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Abstract— "Extended Clifford algebras” are introduced as also be expressed as
a means to obtain low ML decoding complexity space-time

block codes. Using left regular matrix representations of wo S(X) = [ A1s+ Bis* Ags+ Bys* ... Aps+ Bgrs* |
specific classes of extended Clifford algebras, two systeti@a (1)
algebraic constructions of full diversity Distributed Space-Time \here, 4;, B; € CRXR ;=1,..., R are complex matrices.

Codes (DSTCs) are provideq for any power of two number of We call the matricesd;, B; as relay matrices’ In [1], it
relays. The left regular matrix representation has been shan v . L ' .
to naturally result in space-time codes meeting the additipal @S been shown that linear designs satisfying the following

constraints required for DSTCs. The DSTCs so constructed conditions
have the salient feature of reduced Maximum Likelihood (ML) 1) For anyi = 1,...,R, either4; = 0 or B; = 0

decoding complexity. In particular, the ML decoding of these . T . _
codes can be performed by applying the lattice decoder algidhm (Conjugate-Linearity Propgrty) ankl = .R .
on a lattice of four times lesser dimension than what is requid 2) All the nonzero relay matrices are unitary matrices

in general. Moreover these cc_)de_s have a unifo_rm distributio of gre applicable as DSTCs whese= [ 21 % ... ZR }T
f’oo"xeérzmgrgoth:r rS';th :tn?hlen rg?;e;thus leading to a low Peak \yj| pe the vector transmitted by the source in the first phase
verag W ' ys. and the matricesl;, B; will be used at théth relay to perform

|. INTRODUCTION linear process_ing of the received vector and i_ts conjugate.
_ _ _ All the previous works on DSTC construction except [2],
Coding for wireless relay networks has received a lot %], [6] and [7] do not address the important problem of
attraction recently with the advent of cooperative di\@'rSidesigning DSTCs with low Maximum Likelihood (ML) de-
techniques. In this paper, we are interested in constwictifoging complexity. This problem gains significant impodan
Distributed Space-Time Codes (DSTCs) for the Amplify andspecially if the number of relays in the network is large.
Forward (AF) based cooperative diversity protocol proposgyppose we partition thek real variables and their corre-
by Jing and Hassibi [1]. The Jing and _HaSS|b| protocol is $ponding weight matrices intg-groupsLy, k = 1,..., g, the
two phase based AF protocol. In the first phase, the soulcgn group containin@k /g real variables. Then without loss

broadcasts a vector to all the relays which contains the of generality we can consider the natural simplest partjtio
information that the source intends to communicate to thgrms of whichS(X) can be written as,

destination. In the second phase, each relay transmitstarvec

obtained by linear processing of the received vector and its 4 5
conjugate to the destination. To the destination, this woulS(X) = Sk(Xx) where, Sk(X;) = z;C;.
appear as if each relay transmitted a column of a linear space k=1 o (h=D2K

g9

time code thus leading to the concept of DSTCs. We refer the

readers to [1] for a detailed introduction to DSTCs. Consale the received _matnx and the channel mgtnx are denqtg]z{_by
and H respectively, then a ML decoder in general minimizes

Rx R linear designS(X) in 2K real variablesy, zs, . . ., T2k . 2 .
as follows the metric|| Y — S(X)H |*. However, if

2K H H . .

Hc Heoo — < <
S(X):Z:CiCi C; Ci+ O G O,VZGLP,VJGLq,p;éq,l_p,q_(gz)

=t then this is equivalent [6] to minimizing
where, the complex matrig; € CE*% is called the'weight )
matrix’ corresponding to the real variable and 1}2 is the 1Y — Sk(Xi)H || ®)
number of relays. LefX = [ 1 @2 ... a2k | . From foreachl < k < g individually. Note that[(B) can be computed
the 2K real variables we can fornk’ complex variables by applying the lattice decoder algorithm on a lattice gof
21,22, , 2k by pairing two real variables at a time. Lettimes lesser dimension. We then say that the DSTg&dsoup

s = [ z1 2z ... ZK ]T. Then the linear desig$ can ML decodable. In [2], the authors construct2dyroup ML
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decodable codes using division algebras. In [3], DSTCs fare F'—linear.

two and four relays based on the Alamouti design and quasi-

orthogonal design were proposed. Following the works of [2] |I. SUFFICIENT CONDITIONS FOR LOWML DECODING
in [6], a class oft-group ML decodable codes called Precoded COMPLEXITY DESIGNS

Co-ordinate Interleaved Orthogonal Designs (PCIODs) WereRecentIy in [4], sufficient conditions for designimggroup

constructed for arbitrary number of relays. However, PC$O L decodable STBCs have been reported. Since our con-

have a drawback that the power distribution among the relays, tions rely upon these sufficient conditions and bezaus

is not uniform across time slots thus leading to a large Peakvge restrict ourselves to the — 4 case, we briefly introduce
Average Power Rati_o (PAPR)' Moreover the relay matr_ices_ H{ese sufficient conditions [4] foy = 4 before proceeding
PCIODs are not unitary which in turn forces the destinatiof ey Essentially we would like to be able to partitioreth
to perform additional processing [6] to make the covariancg of weight matrices of a linear design intgroups in such
matrix of the resultant noise vector at the destination daeslcaa way that the condition in12) is satisfied. Let us first list
identity matrix. Recently in [7], this problem was resolveyl down theK weight matrices in the form of an array as shown
an alternative iterative construction for number of reldys below.

being a power of two. However, both the constructions of [6],

[7] were not obtained from a systematic algebraic procedure Gy ‘ C%H C%H O%H

targeting the requirements for low decoding complexitye Th Co C§+2 C%+2

main contributions of this paper are as follows.

« A generalization of Clifford algebras, which we call "Ex- Ck Ck Csr Ck
tended Clifford Algebras” is introduced as an algebrai Lo ° ] : . . :
framework to handle the problem of constructing STBC he partitioning is as follows: All the_ wel_ght matrices ineon
with low ML decoding complexity. To the knowledge Ofcolumn belong to one group. To 5|m_pI|fy the congtructlon,
the authors, this is the first known systematic aIgebrai%e shall consider all the we|ght matrices to be _unltary and
procedure to solve this problem. This algebraic fram l_J_rtherrfr;o_re seCa:_I. Ttr:en It h_as bgenhshfpwn in [4] Ejhart]
work simplifies the problem to finding appropriate matri>'g Is sufficient to design the mz_;\tnces in the _|rst row an the
representations of extended Clifford algebras. irst column such that they satisfy the following conditions

« Using left regular representation of "Extended Clifford 1) All the matrices in the first row excegt; = I should
Algebras”, two different fully diverse algebraic DSTC square to-I and should pair-wise anti-commute among
constructions are provided for power of two number themselves.
of relays. Left regular representation has been shown2) The matrices in the first column should squard tand
to natura”y result in Space-time codes meeting the ad- should commute with all the matrices in the first row
ditional requirements of DSTCs. Moreover, one of the  and the first column.
constructions provides an algebraic explanation for th@nce such a set of matrices is obtained, the matrix ir-ie
recently proposed DSTC construction in [7]. row andj-th column can be filled up by multiplying; and

« ML decoding of these algebraic DSTCs can be performeﬂ@flmﬂ. It can be easily verified that such a set of weight

by applying the well known lattice decoder algorithmmatrices will satisfy the conditions if(2) far = 4.
on a lattice of four times lesser dimension than what is

required in general. I1l. ALGEBRAIC CONSTRUCTION4-GROUPML
o Furthermore, the proposed DSTCs have lesser PAPR than DECODABLE DSTCs
the DSTCs of similar ML decoding complexity reported L .
in [6]. An algebra is simply a ring as well as a vector space

with the addition operation being compatible to both theyrin
The rest of the paper is organized as follows: In Sedfibn &nd the vector space structures. In this section, we int®du
we briefly recollect a set of known sufficient conditions fowl  the algebraic framework of "Extended Clifford Algebras” to
ML decoding complexity designs. Extended Clifford algebrehandle the problem of constructinggroup ML decodable
are introduced in SectidnJIl and algebraic construction-of codes satisfying the sufficient conditions discussed irptiee
group ML decodable DSTCs is presented in a general settivgbus section [7]. Using left regular representation okeexted
The two special classes of codes from extended Cliffodifford algebras we then obtain two constructionstegroup
algebras are presented in detail in Sectibnk IV Biid V. ML decodable DSTCs.
Section[V] it is shown that all the requirements for DSTCs Qur methodology to construct the matrices in the first row
are satisfied by the proposed codes. and first column (as discussed in previous section) would be
Notation: For a complex matrixd, A; denotes the real matrix to fabricate an algebra in such a way that it contains elesnent
obtained by taking the real parts of all the entriesdofand satisfying the algebraic relations we need. Once we coctstru
Ao denotes the real matrix obtained by taking the imaginatiie algebra, we then obtain the required linear design by
parts of all the entries ofl. If A is an algebra over a field# taking an appropriate matrix representation of the contrl
then Endr(A) denotes the set of all maps frod to A that algebra.



Definition 1: [5] The Clifford algebra, denoted bg'lif f, One can check from the multiplication table that the muikipl
is the algebra over the real fielk generated byn ob- cation is indeed associative. Note th4g can also be viewed
jectsv,, k = 1,...,n which are anti-commutingyfy; = as a vector space ovér by thinking of the symboly, as the
—v;7, Yk # j) and squaring to-1 (77 = —1 Vk = complex numbei = \/—1. Then, we have
1,...,n).

2 _
A natural basis folClif f,, seen as a vector space owRr is Ay ={a1+012)n, 22 € C}

. e where,z; = a1 + y1a2 and zo = as + v1a4
Bn = SJU{L{%'%— 1"'|'1"<nk}_ < kit <} 4) Since we are interested iftgroup decodable DSTCs, we
m=2 Uli=1 Tkl 2 = Fi = Figd = need4 matrices (including identity matrix) in the first row. One

The number of basis elements|i®,,| = 2". way to obtain such matrices is to take the matrix representat

Notice that the defining algebraic relations of the genesatf AL for L = 2% a € N. The matrix representation of the
of a Clifford algebra resemble the algebraic relations Whisymbols1,~1,72,7s respectively can be used to fill up the
the matrices in the first row should satisfy. Hence we cditst row. Interestingly, there is yet another way of obtagi
obtain the matrices in the first row by taking unitary matrisuch matrices. Let us look atf for L = 2%,a € N. The
representations of the generators of a Clifford algebraolfo symbolsy; and~, square to—1 and anticommute. However
tain the matrices in the first column, we use a similar strategnote that
We introduce few new symbols in the Clifford algebra and
define_them to square fioand commute with the generators of (y,1,)2 = —1; (y271)71 = —v1(2m1); (v271)72 = —72(7271)-
the Clifford algebra and also commute among themselves. In
other words, after introducing new symbols, multiplicatio )
the algebra is appropriately defined in order to create agbigg 1 DUS the symbolsy; also squares te-1 and anticommutes
algebra which contains the Clifford algebra as a sub-agebWith the symbolsy, and~.. Thus we can fill up the first row
Hence by taking the unitary matrix representation of the¥4th the matrix representations of the symbolsy;, 2, v2m
specific elements of the algebra, we get the weight matric&SPectively. Thus we get two classes4egroup ML decod-
of the required linear STBC. able STBCs, one from\% and the other from\Z.

Definition 2: Let L = 2%,a € N. An Extended Clifford A Mmatrix Representation
algebra denoted by~ is the associative algebra ovRr gen-

erated byn +a objectsy,, k=1,...,nandd;, i=1,...,a There are several ways to obtain a matrix representation of

. : : L an algebra. However we need to take an appropriate matrix
which satisfy the following relations: : : . .
) representation such that the following conditions aresfiad.
* Tk :_:1’ v_k:vl}g""," 1) The symbolsl, v1, 72, ...y Vn, O,k = 1,...,q,
. ggﬂil— —VZJZkl 7 U, TI™, 6k /1 < ks < kiys < a should be repre-
¢ Tk b AR sented by unitary matrices.

* 0k0j =0j0k, V1<kj<a , 2) The resulting linear design should have the Conjugate-
« Ok =0k, V1<k<al<j<n Linearity property.

From the above definition, it is clear th@tif f,, is a sub- - ;
JIan 3) All the rel t hould b tary.
algebra ofAL. Let %, be the naturaR basis for this sub- ) © r.e ay matrices shou (.a vniary
Such matrices are naturally provided by the left regular

: . I
algebraClif f. Then a naturak basis foré,; is given by representation of the associative algehfa Left regular rep-
BE = B, U{B,0ili=1,...,a} 5 resentation is an easy way to obtain the matrix representati
U o B AT~ 0|1 < ki < kigq <a}. () for any finite dimensional associative algebra [8]. The first
requirement of unitary matrix representation is met beedius
natural basis elements af- together with their negatives form
a finite group under multiplication. This fact in conjunctio
with the properties of left regular representation guaard
unitary matrix representation for the required symbols. We
shall prove the other properties in Section VI after illasirg
Addition in the algebra is defined to be component wise amle construction procedure for both the codes fedinas well
multiplication is completely described by defining the rult as those fromAZ.
plication between any two basis elements. The multiplicati
table can be easily generated using the defining algebraic

Thus the dimension oAZ seen as a vector space owRris
2nta,

Example 1:Let us taken = 2, a = 1. HenceL = 2. Then

A3 = {a1 + vias + d1a3 + d171a4|a1, as, az, as € R}.

IV. CODES FROMAZ

relations of the generators and is given as follows. We first view A as a vector space ovér by thinking of
1 " 0 | dm ~, as the complex number= +/—1. A naturalC basis for
1 1 7 5 | o AL is given by
71 7 -1 | 0im | =&
1 01 [ oy | 1 ge! Bt = {1, }u{{l,%}d&li=1,...,a}
v [ dim | =0 | m | 1 Uni—a {172} {T12 0k 1 < ki < Ky < a}




i i L i onta—1 1 7 V2 Y271
The dimension oAy seen as a-vector space o@rsL2 i #(1) é(v1) é(72) $(r21)
We have a natural embedding &f into Endc(A%) given Z11 210 Z57 250
by left multiplication [8] as shown below: 01 01 0172 d172m
; ; #(01) #(01)#(71) #(01)p(72) #(81)(v271)
. . — . . z2I 22Q 261 26Q
¢ Ay = Ende(Ay); 6(w) = La iy > 2y 02 d271 9272 927271
Since the mag.,, is C -linear, we can write down a matrix "2(;512) ¢(52<2(71) ¢(6222(72) ¢(62)Zq:$2“)
representation of.,, with respect to the naturdl basisBL. 5102 510271 510272 51027271
Thus we obtain a design satisfying the requirementElof (2) fo | ¢(1d2) | ¢(6102)¢(11) | ¢(d102)p(v2) | #(6102)(vy271)

g=4.
Example 2:Let us begin withNy = 2 transmit antennas.
Let n = 2. Then equating: + a — 1 = 1, we geta = 0
— 1 ; ; _
and hencel = 1. But the algebra\; is same a<Clif f(2) left regular representation 0%? ' to obtain a4-group ML

which is nothing but the Hamiltonian Quaterniofis It is d : : i
. . ecodable linear design satisfyi 2) fpe= 4. These codes
well known [8] that the left regular matrix representatioh o J i (2) i

I vields th lar Al desian. Th h were first obtained using a non-algebraic iterative coetibn

IyIE ‘?‘t edpopu a; ?_mouuh_ (;S|gn. q us WS S{ﬁet atdo focedure in [7]. The algebraic framework presented here
algebraic code construction which was driven by the nNeed I9f,,iqes an interesting algebraic explanation for the sade
low ML decoding complexity naturally leads to the Alamout 7]

Z41 24Q 281 28Q .
rom the table above, 1T is clear how the weight matrices
and real variables can be partitioned into four groups.

In general forNy = 2* transmit antennas we take the

design.

Example 3:Suppose we want a design fof; = 8 = 23 V. CODES FROMAJ
transmit antennas. Let = 2. Then we needh +a — 1 = 3. We use a slightly different approach to obtain codes from
Thusa = 2 and L = 4. A general element of the algebfes AZ. Let us first consider the algebra} which is nothing but
looks like Clif fs. A general element of’lif f3 looks like

& = 21 + 0122 + 0223 + 010224 + Y225 4+ 017226 + 02y227 + 01027228 & = G1+71G2+72a3+Y384+7172G5 +72Y306 +Y173G7 +Y172 Y308

where,z; € C,Vi = 1,...,8. The image of the basi§ under Iﬁ; ngngﬁv?ﬁgepﬂr%ée_rti}a’s:' 8. The elementy; 7,73 satisfies
the map¢ is shown in [(6) at the top of the next page. Thus, 9
we have (r17273)” =15 (71)(1v27v3) = (v17293) ()3
(v2)(r17273) = (M7273) (72); - (18)(M727v8) = (117278) (73)-
T T T B B e B Thus the element; 273 squares ta and commutes with
Z 2 Z‘ 2 :i’: :2 :zg :zg all the generators aflif f3. Hence the matrix representation
L _ | om o= oa —2t 2 —zp 2t of thg element'yl'yﬂg can be used as a candidate to f|||_ up
* z5s 2 27 28 2t 2 25 z | the first column. Since we have now filled up two matrices
R T S S (including the identity matrix) in the first column, it shalibe
T %8z Z6 Z3 24 2L 22 possible to get &-real symbol decodable code using matrix
- AT % A A A A AL representation of'li f f3. From Sectiorill, we know that the
Also, we have remaining weight matrices should be obtained as a product
of matrices in the first row and those in the first column. We
T = zir +7121Q + d1zer + 6171229 have,
+02231 + 027123Q + 0102241 + J10271 240
72251 +92m1250 + 0172261 + 0192M1260 (1) (my2v3) = —v2v3; (72)(172¥3) = 71735 (93)(717273) = —Y172-

+02v2271 + d2v21127Q + J102Yv2281 + 0102772771 280
It SO turns out that the elements

leading to
{1,71,72,73, =172, =273, 1173, 717273} also  form  a
Ly, = ¢(1)z1r9(1) + o(71)z1Q + ¢(61) 221 basis forClif f3. Thus a general element 6flif f3 can be
+¢(51’Y1)Z2Q + ¢(62)Z31 + ¢(52’YI)Z3Q expressed as
+¢(0102)za1 + P(610271) 240 + d(72) 251
+¢(v271) 250 + @(0172) 261 + P(d1727Y1) 260 r = a1+ a2+ y2a3 +y3a4
+¢(6272) 211 + P(8272711) 270 + H(610272) 281 +(—7172)as + (—y273)ae + (y173)ar + Y1y273as
+¢(01027271) 280

for somea; € R,i =1,...,8. By thinking of the element,
which explicitly gives the desigi., in terms of its weight 2S the complex number= \/__1 we can viewClif f3 as a
matrices. Expressing the elements of the algebra, the r¥8ftor space ovet. To be precise,

variables of the resulting design and their corresponding x = (a1 4+ y102)+12(as +y105)

weight matrices in the form of a tabular column as discussed +73(as —y107) + Y2y3(—as + 11as)

in Section 1], we get = 21+ 7222 + 7323 + 727324



#(1) = 21+ 0122 + 0223 + 010224 + Y225 + 017226 + 027227 + 01027228
#(01) = 0121 + 22 + 010223 + 0224 + 017225 + Y226 + 01027227 + 27228
#(02) = 0221 + 010222 + 23 + 0124 + J2y225 + 01027226 + V227 + 017228
#(0102) = 020221 + 0222 + 0123 + 24 + 01027225 + 027226 + 017227 + V228
d(v2) = (214 0122 + d223 + 010224 + Y225 + 017226 + 27227 + 61027228) V2 (6)
= ’}/QZT + 51’7225 + 52’72,2; + 5152722Z — Zg — 512§ — 522; — 5152Z§
d(0172) = O1v2zf + Y225 + 010272258 4 02y22; — 0125 — 28 — 010225 — 0223
P(0272) = O2v2z] + 01027225 + Yozi + 01722) — 0225 — Oazg — 27 — O123
#(010272) = 0102722] + 027225 + 017225 + Yozi — 010225 — do25 — 0125 — 2§
where,z; € C,i =1,...,4 and are given by the complex number intact. lj anticommutes withy;, then
21 = (a1 + maa); 22 = (a5 + 1105); it ir_1f|icts conjugation while moving past the complex number
23 = (as — y1a7); 20 = (—ag + y108). This fact can be clearly observed [d (6).

) ) ) Moreover, it can be easily observed that all the relay
Now using left regular representation as in the case of cod@ggrices of the resulting designs are unitary. This is beeau

from A%, we obtain the following design the number of complex variables in the design is equal to
R S S the size of_ the matrix and b_y virtue of the left reg_ular
7 2z 2 representation any compl_ex vr_;\rlabl_e appears only onceyin an
L, = 23 P 2 -z | column. Further, the positions in which they appear in défe

columns is different.

Full diversity can be obtained for all the constructed codes
In general, fork = 2* relays we take the left regularby choosing an appropriate rotatéd lattice constellation.
representation oA%AfZ. This has been proved in [4] more generally for all the
Example 4:Suppose we want a design f&8 = 8 = codes constructed using the sufficient conditions for low ML

23 relays. Hence we haveé = 3. Using the left regular decoding complexity discussed in Sectioh II.
representations of the algeb#g, we get the following linear

zZ4 —23 25 Z1
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