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Abstract— Random linear network coding is a particularly ~as close to one as desired, by increasing the field gize
decentralized approach to the multicast problerp. Use of radom The bounds[{1) and}2) rely on the special structure of the
network codes introduces a non-zero probability however tht  yatarminant polynomial of the transfer matrix of the netvor

some sinks will not be able to successfully decode the reqeit Thi d | the followi | b d
sources. One of the main theoretical motivations for random IS paper develops the following new lower bound.

network codes stems from the lower bound on the probability =~ Theorem 1:Consider a network code in which edges
of successful decoding reported by Ho et. al. (2003). Thissalt receive signals with independent random coefficients ahose

demonstrates that all sinks in a linearly solvable network en independently and uniformly from a finite field with cardinal
successfully decode all sources provided that the random de ity ¢. If there is some choice of coefficients for thesedges
field size is large enough. This paper develops a hew bound on h ¢ Its i uti & th h bability th I
the probability of successful decoding. that resu ts in a solution ovéf, then the pro a ility that a
receivers can decode the source processes is at least
I. INTRODUCTION X

It has been recently proved that network layer coding can 1—=] . 3)

increase throughput, particularly for multicast scerafib]. Our approach for the proc;]f of this theorem is to identify

It is also known that linear network COdeS. [2] can achieve ¢ iitical sub-matrix of the Edmonds matrix whose non-
max.-ﬂow upper bounds on thE." throughput in a_smglg sour ﬁ]gularity is a necessary and sufficient condition for dixog
multicast network. The algebraic approach of [3] is pattidy success. This critical matrix is different for each sink in

useful in the deS|gq and anaIyS|§ of linear network codes, 3fhe network. The new bound results directly from a nesting
we adopt the notation and terminology of that paper. groperty of the critical matrices
S

: R?]r_ldhom netwo:jk_s code;_[4], ,[[5] are Linear netv(\jlorklcc;d In the new bound, the field size required to attain a
N Which the encoding coetlicients aré chosen randomiy Tropy o, probability of success depends only on the number

a f|n|_te field. The sink nodes can decode correctly if a edges with random coefficients, and not on the number
only if the overall transfer matrix from the sources to eacfy <1 o The resulting-fold reduction in the required;
sink is invertible. One of the main theoretical results fo& '

: : Id be significant. W hasize thiat (3), liké (1 li
random network codes consists of the following lower bourtgﬁjy whee: I?hnel IS?S erlyire;genmer'zw?)sr:f ?s s%llvgb)l o I(%, )Tﬁizp 1es
on the probability of successful decoding [4], assuming th% a consequence of the conditions for applicability of the
the underlying network is linearly solvable ovEy (i.e. there

. . . e . . Schwartz-Zippel inequality, which is used in the proof oftbo
exists a linear code which satisfies the multicast requirgs)e bounds. Thus[{3) doesot imply the universal existence of

For a network code in which some of the code coefficients aﬁ%ary solutions for every network. The bound (I, (2) and

chosen independently and uniformly from a finite field wit - :
cardinality ¢, the probability that alld receivers can decodel-@) only provide lower bounds for a givenwhen the network

th i< at least is solvable oveff,.
€ soufce processes Is at leas We further conjecture that for large random networks satis-

(1 _ @) v (1) fying certain properties, the success probability behages

q E
1
wherev is the maximum number of links receiving signals H (1 — —.) (4)
with independent random coefficients in any set of links i=1
constituting a flow solution from all sources to any receivg{here  is the total number of links in the network.

[3]. ) N The paper is organized as follows: Sectian Il presents our
A looser bound (subject to the same conditions as aboyghdel and introduces some algebraic notation. Sedfidn Il
which depends only on, the total number of edges receivingjevelops the new bounid (3), while Sectioh V discusses random

signals with independent random coefficients is given by [44raphs, leading to the conjectuf@ (4).
[6]
(1 B @)" @ Il. NETWORK CODING MODEL
q We adopt the model from [3]. The network is represented
Thus provided a linear solution ovél, exists in the first by a directed acyclic grapf = (V, &) with V' = |V| nodes
place, the probability of successful decoding can be maded E = |£| edges. There are independent, discrete source
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processes with messages belongingfpandd > 1 receivers.  Lemma 1:Let P be a multivariate polynomial of degree
Each receiver node hds > r incoming edges. The multicastdr, with the exponent of any individual variable at maekst
requirement is that each receiver node can decode everngesoliret each variable be chosen uniformly frdfg. Then if P is

message from the signals on its incident edges. not identically zero,
Each edge: € € is incident to node € V if v = head(e), d\"”
or is an outgoing edge if = tail(l). The in-degree of a node Pr(P #0) > (1 - —) : (6)

is din (v) and the out-degree iy (v). The time unitis chosen e make two remarks on this approach. First, application
such that the capacity of each link is one bit per unit timgf Lemma] toP as defined in[{5) implies an independence of
and edges with larger capacity are modeled as parallel edgag eventsP;, = 0 and Ps, = 0. Depending on the structure
Without loss of generality, it can be assumed that each sougs the network, these events may be strongly dependent. For
is associated with a source nogle € V with din (s,) = 0 and example, consideP;, = P, = --- = P,;, meaning all sinks
dout($a) = 1, @ = 1,2,...,r . Similarly, each sink nodés have identical incoming signal${ = B, = - -- = B,). Then
hasdin (tg) = r anddou (t5) =0, 3 =1,2,...,d (itis always |emmal[] yields a lower bounfl — d/q)”, rather than(1 —
possible to obtain such a graph by introducing auxiliaryesd1 /). Obviously this is an extreme example, yet it illustrates
and edges). It will further be assumed that edges are labejgd point that[{ll) may be loose.
ancestrally. Secondly, the modified Schwartz-Zippel bound itself can be
A scalar linear network coddor G is an assignment of very loose, as the following example shows. lEte Fi<m
linear encoding functiong,, : Fi"*) s F&*) to each node with each entryh;; chosen independently with a uniform
v € V. Such codes are sufficient for the multicast problemlistribution onF,. Then it is well known that

on acyclic delay networks. Following [3], define thacoding m
matrix F € FJ*F where F;; is the coefficient applied to the Pr(det H #0) = mm(q) = [[ (1 —¢7). (7)
symbol incoming on edgeé € £ for contribution to outgoing i=1

edgej € £. According to the assumption of ancestral orderingn contrast, Lemm@ll gives the lower bound
F is strictly upper triangular. Similarly, thgource matrixA € _iym
IF;XE maps messages onto outgoing source edges arsintke Pr(det H # 0) > (1 -9 ) J (8)
matrix Bg € F/,** maps incoming sink edges onto the sinkshich also could be obtained froifl (7) by lower bounding each
tgeV, f=12,...,d term in the product by the minimum tert — ¢~ 1).

Let = € F.*" be a row vector representing the source We emphasize thak](6) applies only whénis not identi-
messages. Then the received vector of symhglsc ]Fé” cally zero for every choice of variables (e.g. all coeffitgen

at sinkg =1,2,...,d is given by are zero). This precludes application &t (6) to non-solwabl
networks, i.e. networks where every choice I6fmakesZg
ys = zMp singular and henc® = 0.

In Sectior1ll we partially address the dependency between
the P3, while in Sectioi V we consider large random networks,
where we also discuss the extent to which (7) improlés (8).
Each sink can decode all sources if and onlydéf(A(I — I1l. THE NEW BOUND
F)*lBBT) # 0 for _everyﬂ = 1,2,...,d, or equivalently if
the Edmonds matrix

where
Mg =A(I — F)"'Bj.

According to our assumption regarding sources and sinks,
and the ancestral ordering of edges, we can further assume

A 0 without loss of generality that
Zs=|r-r BT
A A= [Irxr OT‘X(E*T)]
is non'SinQUIar- Bﬁ - [OTXkB ITXT OT‘X(E—T—]C[—;)} 7[3 = 17 27 RS d

Considering the entries ofl, F' and Bz as variables,
the Leibniz determinant formula provides a way of writin
det Zg as a multivariate polynomiaPs in the a;j, fij, bij.
Furthermore, this multivariate polynomial has degree astm
v but is linear in each variable individually. Therefore th

hereky, > r and kg > r + kg—1, S > 1. This means

hat the sources inject messages into the network via edges
O1, 2,...,r and that each sink observes signalsroconsecu-
éively numbered edges. No sink shares edges with any other
sink or source. See Figuké 1 for an example of how to arrive

product ) .
at this formulation.
pP= I_IPf3 () Then the Edmonds matrix for sing has the following
A structure:
has degredv, with each variable of degregor less. I, 0 0 0 0
The lower bound[{1) results from a modified Schwartz- Uy Wi Wi Wiz 0
Zippel bound, which takes into account the individual vialéa Zg= |0 Uy Wau Wiy 0 9)
degree constraint oP; [5, Lemma 1]. We reproduce this 0 0 Us Wz I,
lemma for reference. 0 0 0 Uy 0



where theU; are square, upper triangular with diagonadtructure of the Edmonds matrix (as explained previousty fo
elements all equal td. The matriced/; andUs arer xr, Uz Pg), we also know that the individual degree of any variable
is (kg —2r)x (kg—2r) andUy is (E—r—kg) X (E—r—kg). in ¢, O ¢,—1 iS zero or one. Hence

Definition 1: Thecritical matrix for sink 3 is the following
(kg —r) x (kg — r) principal sub-matrix ofZg, deg 0,—1 = deg ¢y, — deg drm—1,

Clo— Wi Wia
4 \U2 Wy /" . .
Lemma 2: The determinant of the Edmonds matrix for sin

has the same magnitude as the determinant of its critical
B g Pr(E,, | E1,...,Epn-1) =Pr (det (W - VC,;l,lU) #* O)

(10) and the degree of any individual variabledr,_; is at most
l}' Collecting results so far and applying Lemia 1,

matrix.
|det Zg| = | det Cg| =Pr(om-1#0)
Proof: Straightforward from either the Laplace expansion 1) deg om—degdm
of det Zg, or repeated application of the partitioned matrix < (1 - a)
determinant formula. |
We can immediately apply Lemnia 1 tt Cs to bound the  Finally, substitution into[{(12) results in a telescopingsior
probability for a given sink the exponentsleg ¢ +deg g2 —deg ¢1 +deg ¢p3—deg o+ . .,

1\ "% leaving only
Pr (det Zs # 0) = Pr(det Cj5 # 0) > (1 - —) , (11)
q

d deg ¢q
wherer; is the number of columns i@z with variable terms, Pr ﬂ Es | > <1 - _)
i.e. the number of edges in the subget+ 1,r + 2,...,kg} B=1 q
receiving signals with random coefficients.

For the d receiver problem, we have the following very Thjs directly yields[(B) viadv < n 2 deg ¢y = g < E. B
useful property of the critical matrices, which is guaradte | .
by their construction.

Lemma 3 (Nesting of critical matricesf's, is a principal z(d,q) = M.
sub-matrix ofC, for 82 > 3. log(1 —1/q)
Hence each critical matrix’s; has as nested principal sub-rpap [3) is tighter thar[{1) whenever
matrices, all the critical matrices for sinks2,...,5 — 1.

Proof: [Proof of main result[(8)] LeEg, 5 =1,2,....d n < v2(d,q).
be the event that sink can decode. By Lemnid £3 < ’
det Zg # 0 <= det Cg # 0. Now the probability that all Furthermorez(d, ¢) > d and

sinks can decode is given by
d lin}iz(d, q) = 0
—
Pr| () Es | =Pr(E1)Pr(Es | Ey)...Pr(Eg | Er...Eg_1) 1qim dq) = d
B=1 ’ '

g— 00

(12)
Now considerPr(E,, | Ei,...,En_1) = Pr(detC,, # 0| Roughly speaking, the new bound is tighter for networks with
detCy # 0,...,detCp,_1 # 0) for some2 < m < 3. By FE = O(vd) and sufficiently small.

Lemma[3,C,, can be partitioned In some instances it may be useful to have a bound which
C U depends only on the total number of edges carrying signals
m—1 . _ . . . .
Cm = ( v W) with random coefficients. Replacingwith n in (@) results in
(2) which is looser thar{{3), since
for appropriate choices df, vV, W.
Conditioned ondet C,,,_1 # 0, we can use the partitioned (1—d/q)" < (1—1/q)".
matrix determinant formula to write
det Cpy = det(Cr_y) det (W— VC;IAU), (13) Note that successful decoding at a particular sihkn

general depends on only part 6f3. There can be a much

which (conditioned ondet C,,—1 # 0) is zero if and only if smaller sub-matrix that determines singularity, for exmp
det (W — VC,;l_lU) =0. Cs might be block diagonal, with successful decoding of sink

Let ¢, be the multivariate polynomial corresponding tg depending only on one of the blocks (this case arises when
det C,,, and leto,,_; be the multivariate polynomial corre-there are disjoint paths from the sources to each sink). Thus
sponding todet (W — VC,.1,U). Then from [IB)deg ¢, = Cjs may be larger than strictly required for analysis of sjhk
deg ¢m—1 + deg o, —1. This relation also holds for the degreealone, however defining the critical matrix this way yielts t
of any individual variable. From the Leibniz formula and th@esting property that results in the new bound.



IV. EXAMPLE: THE BUTTERFLY NETWORK decoding success versus the field sizéor the network of

Figure 1 shows the well-known butterfly network, witH-igureLl (filled circles). This was achieved using monteecar

additional nodes and edges introduced in order to satisfy ciimulation, selecting each of the coefficients uniformignir
assumptions on sources and sinks. The sourbasr = 2 Fq- Results for the first ten prime fields are shown. Also shown

messages, and the edge labels indicate the edge orderdi§.the existing boundgl(1), dashed lin, (2), solid line, tae
Edgesl and2 carry the two messages from the source, whilg€W bound[(B), dot-dashed line. In this case, the new bound
edges12 resp.13 duplicate the signals on edgésresp.10, IS considerably tighter.

and edgesl4 resp. 15 duplicate8 resp.11. Supposing that p
all other edges carry random linear combinations of signals 1
v="7andn=09.
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Fig. 3. Success probability versus field sizey compared to bound§](1),

10 (@) and [3) for the butterfly network.
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12 13 14 15 V. RANDOM GRAPHS
Successful decoding for a particular sigkdepends on the
° o non-singularity of its critical matrix’s. To obtain[(8) we used
t1 t2 Lemmall to bound the probability that this matrix is non-

singular. It is interesting to consider however circumsém
under which[(¥) might be applicable, providing an even &ght
bound.

anzlgiﬁ;erisizgvfrittizgl Sntf]r:tiitggl o;ntgg Ecjrrgosr:ec:es hrg\?vﬂ:)rie There are two main obstacles to the application[of (7) for
Z termination of the probability thadet Cs # 0. Firstly,

. . : . e
nesting arisesi3; has been p!aced alongside. For f:larlty, mo%) applies to “full” matrices, with each element chosen
of the zeros have been omitted from each matrix. The so . .
independently and uniformly fronf,. In contrast,Cs is of

disks represent random entries fof the form [10), with all elements below theth diagonal equal
to zero (the strictly lower triangular part éf,). Secondly, the

Fig. 1. The butterfly network.

(1) ? A g 8 non-zero elements in the upper portion (upper triangular pa
———————— of U, and all ofWy;, W13 andWs,) of Cj are determined by
L lwe BT By he topology of th K itself. F | d
e e ol 2 the topology of the network itself. For a sparsely connecte
1 ee ! | network, the proportion of zeros in this part of the matriX wi
H 1 () L greatly exceed /q.
I 1 L ‘ Assuming that the random network code coefficients are
| ! 1 : L chosen from the non-zero elementsigf the total number of
I 1 U non-zero elements if’ is
I lee .
I T 023" din (v) dou(v) < E2.
Cr v vey
\ ! 1|1Lo Let p = o/E? be the proportion of non-zero elements.
L Cs 1 |lo1 _ _
=== ——17M1 1770 Ignoring the structure required bj,_(10), generate a random
I-F 1 01 m x m matrix C™) with elements identically distributed

according to
Fig. 2. Critical matrices for the butterfly network.

L—p f=0
Hen =J) {—1 F#0

Figure [3 shows the empirically measured probability of



It is a remarkable fact that provideddoes not tend to zero

Too
or one too quickly withm, 1 .
lim Pr (det om + 0) = 7mm(q)- 0.8
See [7] for a discussion of this threshold effect. Conditidn 0.6

on the event tha€ (™) has no all-zero rows or columns (if it
did, the network flow would anyway be infeasible regardless 4

of choice of code), the requirement is °
0.2

o

1 /1
p>— | =logm +loglogm | .
m \ 2

10 20 30 40 50 60 70 ¢4

This result even holds for independent, but non-identycall
distributed entries, as discussed by Cooper [7].

Now for sufficiently smallp, C™ can be permuted with
high probability into the form[{dI0). This leads us to conjeet VI
that there exist conditions ansuch thatr,,(¢) is the success o - .
probability for a large, randomly generated network with Random network coding is a promising decentralized ap-
a given degree distribution. The remainder of this sectuﬂ{oa‘:h for multicast. One of the main implementation con-

analyzes some properties af,(¢), and demonstrates theadera‘uons is the size of the finite field required to achiave
improvement that may be obtaineéi comparedto (8) specified probability that every sink can decode every sourc

To guarantee a particular probabilityusing [8), the field Th|_s baper pre_sent_ed anew bour_ld on the success proba_1b|llty,
. : which in certain circumstances is tighter that the previous
size ¢ must satisfy

bound. We also presented a heuristic argument that madivate

Fig. 4. Lower bound (solid line) ands(¢q) (dots).

. CONCLUDING REMARKS

1 1 1 the investigation of tighter bounds for large random nekspr
q= T_pi/m 37" mlog -+ 0O < ) based on the distribution of rank of large random finite field
p b matrices.

Hence the required field size increases linearly with the siz
of the matrix.

Let Too (q) = limy,— 00 T (¢) then
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