )÷X̂ ,X÷(W1,W2, V, Z)÷X̃, X÷(W1,W3, V, Y )÷X̌ andX÷(W1,W2,W3,W4, V, Z)÷

X̄, the distortion constraints are satisfied at both decoders.

6.2.4 Analysis of Probability of Error

We now turn to the analysis of the error probability. For each x and a particular choice of

the code Cw1
and related choices of ({Cv(·), Cw2

(·), Cw3
(·), Cw4

(·)}), the possible causes for

error message are:

1. x /∈ T δ
PX

. Let the probability of this event be defined as Pe1 .

44



2. x ∈ T δ
PX

, but in the codebook Cw1
6 ∃w1,i s.t. (x,w1,i) ∈ T 2δ

PXW1

. Let the probability

of this event be defined as Pe2 .

3. x ∈ T δ
PX

, and the codebook Cw1
contains w1,i s.t. (x,w1,i) ∈ T 2δ

PXW1

, but 6 ∃vi,j ∈

Cv(w1,i) s.t. (x,w1,i, vi,j) ∈ T 3δ
PXW1V

. Let the probability of this event be defined as

Pe3 .

4. x ∈ T δ
PX

, the codebook Cw1
contains w1,i s.t. (x,w1,i) ∈ T 2δ

PXW1

, and also the codebook

Cv(w1,i) contains vi,j s.t. (x,w1,i, vi,j) ∈ T 3δ
PXW1V

, but 6 ∃w2,i,j,k ∈ Cw2
(w1,i, vi,j) s.t.

(x,w1,i, vi,j,w2,i,j,k) ∈ T 3δ
PXW1V W2

. Let the probability of this event be defined as Pe4 .

5. x ∈ T δ
PX

, the codebook Cw1
contains w1,i s.t. (x,w1,i) ∈ T 2δ

PXW1

, the codebook

Cv(w1,i) contains vi,j s.t. (x,w1,i, vi,j) ∈ T 3δ
PXW1V

, but 6 ∃w3,i,j,l ∈ Cw3
(w1,i, vi,j) s.t.

(x,w1,i, vi,j,w3,i,j,l) ∈ T 3δ
PXW1V W3

. Let the probability of this event be defined as Pe5 .

6. x ∈ T δ
PX

, the codebook Cw1
contains w1,i s.t. (x,w1,i) ∈ T 2δ

PXW1

, the codebook

Cv(w1,i) contains vi,j s.t. (x,w1,i, vi,j) ∈ T 3δ
PXW1V

, and the codebooks Cw2
(w1,i, vi,j)

and Cw3
(w1,i, vi,j) contain w2,i,j,k s.t. (x,w1,i, vi,j,w2,i,j,k) ∈ T 3δ

PXW1V W2

and w3,i,j,m

s.t. (x,w1,i, vi,j,w3,i,j,m) ∈ T 3δ
PXW1V W3

, respectively, but (x,w1,i, vi,j,w2,i,j,k,w3,i,j,l) /∈

T 4δ
PXW1V W2W3

. Let the probability of this event be defined as Pe6 .

7. x ∈ T δ
PX

, the codebook Cw1
contains w1,i s.t. (x,w1,i) ∈ T 2δ

PXW1

, the codebook

Cv(w1,i) contains vi,j s.t. (x,w1,i, vi,j) ∈ T 3δ
PXW1V

, and the codebooks Cw2
(w1,i, vi,j)

and Cw3
(w1,i, vi,j) contain w2,i,j,k s.t. (x,w1,i, vi,j,w2,i,j,k) ∈ T 3δ

PXW1V W2

and w3,i,j,m s.t.

(x,w1,i, vi,j,w3,i,j,m) ∈ T 3δ
PXW1V W3

, respectively, and also (x,w1,i, vi,j ,w2,i,j,k,w3,i,j,l) ∈

T 4δ
PXW1V W2W3

, but6 ∃w4,i,j,l,k,m ∈ Cw4
(w1,i, vi,j,w2,i,j,k,w3,i,j,l) s.t.

(x,w1,i, vi,j,w2,i,j,k,w3,i,j,l,w4,i,j,k,l,m) ∈ T 4δ
PXW1V W2W3

. Let the probability of this event

be defined as Pe7 .

Note that if none of those events occur, then, for the sufficiently large N , by the Markov

Lemma [12, pp. 436, Lemma 14.8.1] applied twice, the following is satisfied: with high

probability (X,Y, X̂) are jointly typical and (X,Z, X̃) are jointly typical at both stages.

1. The first application of the Markov Lemma occurs due to the Markov chain (Y,Z)÷

X÷(W1, V,W2,W3,W4): Note that by the way of creation, X, Y and Z are jointly typ-

ical with high probability and also, with high probability, RV’s (W1,W2,W3,W4,V)
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and X are jointly typical. Therefore, by the Markov Lemma, all the sequences X, Y,

Z, W1, W2, W3, W4 and V are also jointly typical with high probability. And so,

SIs are jointly typical with the auxiliary RV’s at both stages of communication.

2. Also, note that due to the fact that the source is memoryless and by the way of

creation of the reconstructions, the following Markov chains hold at the first stage:

X ÷ (Y,W1) ÷ X̂ and X ÷ (Z,W1,V,W2) ÷ X̃. Similarly, at the second stage,

X ÷ (Y,W1,V,W3) ÷ X̂ and X ÷ (Z,W1,V,W2,W3,W4) ÷ X̃. By the second

application of the Markov Lemma, we obtain that with high probability X is jointly

typical with X̂ and X̃ at both stages. The probability that one or more of the above

typicality relations do not hold vanishes as N becomes infinitely large. The joint

typicality of (X, X̂) and (X, X̃) imposes that the distortion constraints (33)- (36) are

satisfied when N is large enough (see [4, Section 6] for explicit derivations).

It remains to show that the probability of sending an error message vanishes when N is

large enough. The average probability of error Pe is bounded by

Pe ≤ Pe1 + Pe2 + Pe3 + Pe4 + Pe5 + Pe6 + Pe7 . (157)

The fact that Pe1 → 0 follows from the properties of typical sequences [12]. As for Pe2 , we

have:

Pe2

△
=

|Cw1
|

∏

k=1

Pr
{

(x,W1,k) /∈ T 2δ
PXW1

}

. (158)

Now, for every k:

Pr
{

(x,W1,k) /∈ T 2δ
PXW1

}

= 1− Pr
{

(x,W1,k) ∈ T 2δ
PXW1

}

(159)

= 1−
|T 2δ

PXW1

|

|T δ
PW1

||T δ
PX

|

≤ 1− 2−N [I(X;W1)+ǫ1],

where the last equation follows from the size of typical sequences as are given in [12].

Substitution of (159) into (158) and application of the well-known inequality (1 − v)N ≤

exp(−vN), provides us with the following upper-bound for N → ∞:

Pe2 ≤
[

1− 2−N [I(X;W1)+ǫ1]
]|Cw1

|
≤ exp

{

−|Cw1
| · 2−N [I(X;W1)+ǫ1]

}

→ 0, (160)

double-exponentially rapidly since |Cw1
| = I(X;W1) + ǫ1 + δ.
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To estimate Pe3 , we repeat the technique of the previous step:

Pe3

△
=

|Cv|
∏

j=1

Pr
{

(x,w1,i,Vi,j) /∈ T 3δ
PXW1V

}

. (161)

Again, by the property of the typical sequences, for every j:

Pr
{

(x,w1,Vi,j) /∈ T 3δ
PXW1V

}

≤ 1− 2−N [I(X;V |W1)+ǫ2], (162)

and therefore, substitution of (162) into (161) gives

Pe3 ≤
[

1− 2−N [I(X;V |W1)+ǫ2]
]|Cv|

≤ exp
{

−|Cv| · 2
−N [I(X;V |W1)+ǫ2]

}

→ 0, (163)

double-exponentially rapidly since |Cv| = I(X;V |W1) + ǫ2 + δ.

To estimate Pe4 , the technique of the previous step is again repeated:

Pe4

△
=

|Cw2
|

∏

k=1

Pr
{

(x,w1,i, vi,j,W2,i,j,k) /∈ T 3δ
PXW1V W2

}

. (164)

Still, by the property of the typical sequences, for every k:

Pr
{

(x,w1,i, vi,j,W2,i,j,k) /∈ T 3δ
PXW1V W2

}

≤ 1− 2−N [I(X;W2|W1,V )+ǫ3], (165)

and therefore, substitution of (165) into (164) gives

Pe4 ≤
[

1− 2−N [I(X;W2|W1,V )+ǫ3]
]|Cw2

|
≤ exp

{

−|Cw2
| · 2−N [I(X;W2|W1,V )+ǫ3]

}

→ 0, (166)

double-exponentially rapidly since |Cw2
| = I(X;W2|W1, V ) + ǫ3 + δ.

Similarly as in the previous step we show that Pe5 and Pe7 vanishes as well when

N is large enough, using the fact that |Cw3
| = I(X;W3|W1, V ) + ǫ6 + δ and |Cw4

| =

I(X;W4|W1,W2,W3, V ) + ǫ7 + δ, respectively.

The proof for Pe6 is different and it uses the Markov lemma [12, pp. 436, Lemma 14.8.1].

In the previous steps we show that the probability that the quadruples (X,W1,V,W2) and

(X,W1,V,W3) are jointly typical with high probability. Now, due to the Marlov lemma

applied to the Markov chainW2÷(X,W1, V )÷W3, the probability that (X,W1,V,W2,W3)

are not typical tends to zero with N approaching infinity. Therefore, Pe6 → 0 whenN → ∞.

Since Pes → 0 for s ∈ [1, 7], their sum tends to zero as well, implying that there exist

at least one choice of a codebook Cw1
and related choices of sets {Cv}, {Cw2

}, {Cw3
}, {Cw4

}

that give rise to the reliable source reconstruction at both stages with communication rates

R1 and R2.
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