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Abstract—We consider a network multicast example that a result, we provide an alternative approach to the proving
relates the solvability of the multicast problem with the exstence of the insufficiency of linear (and abelian group) network
of an entropy function. As a result, we provide an alternatie = .,qeg including time-sharing of such network codes. We als

approach to the proving of the insufficiency of linear (and . . o .
abelian) network codes and demonstrate the utility of non- demonstrate the utility of non-Shannon inequalities tbhteg

Shannon inequalities to tighten outer bounds on network cothg ~ Outer bounds on network coding capacity regions.
capacity regions. Sectior] provides (linear/group) network code fundamen-

tals and relates the existence of such codes to the ranks of
certain vector subspaces/group orders. Se€fion Il ptetka
Traditionally, intermediate nodes in a communication netnain result, concerning a multicast problem induced by a
work duplicate and forward packets towards their final desfunction i with certain properties. Theorel 1 states thas
nation. Although such a store-and-forward scheme is sim@atropic if the induced multicast problem is solvable. Tieeo
to implement, it does not guarantee efficient utilization @ provides a converse, namely that the multicast problem is
available transmission bandwidth. The network coding apelvable ifh is entropic. Sectioh IV explores the implications
proach [1], [2] generalizes the traditional scheme by alhgw of this result, which include the insufficiency of linear aree
intermediate nodes to forward mixed/encoded versionslof ébelian) group network codes, and the neccessity for non-
received data packets. Not only can this significantly iasee Shannon inequalities.
network throughput in multicast scenarios, it can also jglev I

robustness to link failure, and minimize cost of transnoissi A icati work will b deled b directed
One fundamental problem in network coding is to un- communication network will beé modeled by a directe

derstand the capacity region and the classes of codes ﬁ?fd'c graphg = W,£). The nodesu. € A and directed
achieve capacity. In the single session multicast scentimo edges = (tail(e), head(e).) €& respectlvely .model the com-
problem is well understood. In particular, the capacityords r_numganon nodes and directed pomlt-to-pomt communoeai
characterized by max-flow/min-cut bounds and linear neltwoknks in the netwqu. Foe_, f_e £ we write f — e as shorthand
codes are sufficient to achieve maximal throughput [2], [3]."°" head(f) = tail(e). Similarly, for f € &,u € N f =
However, things are much more complicated in more gemeanshead(f) = u andu — f meanstail(f) = u.
eral multicast scenarios. It was recently proved that linea For any networlg, amulticast requiremend/ = (S, 0, D)
network codes are not sufficient for general multicast séesa IS speC|f|gd by: . . .
[3]. Furthermore, the capacity region achieved by network 1) An index s.etS .Of all mdepgndent multicast sessions.
codes are also unknown. In fact, there are limited tools Each Session 1S a .collec'uon of dlata. packets to be
available to study the capacity region. mult|cas_t to a prescribed set of des_t|nat|on _nc_>des_.
One powerful tool is developed in [4], which outerbounds 2) A Mappingo : & - N, whereO(s) is the originating
the capacity region by characterizing the intersectiongstaf node for_ multicast ses/\?'(m .
hyperplanes and the set of entropy functions. Unfortugatel 3) A mapp',”gD_ : & — 2%, where the ?eD(S) contains
it cannot be implemented in practice due to the lack of an the Qestlnatlon nodes fpr the sessignall of which
explicit characterization of entropy functions for morearh require the data ,Of sessian i
three random variables. One way to resolve this difficulty f30t€: We do not specify any rate requireme@iven a mul-
by replacing the set of entropy functions with the set of noficast requiremend/, the objective is to efficiently multicast
negative submodular functions. The resulting bounds fer tfata for sessior originating atO(s) to all destinations(s).

network coding capacity region can be quite loose. Recent ©' @ given networky and multicast requirement/, a

work [5] based on matroid theory showed that application SEWOrk code solving the multicast problem is specified by
the non-Shannon inequality [6], one can obtain atightelnkioua set of alphabety = {Vy, /€ SUE} and a set of local

: ) A .
for the capacity region (by obtaining a better outer bound f&Od'ng funct|oq91>_: {ge: ec &} .
the set of entropy functions). Data transmission takes place as follows. The input gener-

In this paper, we construct a particular network and mu"fl—ted by sessios is a symbolV; € V. The symbol transmitted

ticast problem, which relates solvability to the existerde along edgee € £ is
an entropy function on a set of four random variables. As Ve=0¢(Vi: feSUE f—e),
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where to simplify notations — e indicatesO(s) — e. We Proposition 2. Suppose that there exists a vector space
require that for every € S andu € D(s), Vs can be uniquely with subspace¥, f € £ U S satisfying

determined from{V; : f — u
mYs J S| dim V =) " dim V, = dim V — dim [} V.

H\V | Vy:feSUE f—u) =0. s€S ses

We will refer to a network code byp, with the alphabet ﬂ V is a subgroup oV, Ve € £

implicitly defined. Since the source, and hence edge symbols fif—e

V; are random variables, we can also refer to the code by the (] VyCV.VseSue D(s)

collection of random variable§V;, f € S U £}, where their fif—=u

joint distribution is implied by®. Then there exists a linear network code such that

Definition 1. Given a networlg and a multicast requirement 10g, [V¢| = dim V—dim V for all f € SU. In other words,

M, a rate-capacity tuple the rate-capacity tuplé, : s € S,w. : e € £) where )\, =
(dimV —dim V) logq andw, = (dim'V —dim V.)logq is

Aw)E2 N :5€S,we:e€f) linearly admissible.

is admissibleif there exists a network cod® such that The above two propositions show that linear network codes

can be described by the ranks of a collection of vector sub-
log |Ve| < we,Ve € & spaces. This idea can be extended to other algebraic segactu

log [Vs| 2 A5, Vs € 8 Proposition 3. LetG be a finite group with subgrouggs;, f €

Similarly, a tuple isasymptotically admissiblé there exists SU¢. Suppose the following conditions are satisfied

a sequence of network cod@s™ over alphabets)(™ and IGl/| ﬂ G| = H lelyiteX
positive normalizing constantgn) such that

s€ES SES
. .
lim sup log V)| < w,. Ve € €, (] Gy is a subgroup of,, Ve € £
n—00 T(n) fif—e
i inf log [V(™)| > Ay, Vs € S (| Gy is a subgroup ofG,,Vs € S,u € D(s),
n— oo T(n) ff—)u

Furthermore, if the sequence of codes all belong to a paThen there exists a network code such that the rate-capacity
ticular class (e.g. linear) we call the rate-capacity tuplauple (log|G|/|Gs| : s € S,log|G|/|Ge] : e € &) is
asymptotically admissible by that class of codes. admissible.

For a given network, multicast requirement and rate- If the groupG is also abelian, the group network code will
capacity tuple, the multicast problem is to determine if thige called abelian.
tuple is (asymptotically) admissible. Equivalently detéare
the set of all (asymptotically) admissible rate-capadifylés. . M AIN RESULT

In the above formulation, there is no restriction on the Let 4 be a set function defined on the collection of all
choice of alphabets and local coding functions. Howeveafonempty subsets dfl, 2, 3,4} such that
network codes with neat algebraic structures may be peferr
in practice, to reduce encoding and decoding complexity.  h(1,2,3,4) = h(1,2,3) = h(1,2,4) =

Definition 2. A network codeb is linear over F, if V; is a h(1,3,4) = h(2,3,4) = h(3,4). (1)

vector space ove,, and theg, are linear. Then h induces a multicast problemIP (%), together with

Proposition 1. Supposed is linear. Then there exists a vectoran induced rate-capacity tuple, which we will now describe.

spaceV with subspaced;, f € £U S such that There are three session, V3, V. all available at the same
source node, with entropy ratd$(V,) = h(1), H(W}) =
|S|dimV = " dim V, = dim V — dim ] V, h(1,2) — h(1) and H(V,) = h(1,2,3) — h(1,2).
s€S s€S For convenience, we divide the underlying network into
m V; is a subspace oV, Ve € £ two parts. The first part, depicted in Figure 1, contains the
Fifse source and generates a set of four network coded messages
V1, Vo, V3, Vy which will be transmitted to the second half
m Vi E Vs Vs €S,ue Dis) of the network, shown in Figurgl 2. To simplify notation,
) f:f_f” each edge is associated with a symbol denoting the network
dimV — dim V; = log, [Vs[,Vs € code message (and corresponding random variable) to be
dimV —dim Vy <log, [V;[,Vf € & transmitted along that edge. If the link is capacitated, its

capacity is given following the edge message symbol.



LI multicast problemMP(h). Then H(V,) = h(1), H(V}) =
h(1,2) — h(1) and H(V,) = h(1,2,3) — h(1,2).
Vs, h(3) From the first half of the network, it is obvious thdtV;) <

:
" h(z) for i =1,2,3,4. Also, we can deduce
B, H(Va,V3) < H(Va, W, V3)
V2 = H(Va, W)
SN < H(Va) + H(W)

< h(2) + h(2,3) — h(2).

Similarly, H(Va, Vy) < h(2,4).

To prove thath is the entropy vector foby, Vs, Vs, Vy, we
ed to show thall (V;,i € a) = h(a) foralla C {1,2,3,4}.
is is accomplished by Clainis [1-9 below. O

Fig. 1. First part of the network

The second part of the network is mainly composed &f}
receivers, and is divided into several subnetworks, Fgure
[2(a)}f2(€) each of which contains a receiver and a subsetGéim 1. H(V;) = h(1) and H(V4|V,) =0

1, Vo, Vs, V, as input. Receivers are denoted by a solid squarge of. From Figurd Z@)H (Va|V4) = 0 in order to recoveV

labeled by the set of source messages to be recovered. . B
simplify notation, all messages other than the four messag%t 1hetr?:an?};hegﬁfg;ﬁé‘iﬁaigé&) s_ }I\;I(;r)é:\serﬁ ) <
Vi, Vo, Vs, Vy will be denoted by a generic symbdl’. As (L), Irst p : WS. Ver,

each receiver subnetwork has at most one such message, any H(W|V,) =H(V,V,) — H(V,)

confusion will be cleared from the context. — H(Vi) + HV,|Vi) — H(V,)
Vs Va :H(Vi)—H(Va)
l l ) 0
V——r————— R V.1 Claim 2. H(V2) = h(2) and H(V1,Va) = h(1,2)
w————>AV, W, h(1,2) — h(2)
(a) Subnetwork 1 (b) Subnetwork 2 Proof. From Figurg 2(H),
V3 V3 Vv v \ V; H(V2)+h(1a2) _h(2) > H(V2)+H(W)
R RYARY;
1%
>0—> VaVpVe  Vi——>@————>B V.V V. = H(Va, Vi)
Va W, h(1,2,3) — h(3) W, h(i, j, k) — h(i, §) _ H(Va) + H(V},)
(c) Subnetwork 3 (d) Subnetwork 4 _ h(l, 2)
Y Vs As a result, H(V,) > h(2). Since H(V2) < h(2), we
l l have H(V,) = h(2). On the other hand, from Figufe 2(b),
H(V1,Va) > H(V,,V3,) = h(1,2). Finally, note that

nN———>m V.
W, h(1,3) — h(3)

(e) Subnetwork 5

H(Vh‘/?) S H(Vla‘/Zavaa‘/E)aW)

< H(‘/Qa VV, Vav Vb) + H(V1|Va)
Fig. 2. Second part of the network = H(VZa W) + H(Vaa Vb|V27 W)
< H(Va) + H(W)
The multicast problem that we are interested in is to = h(2) + h(1,2) — h(2)
determine if there is any network coding solution for the — h(1,2) O

induced multicast problem. Equivalently, we wish to detieen
if the multicast problemMP(h) is (asymptotically) solvable Claim 3. H(V3) = h(3) and H(V,) = h(4)

or not. Proof. From Figure 2(3d),
Theorem 1. Let h be a set function defined on the collection
of all nonempty subsets dfi, 2, 3,4} satisfying [(1). If the H(V3) +h(1,2,3) = h(3) = H(V3) + H(W)

induced multicast problenMP(h) is solvable, them is the > H(Va, Vi, Ve)
entropy vector for the random variablég, V5, Vs, V, (see =h(1,2,3)
Figure[d and®) of the network coding solution. Henaeis

Hence H(V3) > h(3) and sinceH (V3) < h(3), H(V3) =

entropic. A
h(3). Similarly, H(Vy) = h(4). O

Proof. SupposgV,, V,, V., V1, Va2, V3, V4 } is a solution to the



Claim 4. H(V;,V;) > h(i,7) for distincti and j one can construct a sequence of groGfs with subgroups
Proof. From Figurd 2(d), G#,i € {1,2,3,4} [7], [8] and normalizing constants(k)

such that
H(V;,Vy) + h(i, j, k) = h(i,j) > H(V;, V;) + H(W) )
> H(V,, Vi, Vo) lim ——h*(a) = h(a),a C {1,2,3,4}
= h{i 5, k) hE(1,2,3,4) = h*(1,2,3) = h*(1,2,4) = h¥(1,3,4)
As a result,H (V;, V;) > h(i, j). 0 = hF(2,3,4) = h*(3,4).

Claim 5. H(Vi,Vs) = h(1,3) and H(V1, Vi) = h(1, 4).

whereh®(a) = log |G*|/| Nica G¥.
Proof. From Figurd 2(@), (@) = log|G"[/| Niea G|

For any k, the functionh® induces a multicast problem

H(Vi,V3) < H(Vi, V3, W, V) MP(R¥). If MP(h*) is solvable, then the theorem follows
< HVo, W) + H(VaW,Va) + HOAV,)  110M limicsog B*(0)/r(k) = h(a). .
< H(V3) + H(W) It remains to show thatIP(%h") is solvable. For each, h

is entropic [7], [8]. In fact{G*,G¥ : i € {1,2,3,4}} induces
< h(3) +h(1,3) = h(3) a set ofquasi-uniformrandom variable®’*, UY, UY U¥ such
= h(1,3) that

Thus H(V1,V3) = h(1,3). Similarly, H(V1,Vy) = h(1,4). 1) For anya C {1,2,3,4}, {UF:i€ a} is uniformly
O distributed over its support.
2) For anya, 8 C {1,2,3,4}, the conditional probability

Claim 6. H(V;, Vj, Vi) = h(i, j, k) distribution of {UF : i € o} given a particular instance

Proof. From Figure[2(d), it is clear thatl(V;,V;, Vi) > of {Uf:iep} = {uf:iep} (with positive proba-
H(V,,Vy, V.). On the other hand, &, V;, V} are functions bility) is constant over its support.
of Va, Vs, Ve, therefore, H(V;, V;, Vi) < H(Va, Vi, Ve) and gy the  quasi-uniformity  of Uk UF, UE UF, it is

henceH (V;, Vj, Vi) = H(Va, Vi, Vo) = h(i, j, ). O straightforward to show that there exists another set of
Claim 7. H(V3,V4) = h(3,4). quasi-uniform  random  variablesU¥, Uy, US  such that

. . Uk, UF, Uk are independent and all the terndg(Uf|U%),
Proof. From Claim[4, we haved (V3,Vy) > h(3,4). Since H(UFUP), H(UF, UFUE, UF), H(UF UK Uk, UF),
h(3,4) = H(Va,Vp, Vo) and H(Vs, Va|Va, Vi, Vo) = 0, the gk gk pk|uk Uk, UE), H(UF, UE, UKUR, UF, UF) are

claim then follows. L equal to zero.
Claim 8. H(Vi,Va, Vs, Va) = H(Va, Vi, V) = h(1,2,3,4) It can be checked easily that*, Uk, U are uniform and

_ that H(UF) = m*(1), H(UF) = h*¥(1,2) — p¥(1) and
Proof. Obvious O H@F) = h*(1,2,3) — h*(1,2). To show thatMP(h*)
Claim 9. H(Vs,V3) = h(2,3) and H(Va, Vi) = h(2,4) is solvable, it remains to show that the auxiliary random

variables (i.e., the generic message random varidbiggan
Proof. From Claim[4,H (V3,V3) > h(2,3) and H(V2,V4) > pe constructed to satisfy the capacity constraints.
h(2,4). .AS H(VQ".@) .S h(2,3) and H(Vy, Va) < h(2,4) are This can be achieved by “data compression” of the in-
proved in the beginning, the result then follows. = puts subject to common side-information at both encoder

Corollary 1. If the induced multicast problemMP(h) is and decoder. Sinc&f, Uy, Uf, Uy are quasi-uniform, it is
asymptotically solvable, theh e T7 which is the minimal straightforward to verify that the “rate of compression”etse

closure of the set of all entropy functions for four randorthe (conditional) entropy lower bounds by using block cedin
variables. The result then follows. O

Theorem[Jl shows that if the induced multicast problem
MP(h) is solvable, therh must be entropic. In the following IV. | MPLICATIONS
theorem, we prove the converse.

Theorem 2. Let h be entropic and that all the termsTheorem 3. There is a network and a multicast requirement
h(1,2,3,4), h(1,2,3), h(1,2,4), h(1,3,4), h(2,3,4), h(3,4) such that the use of abelian network codes is suboptimal
are equal to each other. Then the rate-capacity tuple in tH#cluding linear network codesz—module codes, and time-
induced multicast problemVP(h) is asymptotically admissi- sharing of such).

ble. Proof. First, we describe a set of four quasi-uniform random

Proof. As h is entropic, then there exists a set of randomwariablesl;, U, Us, U4 constructed using the projective plane
variablegUy, Uz, Us, Uy ) whose entropy function is. Hence, described in [6]. The joint entropies of subsets of thesdaan



variables are as follows: V. CONCLUSION

h(1) = h(2) = h(3) = (4) = log 13 We have shown how to construct a multicast problem from
a functionh that is solvable if and only if: is entropic. This
h(1,2) = log 6 +log 13; 1(3,4) = log 13 + log 12 provides a useful link between entropy vectors and the d¢gpac
h(1,3) = h(1,4) = h(2,3) = h(2,4) = log 13 + log 4 region for network codes. Using this approach, we provide
h(i,j,k) =log13 +1log12 = h(1,2,3,4), V distincti, j, k. ~ an alternative proof of the insufficiency of linear (and zdel
o group) network codes, including time-sharing of such nekwo
Then it is clear thah(1,2,3,4) = h(1,2,3) = h(1,2,4) = codes. We also demonstrated the utility of the Zhang-Yeung

h(1,3,4) = h(2,3,4) = h(3,4). Sinceh is entropic,MP(h) jnequality to tighten outer bounds on network coding capaci
is asymptotically solvable. In fact, it can be shown that regions.

is an entropy vector of four quasi-uniform random variables
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Consider the functiorh defined as follows [6]:
<1>=h< )=h(3) = (4) =2a>0
h(1,2) = 3a; h(3,4) = 4a
h(1,3) = h( 4) = h(2,3) = h(2,4) = 3a
h(i,j, k) = 4a = h(1,2,3,4), V distincts, j, k.

Clearly, h(1,2,3,4) = h(1,2,3) = h(1,2,4) = h(1,3,4)
h(2,3,4) = h(3,4). It can be verified directly that € T'y.
However, the non-Shannon information inequality obtained
in [6] shows thath ¢ T. Therefore, the multicast problem
MP(h) is not asymptotically solvable.
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