arXiv:0704.2511v1 [cs.IT] 19 Apr 2007

Noncoherent Low-Decoding-Complexity

Space-Time Codes for

G. Susinder Rajan
ECE Department
Indian Institute of Science
Bangalore 560012, India
susinder@ece.iisc.ernet.in

Abstract— The differential encoding/decoding setup introduced
by Kiran et al, Oggier et al and Jing et al for wireless relay
networks that use codebooks consisting of unitary matricess
extended to allow codebooks consisting of scaled unitary rtréces.
For such codebooks to be used in the Jing-Hassibi protocol fo
cooperative diversity, the conditions that need to be satiied by
the relay matrices and the codebook are identified. A class qire-
viously known rate one, full diversity, four-group encodale and
four-group decodable Differential Space-Time Codes (DSTE) is
proposed for use as Distributed DSTCs (DDSTCSs) in the propesl
set up. To the best of our knowledge, this is the first known
low decoding complexity DDSTC scheme for cooperative wireks
networks.
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the DSTC design problem for colocated MIMO channels since
in this scenario we have additional constraints to be sadisfi
which are due to the cooperative diversity protocol. Howgve
both [6] as well as [8] do not address the problem of designing
low encoding and low decoding complexity DDSTC. In [7], a
solitary example of the Alamouti code has been proposed but a
general construction targeting low decoding complexitgas
available. This issue gains significant importance espgdfa

the number of cooperating terminals is large, which is quite
expected in applications like wireless sensor networke Th
contributions of this paper are as follows:

« The differential encoding/decoding setup introduced by

Recently [5], [9], the idea of space-time coding for colo-
cated MIMO channels has been applied in the setup of coop-
erative wireless networks in the name of distributing space
time coding, wherein coding is performed across users and
time. This strategy provides each user a diversity ordeakequ
to the number of cooperating terminals even though all the
users are only equipped with a single antenna. The diversity
thus achieved is called as cooperative diversity. Howestgrh
strategies require that the destination have complete lauge
of the fading coefficients from all the users to itself as well
as that of the fading coefficients between users. But, toimbta
the knowledge of the fading coefficients between the users
at the destination requires additional resources. To siiige
problem, in [6], Kiranet al have proposed a differential encod-
ing/decoding setup for cooperative wireless networksdboat
not require the knowledge of fading coefficients between the
users at the destination. Such codes were named as partially
coherent distributed space-time codes in [6]. However, in a
recent work [8], it has been shown that the same strategy of
[6] offers full diversity with a suboptimal receiver that@®not
require the knowledge of any of the fading coefficients. h [7

Kiran et al [6], Oggier et al [8] and Jinget al [7] for
wireless relay networks that use codebooks consisting of
unitary matrices is extended to allow codebooks consist-
ing of scaled unitary matrices.

o When the codebook of scaled unitary matrices is obtained

from a design with proper choice of signal sets for the
variables and used in the Jing-Hassibi protocol [5] for
cooperative diversity, the conditions involving the relay
matrices and the codebook that need to be satisfied are
identified.

« In [11], a class of rate one, full diversity, four-group en-

codable and four-group decodable DSTCs is constructed
for Ny = 2* transmit antennas using matrix representa-
tion of extended Clifford algebras and appropriate choice
of signal sets for colocated MIMO communication. We
prove using algebraic techniques that these codes satisfy
the conditions mentioned above and hence are usable as
DDSTCs.

To the best of our knowledge, this is the first known
low decoding complexity DDSTC scheme for cooperative
wireless networks.

Jinget alhave proposed a differential encoding/decoding setupThe rest of the paper is organized as follows: Sedtibn Il in-
for cooperative wireless networks which is more generah th&roduces the system model for the cooperative diversitgmseh

the setup proposed in [6] and they have also provided few coglmploying a differential scaled unitary matrix code book at
constructions. We call the class of Differential Spacedinthe source. In Sectidn]Il the notion gfgroup encoding cum
Codes (DSTCs) used in a distributed manner for cooperatidecoding for the system model of Sectloh Il is given and the
diversity as Distributed DSTCs (and denote by DDSTCs) foroblem of DDSTC design is formally presented. The extra
differentiate them from DSTCs for colocated MIMO systems:onditions on the code structure imposed by the cooperative
The problem of designing DDSTCs is more challenging thativersity protocol of [6]-[8] are then described. Also, we
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briefly describe the DSTCs from extended Clifford algebras The differential encoding is performed at the source as
developed in [10] for coherent colocated MIMO communicdellows. A known vectorsg is transmitted by the source in
tion. In Sectior IV we show that the DSTCs from extendette first cycle. The transmitted vector at théh cycle is then
Clifford algebras of [10] satisfy the conditions neededtf@m given as follows

to be a suitable code as DDSTCs for cooperative diversity 5y =
systems with scaled unitary codebook. ap—1

where,U; € € is the codeword containing the information
Il. SYSTEM MODEL AND DIFFERENTIAL SCALED UNITARY 44 theyth cycle which satisfie§’ U, = a?Ir, a, € R. The
MATRIX CODEBOOK originally proposed coding strategies in [6], [7], [8] fere; =
In this section, we briefly explain the distributed diffetiah 1. The received vector at the destination in thit cycle can
encoding/decoding setup proposed in [6], [7], [8] with @isti be written as

modification. We then highlight the various requirements fo .
this coding problem. Yo = || — X, H; + N, (4)
mP+1

We consider a network consisting of a source node, a
destination node an& other relay nodes which aid the sourcavhere,
in communicating information to the destination. All thedes X, = [ Aisy Aasy ... Amse Am+isi ... Agsy ]
are assumed to be equipped only with a single antenna ahd
are half QUpIex constrained, i.e., a node cannot transnait an AU, = UA, YU €€,i=1,...,M,
receive simultaneously. The channel path gains fro_m tha:sou AUF = UA, YU €%, i=M+1,....R (5)
to theith relay, f; and from thejth relay to the destinatiog; o
are all assumed to be independent and identically disgibutthen, substituting fos; we have

Ut8t71 (3)

complex Gaussian random variables with zero mean and X, = L UX, . (6)
. . . . at—
unit variance. Moreover, we assume symbol synchronization _ ¢ 1_
among all the nodes. If the channel remains approximately constant for more than

Every transmission cycle from source to destination comdZ’ channel uses, then we can assume fiiat= H;_. Thus
prises of two stages. In the first stage, the source transniitsc@n be expressed as
aT(T > R) length vectory/m Ps which the relays receive.

2
Here, P denotes the total power spent by all the relays and e = 77?17}3251 XeHi+ Ny
the source and; is the power allocation factor denoting the = ,/’:j;ﬁff T:UtXt_lHt—l + N, (7)
fraction of P spent by the source. The received vector at the = U1 + N
jth relay node is then given by -1
where, N, = —ﬁUtNt,l + N;. Now, we can decode the

rj = VmPfjs+vj, with v; ~ CN(0, Ir). @) codewordl; as follows

In the second half of the cycle, all the relay nodes are
scheduled to transmit together. Tl relay node transmits a
T length vectort; which is a function ofr;. The relays are

1

at—1

Uiy ||2 8

0, = arg min |y —
= wre iy

j j ) where, a;_; can be estimated from the previous decision.
only allowed to linearly process the received veetpror its  \qte that the above decoder is not a Maximum-Likelihood
conjugate;. To be precise, thgth relay node is equipped with ;) y gecoder. However, for the colocated MIMO case, it has
aT'xT unitary matrixA; (called relay matrix) and it transmits y s o, shown in [2]-[4] that the performance loss is negligibl
tj = \/ 7B Ayry or t; = /7255 Ajrs. Without loss of In this setup, we shall calt’ to be a DDSTC in order to
generality, we may assume tha&f relays linearly process; distinguish it from DSTCs for colocated MIMO systems. We
and the remainingz — M relays linearly process;. The shall choose?” to be a linear STBC in order to reap the
quantityrs is the power allocation factor denoting the fractiofvenefits of low encoding and decoding complexity. However,
of P spent by a relay. The vector received at the destinatitiie problem is not straightforward since we need to satisfy
after 27 time slots is given by few more additional conditions. These are illustrated ia th
following subsection more precisely.

R

y= E git; +w = 1/77T1;2§21XH+N 2) [1l. PROBLEM STATEMENT
Ny 1
Jj=1

Definition 1: A linear designS(z1,zs,...,xk) in K real
indeterminates or variables, xs, ...,z iS an x n matrix
where, ) . . X L .
_ X T with entries being a complex linear combination of the vari-
H=1[ figs fag2 - fugm fipo9msr - frr ]

" ables. More precisely, it can be written as follows,

T M R *
N = \/ ngi (ijl giAjv; + Zj:M-H ngj”j) +w, %
X = [ Ais ... Auys A]W-Q—ls* ... Aps* ] and S(l‘l To,... xK) — . B;
w ~ CN(O, IT). ;



where, B; € C™"*" are called the weight matrices. A linear [ Aiso Aaso ... Amso Am+i1sy .. Arsh }

STBC ¥ is a finite set ofn x n complex matrices which can is unitary.

be obtained by taking a linear desigfiz, x2,...,2x) and 5) ming, g,ew |S1 — S2| IS maximized.

specifying a signal set/ C R* from which the information  Opserve that the requirements for designing DDSTCs are
vectorX = [ 21 xzp ... xx | take values from, with more restrictive than that for DSTCs. Note that condifion 3

the additional condition thab(a) # S(a’),V a # o’ € &/. and conditior ¥4 were not required for designing DSTCs. As
A linear STBC% = {S(X)|X € </} is said to beg-group an additional requirement it would be nice to have a single

encodable (of- real symbol encodable g complex symbol designS(z1, a2, ..., zx) and a family of signal sets, one for
encodable) ify divides K and if &/ = /i x o/ x --- x &/, each transmission rate such that all the required condition
where each#;,i =1,...,g CRs. are met. This means that we need to be able to finctlay

Suppose we partition the set of weight matricesS¢fX) matrices satisfying the required conditions irrespectif/¢he
into g-groups, thek-th group containingk’/g matrices and size of the codé?’|.
also the information symbol vector as
A. DSTCs from extended Clifford algebras
In this subsection, we briefly describe the constructions of
a class of rate one, linear designs satisfying the condition
T four-group decodability which were obtained using extehde
X = [ To-nr | TE-vx ... TEK } ) Clifford algebras in [10]. This algebraic framework is nedd
! ! for us to be able to prove that the conditions 3) and 4) for
Now S(X) can be written as, DDSTCs are satisfied by codes arising out of these linear
WK designs. Signal sets which lead to full diversity for thésedr
g designs are provided in [11].

S(X) = ZSk(Xk); Sk(Xy) = Z i Bi. Definition 3: Let L = 2% a4 € N. An Extended Clifford
=1 =P 4 algebra denoted by~ is the associative algebra ovr gen-
erated byn +a objectsy,, k=1,...,nandd;, i=1,...,a
which satisfy the following relations:

X = x{xfy..xr "

where

Minimizing the decoding metric corresponding g (8)

|y — ——S(X)ys |I? © Pl VE—1...n
ti— o« VY= ViV VkFJ
is in general not same as minimizing « 02=1,Vk=1,...,a
1 o(Sk(Sj:(Sj(Sk,\V/lSk,jSa
| ye — ﬁSk(Xk)yt,l 12 (10)  « Gpyj =70k, V1<k<a,1<j<n

It is clear that the classical Clifford algebra, denoted by
for eachl < k < g individually. However, if it so happens Clif f,,, is obtained when only the first two relations are
then the decoding complexity is reduced by a large amoustisfied and there are . Clif f,, is a sub-algebra oh’.
Note that it is not possible to compufe [10) unless the codelist %, be the naturaR-basis for this sub-algebra. Then a
g-group encodable also. naturalR-basis forAL is

Definition 2: A linear STBC% = {S(X)|X € &/} is said

L _ -
to be g-group decodable (of- real symbol decodable of; B = %[; Y {%”‘mlm_ 1,...,a} (11)
complex symbol decodable) if it ig-group encodable and if Unzz B AlLiZ1 0kl < ki < kiyr < a}
its decoding metric in[{9) can be simplified as [n](10). where
The DDSTC design problem is then to desigry-group _ i
decodable linear STBC P = 871} U H_[l'fn_,yl’ |1,<nk}: < ki <n) (12)
m=2 i=1 Tks A

C={5(X=[m @ ... ox])Xe} A unitary matrix representation for the symbols

such that Lvi,v2, 2,06,k = 1,.osa, U o [Tim Ok 1 < ki <

| < a in the algebraAl is needed [10] to construct linear
esigns which are four-group decodable. We briefly explain
the matrix representation procedure and then illustratatht
few example.

We first view ALl as a vector space ovér by thinking of
v1 as the complex number= \/—1. A natural C-basis for

1) All codewords are scaled unitary matrices respecting tﬁ
transmit power constraint

2) K andg are maximized.

3) There existR unitary matricesA;, As, ..., Ar of size
T x T such that the firstM of them satisfyA;C =
CA;,i=1,...,M, VC € ¢ and the remainingg— M 7
of them satisfyd,C* = CA;, i = M+1,...,R,VC € Ay is given by
Cg- Brl{: {1,72}U{{1,72}5Z|z:1,,a}

4) There exists an initial vector sg US o {12 I 0k 11 < Ky < kigq < al.
such that the initial matrix X = (13)



Thus the dimension oAl seen as a vector space overis whereC is any codeword. But the codeword is a matrix
gnta—l, representation of some element belonging to the Extended
We have a natural embedding Af' into Endc(AL), (the Clifford algebra. One method to get these relay matrices is
set of all C-linear maps fromAl to itself) given by left to take them from within the Extended Clifford algebra itsel
multiplication as shown below. By doing so, we can translate the condition [n](17) into a
L L condition on elements of the algebra which will provide us
¢ : Ay — Endc(Ay) a handle on the problem. Towards that end, we first need
¢(x) = Ly 1y = ay. to identify a map in the algebra which is the analogue of
Since L, is C-linear, we can write down a matrix rep-taking the conjugate of the matrix representation of an elgm
resentation ofL, with respect to the naturaC-basis B2. Recall that in SubsectidnTI[3A, we used the fact thatcan
Left regular representation naturally yields unitary rixatr be thought of as the complex number= /—1. Note that
representations for the required symbols in the algebra. Tiwhen we take the conjugate of a matrix, we simply replace

resulting designs aré-group decodable [10]. by —i. Hence the analogue of this action in the algebra is to
The design for relays is replacey; by —v;. Thus, we define the analogous mapn
X X the algebra as follows:
S§1 S22 —S83 —8y
g | 52 s _S‘E —851:, (14) oIl T (18)
S3  S4 Sq So
sS4 S3 s3 s where, the element is obtained fromz by simply replacing

~v1 by —v1 in the expression of in terms of the naturaR-

and the design fo8 relays is basis of Extended Clifford algebra. Now the problem is to find

S1 S22 Sz Sa4 —Si —s§ —si —s§ R-—M distinc}glements denoted by,i = M +1,..., R of

Sy 81 S4 83 —S§ —si —si —sh the algebrad?” ~ which satisfy

83 S4 S1 Sz —Sy —8g —S85 —5§ ~ gA—1

sS4 83 Sy 8 _Sg —S; _Sg _Sg (15) a;T = xa;, Y € AQ . (19)

55 S¢ St s§ s sy 83 84 The elements

S6 S5 Sg S7 55 s7 53 53 o m

ST S8 S5 S  S3 Sy ] 53 {72 {1,01,...,04}}, {72 { U H¢(6ki)|1 <k <kip1 < a}}
| S8 ST S6 S5 sy 83 s5 s1 i m=2i=1

and for the 16 relays we get thi x 16 design shown in
(18) at the top of the next page. The partitioning of the re
variables of the design into four groups is provided in [11].

satisfy the above required condition. This can be easilyguto
Bb using the fact thatys(—y1) = 71(92)(anti-commuting
property). Hence the required unitary relay matricksi =

IV. EXPLICIT CONSTRUCTION OFDDSTCs M +1,...,R can be obtained by taking the matrix repre-
In this section, we shall prove that the additional requiré—em"_’ltion of these spe(;ific elements. If we plug in thesg rela
ments are met by the constructed codes in [11]. matrices to form a design we get
Theorem 1: The extra conditions (conditioh$ 3) ahH 4) of ~ y — [ Ais ... Aus Awps™ ... Ags™ ],
the DDSTC design problem stated immediately after Defini-
tion[2) are met by the designs from extended Clifford algebravheres = [ Ty Tg ... IR ]T is the vector of complex

Proof: We prove the existence of th& relay matrices information symbols. Then, we get exactly the same design
by explicitly constructing them. For this purpose, we shialk which is used at the source. Because of this we can choose the
the fact that the code foR = 2* relays was obtained as ainitial vectorsy = [1.0 ... 0 }T which then guarantees
matrix representation of the Extended Clifford aIgeAt%ifl. that the initial matrix is also unitary. [ |
Thusa = A — 1. We chooseM = 2* = £. The M relay However, we would like to point out that there are also other
matrices are given by the union of the elements of the setslements of the algebra which satisfy the requireménts. (19)

For example consider the union of the elements of the sets

{8(1),6(61), -, (8a)} , { U [Tkl < ki <kira < a}- « m
m=2i=1 {1172 {1,61,...,6a}}, {7172 { U [T o0kt < ki <kiga < a}} :

m=2i=

By virtue of the property that the mapis a ring homomor- '

phism, these matrices are guaranteed to commute with all th&xample 4.1:Let R = 4. Then the DDSTCY is obtained
codewords because they are matrix representations of etemeising the design

belonging to the center of the algeb&é%]. To obtain the

e . . . S1 S9 —S% —si
remaining R — M relay matrices, we need to find unitary L2 3 4
. . . S S —S —S
matrices which satisfy 2ol 4 3
S3 S4 51 82

A,C*=CA;i=M+1,....R a7 sS4 83 5% s3



[ s1 sa s3 sa S5 s ST S =S85 —Sio —SI1 —Sl2 —Si3 —Sl4 —Sis —Sie |
S2 S1 Sa  S3  S¢ S5 S ST —Sjg —S§ —Sip —Si; —Si4 —Si3 —Sig S5
S3 sS4 S1 S2 ST Ss S5 S¢ —S|; —Sjp —S5 —Sip —Si5 —Sig —Siz —Si4
S4 83 S22 S1 S8 St S¢ S5 —Sia —SI; —Sip  —S§ —Sig —Sis —Sia —Si3
S5 S¢ ST S§ S1 S22 Sz  Sa4  —Sig —Si4 —Si5 —Sig  —Sy —Sip —S11 —Si2
S¢ S5 S8 ST S2  S1 Sa  S3 —Siy —Sjg —Sig —Si5 —Sjo  —S5 —Si2 —S|
ST Ss S5 S S3  Sa  S1 Sz —S|5 —Sjg —Siz3 —Si4 —Si1 —Si2  —85 —$io

S — S8 St S¢ S5 S4 83 S22 81 —STE —STE —Sfil —STE _sz _Sfi _STB _Sé (16)
S9 S10 S11 S12 S13 S14  S15  S16 51 So S3 Sy S5 56 S7 58
S10 SS9 S12 S11 S14 S13 S16  S15 S5 s1 EN 83 6 S5 58 57
S11 S12 S9  S10 Si5 Si6  S13  S14 83 EN s1 85 s7 3 55 56
S12 S11 S10 S9 S16 S15 S14  S13 N 83 83 Ch S8 s7 56 S5
513 514 S15 S16  S9  S10 S11 S12 s3 EH s7 3 CH 85 s3 3
514 513 S16 S15 S10  S9  S12 S11 86 55 e s7 3 87 4 53
515 516 S13 S14 S11 S12 89 S10 s7 EN 85 56 $3 3 Ch 53
| 16 S15 S14 S13 S12 S11 S10  S9 58 57 56 55 51 53 55 51 |

and the signal set constructed in [11]. The signal set isGrant (22(0365)/04/EMR-I11). The authors would like to tkan
Cartesian product of fou2-dimensional signal sets. The relayDr.Frederique Oggier and Dr.Yindi Jing for sending us the
matrices are given as follows: preprints of their recent works [1], [7], [8]-
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