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Abstract— We consider a network multicast example that
relates the solvability of the multicast problem with the existence
of an entropy function. As a result, we provide an alternative
approach to the proving of the insufficiency of linear (and
abelian) network codes and demonstrate the utility of non-
Shannon inequalities to tighten outer bounds on network coding
capacity regions.

I. I NTRODUCTION

Traditionally, intermediate nodes in a communication net-
work duplicate and forward packets towards their final desti-
nation. Although such a store-and-forward scheme is simple
to implement, it does not guarantee efficient utilization of
available transmission bandwidth. The network coding ap-
proach [1], [2] generalizes the traditional scheme by allowing
intermediate nodes to forward mixed/encoded versions of all
received data packets. Not only can this significantly increase
network throughput in multicast scenarios, it can also provide
robustness to link failure, and minimize cost of transmission.

One fundamental problem in network coding is to un-
derstand the capacity region and the classes of codes that
achieve capacity. In the single session multicast scenario, the
problem is well understood. In particular, the capacity region is
characterized by max-flow/min-cut bounds and linear network
codes are sufficient to achieve maximal throughput [2], [3].

However, things are much more complicated in more gen-
eral multicast scenarios. It was recently proved that linear
network codes are not sufficient for general multicast scenarios
[3]. Furthermore, the capacity region achieved by network
codes are also unknown. In fact, there are limited tools
available to study the capacity region.

One powerful tool is developed in [4], which outerbounds
the capacity region by characterizing the intersection of aset of
hyperplanes and the set of entropy functions. Unfortunately,
it cannot be implemented in practice due to the lack of an
explicit characterization of entropy functions for more than
three random variables. One way to resolve this difficulty is
by replacing the set of entropy functions with the set of non-
negative submodular functions. The resulting bounds for the
network coding capacity region can be quite loose. Recent
work [5] based on matroid theory showed that application of
the non-Shannon inequality [6], one can obtain a tighter bound
for the capacity region (by obtaining a better outer bound for
the set of entropy functions).

In this paper, we construct a particular network and mul-
ticast problem, which relates solvability to the existenceof
an entropy function on a set of four random variables. As

a result, we provide an alternative approach to the proving
of the insufficiency of linear (and abelian group) network
codes, including time-sharing of such network codes. We also
demonstrate the utility of non-Shannon inequalities to tighten
outer bounds on network coding capacity regions.

Section II provides (linear/group) network code fundamen-
tals and relates the existence of such codes to the ranks of
certain vector subspaces/group orders. Section III presents the
main result, concerning a multicast problem induced by a
functionh with certain properties. Theorem 1 states thath is
entropic if the induced multicast problem is solvable. Theorem
2 provides a converse, namely that the multicast problem is
solvable ifh is entropic. Section IV explores the implications
of this result, which include the insufficiency of linear or even
(abelian) group network codes, and the neccessity for non-
Shannon inequalities.

II. N ETWORKS, CODES AND CAPACITY REGIONS

A communication network will be modeled by a directed
acyclic graphG = (N , E). The nodesu ∈ N and directed
edgese = (tail(e), head(e)) ∈ E respectively model the com-
munication nodes and directed point-to-point communication
links in the network. Fore, f ∈ E we writef → e as shorthand
for head(f) = tail(e). Similarly, for f ∈ E , u ∈ N , f → u
meanshead(f) = u andu → f meanstail(f) = u.

For any networkG, amulticast requirementM , (S, O,D)
is specified by:

1) An index setS of all independent multicast sessions.
Each session is a collection of data packets to be
multicast to a prescribed set of destination nodes.

2) A mappingO : S 7→ N , whereO(s) is the originating
node for multicast sessions.

3) A mappingD : S → 2N , where the setD(s) contains
the destination nodes for the sessions, all of which
require the data of sessions.

Note: We do not specify any rate requirement.Given a mul-
ticast requirementM , the objective is to efficiently multicast
data for sessions originating atO(s) to all destinationsD(s).

For a given networkG and multicast requirementM , a
network code solving the multicast problem is specified by
a set of alphabetsV = {Vf , f ∈ S ∪ E} and a set of local
coding functionsΦ , {φe : e ∈ E}.

Data transmission takes place as follows. The input gener-
ated by sessions is a symbolVs ∈ Vs. The symbol transmitted
along edgee ∈ E is

Ve = φe(Vf : f ∈ S ∪ E , f → e),
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where to simplify notation,s → e indicatesO(s) → e. We
require that for everys ∈ S andu ∈ D(s), Vs can be uniquely
determined from{Vf : f → u}

H (Vs | Vf : f ∈ S ∪ E , f → u) = 0.

We will refer to a network code byΦ, with the alphabetV
implicitly defined. Since the source, and hence edge symbols
Vf are random variables, we can also refer to the code by the
collection of random variables{Vf , f ∈ S ∪ E}, where their
joint distribution is implied byΦ.

Definition 1. Given a networkG and a multicast requirement
M , a rate-capacity tuple

(λ, ω) , (λs : s ∈ S, ωe : e ∈ E)

is admissibleif there exists a network codeΦ such that

log |Ve| ≤ ωe, ∀e ∈ E

log |Vs| ≥ λs, ∀s ∈ S

Similarly, a tuple isasymptotically admissibleif there exists
a sequence of network codesΦ(n) over alphabetsV(n) and
positive normalizing constantsr(n) such that

lim sup
n→∞

1

r(n)
log |V(n)

e | ≤ ωe, ∀e ∈ E ,

lim inf
n→∞

1

r(n)
log |V(n)

s | ≥ λs, ∀s ∈ S

Furthermore, if the sequence of codes all belong to a par-
ticular class (e.g. linear) we call the rate-capacity tuple
asymptotically admissible by that class of codes.

For a given network, multicast requirement and rate-
capacity tuple, the multicast problem is to determine if the
tuple is (asymptotically) admissible. Equivalently determine
the set of all (asymptotically) admissible rate-capacity tuples.

In the above formulation, there is no restriction on the
choice of alphabets and local coding functions. However,
network codes with neat algebraic structures may be preferred
in practice, to reduce encoding and decoding complexity.

Definition 2. A network codeΦ is linear over Fq if Vf is a
vector space overFq, and theφe are linear.

Proposition 1. SupposeΦ is linear. Then there exists a vector
spaceV with subspacesVf , f ∈ E ∪ S such that

|S| dimV −
∑

s∈S

dimVs = dimV− dim
⋂

s∈S

Vs

⋂

f :f→e

Vf is a subspace ofVe, ∀e ∈ E

⋂

f :f→u

Vf ⊆ Vs, ∀s ∈ S, u ∈ D(s)

dimV − dimVs = logq |Vs|, ∀s ∈ S

dimV − dimVf ≤ logq |Vf |, ∀f ∈ E

Proposition 2. Suppose that there exists a vector spaceV

with subspacesVf , f ∈ E ∪ S satisfying

|S| dimV −
∑

s∈S

dimVs = dimV− dim
⋂

s∈S

Vs

⋂

f :f→e

Vf is a subgroup ofVe, ∀e ∈ E

⋂

f :f→u

Vf ⊆ Vs, ∀s ∈ S, u ∈ D(s)

Then there exists a linear network codeΦ such that
logq |Vf | = dimV−dimVf for all f ∈ S∪E . In other words,
the rate-capacity tuple(λs : s ∈ S, ωe : e ∈ E) whereλs =
(dimV− dimVs) log q andωe = (dimV− dimVe) log q is
linearly admissible.

The above two propositions show that linear network codes
can be described by the ranks of a collection of vector sub-
spaces. This idea can be extended to other algebraic structures.

Proposition 3. LetG be a finite group with subgroupsGf , f ∈
S ∪ E . Suppose the following conditions are satisfied

|G|/|
⋂

s∈S

Gs| =
∏

s∈S

|G|/|Gs|

⋂

f :f→e

Gf is a subgroup ofGe, ∀e ∈ E

⋂

f :f→u

Gf is a subgroup ofGs, ∀s ∈ S, u ∈ D(s),

Then there exists a network code such that the rate-capacity
tuple (log |G|/|Gs| : s ∈ S, log |G|/|Ge| : e ∈ E) is
admissible.

If the groupG is also abelian, the group network code will
be called abelian.

III. M AIN RESULT

Let h be a set function defined on the collection of all
nonempty subsets of{1, 2, 3, 4} such that

h(1, 2, 3, 4) = h(1, 2, 3) = h(1, 2, 4) =

h(1, 3, 4) = h(2, 3, 4) = h(3, 4). (1)

Then h induces a multicast problemMP(h), together with
an induced rate-capacity tuple, which we will now describe.
There are three sessionsVa, Vb, Vc all available at the same
source node, with entropy ratesH(Va) = h(1), H(Vb) =
h(1, 2)− h(1) andH(Vc) = h(1, 2, 3)− h(1, 2).

For convenience, we divide the underlying network into
two parts. The first part, depicted in Figure 1, contains the
source and generates a set of four network coded messages
V1, V2, V3, V4 which will be transmitted to the second half
of the network, shown in Figure 2. To simplify notation,
each edge is associated with a symbol denoting the network
code message (and corresponding random variable) to be
transmitted along that edge. If the link is capacitated, its
capacity is given following the edge message symbol.



Va, Vb, Vc

V1, h(1)

V3, h(3)

V2, h(2)

V4, h(4)

W,h
(2,

3)
−

h(2)

W ′
, h(2, 4)

− h(2)

V2

V2

V2

Fig. 1. First part of the network

The second part of the network is mainly composed of
receivers, and is divided into several subnetworks, Figures
2(a)–2(e) each of which contains a receiver and a subset of
V1, V2, V3, V4 as input. Receivers are denoted by a solid square
labeled by the set of source messages to be recovered. To
simplify notation, all messages other than the four messages
V1, V2, V3, V4 will be denoted by a generic symbolW . As
each receiver subnetwork has at most one such message, any
confusion will be cleared from the context.

V1 Va

(a) Subnetwork 1

V1 Va, Vb

V2

W,h(1, 2)− h(2)

V2

(b) Subnetwork 2

V1

Va, Vb, Vc

V2 W,h(1, 2, 3)− h(3)

V3 V3

(c) Subnetwork 3

Vi

Va, Vb, Vc
Vk

W,h(i, j, k)− h(i, j)

Vj Vi Vj

(d) Subnetwork 4

V1 Va

V3

W,h(1, 3)− h(3)

V3

(e) Subnetwork 5

Fig. 2. Second part of the network

The multicast problem that we are interested in is to
determine if there is any network coding solution for the
induced multicast problem. Equivalently, we wish to determine
if the multicast problemMP(h) is (asymptotically) solvable
or not.

Theorem 1. Let h be a set function defined on the collection
of all nonempty subsets of{1, 2, 3, 4} satisfying (1). If the
induced multicast problemMP(h) is solvable, thenh is the
entropy vector for the random variablesV1, V2, V3, V4 (see
Figure 1 and 2) of the network coding solution. Hence,h is
entropic.

Proof. Suppose{Va, Vb, Vc, V1, V2, V3, V4} is a solution to the

multicast problemMP(h). Then H(Va) = h(1), H(Vb) =
h(1, 2)− h(1) andH(Vc) = h(1, 2, 3)− h(1, 2).

From the first half of the network, it is obvious thatH(Vi) ≤
h(i) for i = 1, 2, 3, 4. Also, we can deduce

H(V2, V3) ≤ H(V2,W, V3)

= H(V2,W )

≤ H(V2) +H(W )

≤ h(2) + h(2, 3)− h(2).

Similarly, H(V2, V4) ≤ h(2, 4).
To prove thath is the entropy vector forV1, V2, V3, V4, we

need to show thatH(Vi, i ∈ α) = h(α) for all α ⊆ {1, 2, 3, 4}.
This is accomplished by Claims 1–9 below.

Claim 1. H(V1) = h(1) andH(V1|Va) = 0

Proof. From Figure 2(a),H(Va|V1) = 0 in order to recoverVa

at the sink. Therefore,H(V1) ≥ H(Va) = h(1). As H(V1) ≤
h(1), the first part of the claim follows. Moreover,

H(V1|Va) = H(V1, Va)−H(Va)

= H(V1) +H(Va|V1)−H(Va)

= H(V1)−H(Va)

= 0.

Claim 2. H(V2) = h(2) andH(V1, V2) = h(1, 2)

Proof. From Figure 2(b),

H(V2) + h(1, 2)− h(2) ≥ H(V2) +H(W )

≥ H(V2,W )

≥ H(Va, Vb)

= H(Va) +H(Vb)

= h(1, 2)

As a result,H(V2) ≥ h(2). Since H(V2) ≤ h(2), we
haveH(V2) = h(2). On the other hand, from Figure 2(b),
H(V1, V2) ≥ H(Va, Vb) = h(1, 2). Finally, note that

H(V1, V2) ≤ H(V1, V2, Va, Vb,W )

≤ H(V2,W, Va, Vb) +H(V1|Va)

= H(V2,W ) +H(Va, Vb|V2,W )

≤ H(V2) +H(W )

= h(2) + h(1, 2)− h(2)

= h(1, 2).

Claim 3. H(V3) = h(3) andH(V4) = h(4)

Proof. From Figure 2(c),

H(V3) + h(1, 2, 3)− h(3) ≥ H(V3) +H(W )

≥ H(Va, Vb, Vc)

= h(1, 2, 3)

HenceH(V3) ≥ h(3) and sinceH(V3) ≤ h(3), H(V3) =
h(3). Similarly, H(V4) = h(4).



Claim 4. H(Vi, Vj) ≥ h(i, j) for distinct i and j

Proof. From Figure 2(d),

H(Vi, Vj) + h(i, j, k)− h(i, j) ≥ H(Vi, Vj) +H(W )

≥ H(Va, Vb, Vc)

= h(i, j, k)

As a result,H(Vi, Vj) ≥ h(i, j).

Claim 5. H(V1, V3) = h(1, 3) andH(V1, V4) = h(1, 4).

Proof. From Figure 2(e),

H(V1, V3) ≤ H(V1, V3,W, Va)

≤ H(V3,W ) +H(Va|W,V3) +H(V1|Va)

≤ H(V3) +H(W )

≤ h(3) + h(1, 3)− h(3)

= h(1, 3)

Thus H(V1, V3) = h(1, 3). Similarly, H(V1, V4) = h(1, 4).

Claim 6. H(Vi, Vj , Vk) = h(i, j, k)

Proof. From Figure 2(d), it is clear thatH(Vi, Vj , Vk) ≥
H(Va, Vb, Vc). On the other hand, asVi, Vj , Vk are functions
of Va, Vb, Vc, therefore,H(Vi, Vj , Vk) ≤ H(Va, Vb, Vc) and
henceH(Vi, Vj , Vk) = H(Va, Vb, Vc) = h(i, j, k).

Claim 7. H(V3, V4) = h(3, 4).

Proof. From Claim 4, we haveH(V3, V4) ≥ h(3, 4). Since
h(3, 4) = H(Va, Vb, Vc) and H(V3, V4|Va, Vb, Vc) = 0, the
claim then follows.

Claim 8. H(V1, V2, V3, V4) = H(Va, Vb, Vc) = h(1, 2, 3, 4)

Proof. Obvious

Claim 9. H(V2, V3) = h(2, 3) andH(V2, V4) = h(2, 4)

Proof. From Claim 4,H(V2, V3) ≥ h(2, 3) andH(V2, V4) ≥
h(2, 4). As H(V2, V3) ≤ h(2, 3) andH(V2, V4) ≤ h(2, 4) are
proved in the beginning, the result then follows.

Corollary 1. If the induced multicast problemMP(h) is
asymptotically solvable, thenh ∈ Γ∗

4 which is the minimal
closure of the set of all entropy functions for four random
variables.

Theorem 1 shows that if the induced multicast problem
MP(h) is solvable, thenh must be entropic. In the following
theorem, we prove the converse.

Theorem 2. Let h be entropic and that all the terms
h(1, 2, 3, 4), h(1, 2, 3), h(1, 2, 4), h(1, 3, 4), h(2, 3, 4), h(3, 4)
are equal to each other. Then the rate-capacity tuple in the
induced multicast problemMP(h) is asymptotically admissi-
ble.

Proof. As h is entropic, then there exists a set of random
variables(U1, U2, U3, U4) whose entropy function ish. Hence,

one can construct a sequence of groupsGk, with subgroups
Gk

i , i ∈ {1, 2, 3, 4} [7], [8] and normalizing constantsr(k)
such that

lim
k→∞

1

r(k)
hk(α) = h(α), α ⊆ {1, 2, 3, 4}

hk(1, 2, 3, 4) = hk(1, 2, 3) = hk(1, 2, 4) = hk(1, 3, 4)

= hk(2, 3, 4) = hk(3, 4).

wherehk(α) = log |Gk|/| ∩i∈α Gk
i |.

For any k, the functionhk induces a multicast problem
MP(hk). If MP(hk) is solvable, then the theorem follows
from limk→∞ hk(α)/r(k) = h(α).

It remains to show thatMP(hk) is solvable. For eachk, hk

is entropic [7], [8]. In fact,{Gk, Gk
i : i ∈ {1, 2, 3, 4}} induces

a set ofquasi-uniformrandom variablesUk
1 , U

k
2 , U

k
3 , U

k
4 such

that

1) For anyα ⊆ {1, 2, 3, 4},
{

Uk
i : i ∈ α

}

is uniformly
distributed over its support.

2) For anyα, β ⊆ {1, 2, 3, 4}, the conditional probability
distribution of

{

Uk
i : i ∈ α

}

given a particular instance
of

{

Uk
i : i ∈ β

}

=
{

uk
i : i ∈ β

}

(with positive proba-
bility) is constant over its support.

By the quasi-uniformity of Uk
1 , U

k
2 , U

k
3 , U

k
4 , it is

straightforward to show that there exists another set of
quasi-uniform random variablesUk

a , U
k
b , U

k
c such that

Uk
a , U

k
b , U

k
c are independent and all the termsH(Uk

1 |U
k
a ),

H(Uk
a |U

k
1 ), H(Uk

a , U
k
b |U

k
1 , U

k
2 ), H(Uk

1 , U
k
2 |U

k
a , U

k
b ),

H(Uk
a , U

k
b , U

k
c |U

k
1 , U

k
2 , U

k
3 ), H(Uk

1 , U
k
2 , U

k
3 |U

k
a , U

k
b , U

k
c ) are

equal to zero.
It can be checked easily thatUk

a , U
k
b , U

k
c are uniform and

that H(Uk
a ) = hk(1), H(Uk

b ) = hk(1, 2) − hk(1) and
H(Uk

c ) = hk(1, 2, 3) − hk(1, 2). To show thatMP(hk)
is solvable, it remains to show that the auxiliary random
variables (i.e., the generic message random variablesW ) can
be constructed to satisfy the capacity constraints.

This can be achieved by “data compression” of the in-
puts subject to common side-information at both encoder
and decoder. SinceUk

1 , U
k
2 , U

k
3 , U

k
4 are quasi-uniform, it is

straightforward to verify that the “rate of compression” meets
the (conditional) entropy lower bounds by using block coding.
The result then follows.

IV. I MPLICATIONS

Theorem 3. There is a network and a multicast requirement
such that the use of abelian network codes is suboptimal
(including linear network codes,R–module codes, and time-
sharing of such).

Proof. First, we describe a set of four quasi-uniform random
variablesU1, U2, U3, U4 constructed using the projective plane
described in [6]. The joint entropies of subsets of these random



variables are as follows:

h(1) = h(2) = h(3) = (4) = log 13

h(1, 2) = log 6 + log 13;h(3, 4) = log 13 + log 12

h(1, 3) = h(1, 4) = h(2, 3) = h(2, 4) = log 13 + log 4

h(i, j, k) = log 13 + log 12 = h(1, 2, 3, 4), ∀ distinct i, j, k.

Then it is clear thath(1, 2, 3, 4) = h(1, 2, 3) = h(1, 2, 4) =
h(1, 3, 4) = h(2, 3, 4) = h(3, 4). Sinceh is entropic,MP(h)
is asymptotically solvable. In fact, it can be shown thath
is an entropy vector of four quasi-uniform random variables.
Therefore, using the same argument as used in the proof of
Theorem 2, we can show thatMP(h) is solvable.

Suppose to the contrary that there is an abelian network
code that solves the multicast problem. Then there exists an
abelian groupG with subgroupsG1, G2, G3, G4 such that
h(α) = log |G|/|

⋂

i∈α Gi|. By [8], h must satisfy the Ingleton
inequality

h(1, 2) + h(1, 3) + h(1, 4) + h(2, 3) + h(2, 4) ≥

h(1) + h(2) + h(3, 4) + h(1, 2, 3) + h(1, 2, 4) (2)

However, we can directly verify thath does not satisfy the
Ingleton inequality.

Corollary 2. There is a network and a multicast requirement
for which abelian codes are (asymptotically) suboptimal.

The multicast network constructed can not only be used to
show the suboptimality of abelian network codes, it also shows
that non-Shannon type information inequalities can be useful
in determining the capacity region of network codes.

Suppose h(1, 2, 3, 4) = h(1, 2, 3) = h(1, 2, 4) =
h(1, 3, 4) = h(2, 3, 4) = h(3, 4). By Theorems 1 and 2, we
proved that the multicast problemMP(h) is asymptotically
solvable if and only ifh ∈ Γ∗

4. Therefore, we can obtain an
outer bound for network code capacity region by finding an
outer bound forΓ∗

4. One simple outer bound isΓ4 defined as
the set of all non-negative submodular functions.

It was shown in [6] thatΓ4 is a proper superset ofΓ∗
4.

Therefore, by Theorem 2, the outer bound for the capacity
region obtained in this manner is not tight. To tighten the
bound for the capacity region, one approach is to tighten the
bound forΓ∗

4 by applying new non-Shannon inequalities [6]
and in [9].

Consider the functionh defined as follows [6]:

h(1) = h(2) = h(3) = (4) = 2a > 0

h(1, 2) = 3a;h(3, 4) = 4a

h(1, 3) = h(1, 4) = h(2, 3) = h(2, 4) = 3a

h(i, j, k) = 4a = h(1, 2, 3, 4), ∀ distinct i, j, k.

Clearly, h(1, 2, 3, 4) = h(1, 2, 3) = h(1, 2, 4) = h(1, 3, 4) =
h(2, 3, 4) = h(3, 4). It can be verified directly thath ∈ Γ4.
However, the non-Shannon information inequality obtained
in [6] shows thath 6∈ Γ∗

4. Therefore, the multicast problem
MP(h) is not asymptotically solvable.

V. CONCLUSION

We have shown how to construct a multicast problem from
a functionh that is solvable if and only ifh is entropic. This
provides a useful link between entropy vectors and the capacity
region for network codes. Using this approach, we provide
an alternative proof of the insufficiency of linear (and abelian
group) network codes, including time-sharing of such network
codes. We also demonstrated the utility of the Zhang-Yeung
inequality to tighten outer bounds on network coding capacity
regions.
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