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Abstract— Random linear network coding is a particularly
decentralized approach to the multicast problem. Use of random
network codes introduces a non-zero probability however that
some sinks will not be able to successfully decode the required
sources. One of the main theoretical motivations for random
network codes stems from the lower bound on the probability
of successful decoding reported by Ho et. al. (2003). This result
demonstrates that all sinks in a linearly solvable network can
successfully decode all sources provided that the random code
field size is large enough. This paper develops a new bound on
the probability of successful decoding.

I. I NTRODUCTION

It has been recently proved that network layer coding can
increase throughput, particularly for multicast scenarios [1].
It is also known that linear network codes [2] can achieve
max-flow upper bounds on the throughput in a single source
multicast network. The algebraic approach of [3] is particularly
useful in the design and analysis of linear network codes, and
we adopt the notation and terminology of that paper.

Random networks codes [4], [5] are linear network codes
in which the encoding coefficients are chosen randomly from
a finite field. The sink nodes can decode correctly if and
only if the overall transfer matrix from the sources to each
sink is invertible. One of the main theoretical results for
random network codes consists of the following lower bound
on the probability of successful decoding [4], assuming that
the underlying network is linearly solvable overFq (i.e. there
exists a linear code which satisfies the multicast requirements).
For a network code in which some of the code coefficients are
chosen independently and uniformly from a finite field with
cardinality q, the probability that alld receivers can decode
the source processes is at least

(

1−
d

q

)ν

(1)

whereν is the maximum number of links receiving signals
with independent random coefficients in any set of links
constituting a flow solution from all sources to any receiver
[5].

A looser bound (subject to the same conditions as above)
which depends only onη, the total number of edges receiving
signals with independent random coefficients is given by [4],
[6]

(

1−
d

q

)η

. (2)

Thus provided a linear solution overFq exists in the first
place, the probability of successful decoding can be made

as close to one as desired, by increasing the field sizeq.
The bounds (1) and (2) rely on the special structure of the
determinant polynomial of the transfer matrix of the network.

This paper develops the following new lower bound.
Theorem 1:Consider a network code in whichη edges

receive signals with independent random coefficients chosen
independently and uniformly from a finite field with cardinal-
ity q. If there is some choice of coefficients for theseη edges
that results in a solution overFq then the probability that all
receivers can decode the source processes is at least

(

1−
1

q

)η

. (3)

Our approach for the proof of this theorem is to identify
a critical sub-matrix of the Edmonds matrix whose non-
singularity is a necessary and sufficient condition for decoding
success. This critical matrix is different for each sink in
the network. The new bound results directly from a nesting
property of the critical matrices.

In the new bound, the field sizeq required to attain a
given probability of success depends only on the number
of edges with random coefficients, and not on the number
of sinks. The resultingd-fold reduction in the requiredq
could be significant. We emphasize that (3), like (1) applies
only when the underlying network is solvable overFq. This
is a consequence of the conditions for applicability of the
Schwartz-Zippel inequality, which is used in the proof of both
bounds. Thus (3) doesnot imply the universal existence of
binary solutions for every network. The bounds (1), (2) and
(3) only provide lower bounds for a givenq when the network
is solvable overFq.

We further conjecture that for large random networks satis-
fying certain properties, the success probability behavesas

E
∏

i=1

(

1−
1

qi

)

(4)

whereE is the total number of links in the network.
The paper is organized as follows: Section II presents our

model and introduces some algebraic notation. Section III
develops the new bound (3), while Section V discusses random
graphs, leading to the conjecture (4).

II. N ETWORK CODING MODEL

We adopt the model from [3]. The network is represented
by a directed acyclic graphG = (V , E) with V = |V| nodes
andE = |E| edges. There arer independent, discrete source
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processes with messages belonging toFq, andd ≥ 1 receivers.
Each receiver node hasL ≥ r incoming edges. The multicast
requirement is that each receiver node can decode every source
message from the signals on its incident edges.

Each edgee ∈ E is incident to nodev ∈ V if v = head(e),
or is an outgoing edge ifv = tail(l). The in-degree of a nodev
is din (v) and the out-degree isdout (v). The time unit is chosen
such that the capacity of each link is one bit per unit time
and edges with larger capacity are modeled as parallel edges.
Without loss of generality, it can be assumed that each source
is associated with a source nodesα ∈ V with din (sα) = 0 and
dout (sα) = 1, α = 1, 2, . . . , r . Similarly, each sink nodetβ
hasdin (tβ) = r anddout (tβ) = 0, β = 1, 2, . . . , d (it is always
possible to obtain such a graph by introducing auxiliary nodes
and edges). It will further be assumed that edges are labeled
ancestrally.

A scalar linear network codefor G is an assignment of
linear encoding functionsfv : F

din(v)
q 7→ F

dout(v)
q to each node

v ∈ V . Such codes are sufficient for the multicast problem
on acyclic delay networks. Following [3], define theencoding
matrix F ∈ F

E×E
q whereFij is the coefficient applied to the

symbol incoming on edgei ∈ E for contribution to outgoing
edgej ∈ E . According to the assumption of ancestral ordering,
F is strictly upper triangular. Similarly, thesource matrixA ∈
F
r×E
q maps messages onto outgoing source edges and thesink

matrix Bβ ∈ F
r×E
q maps incoming sink edges onto the sinks

tβ ∈ V , β = 1, 2, . . . , d.
Let x ∈ F

1×r
q be a row vector representing the source

messages. Then the received vector of symbolsyβ ∈ F
1×r
q

at sinkβ = 1, 2, . . . , d is given by

yβ = xMβ

where
Mβ = A(I − F )−1BT

β .

Each sink can decode all sources if and only ifdet(A(I −
F )−1BT

β ) 6= 0 for every β = 1, 2, . . . , d, or equivalently if
the Edmonds matrix

Zβ =

[

A 0
I − F BT

β

]

is non-singular.
Considering the entries ofA, F and Bβ as variables,

the Leibniz determinant formula provides a way of writing
detZβ as a multivariate polynomialPβ in the aij , fij , bij .
Furthermore, this multivariate polynomial has degree at most
ν but is linear in each variable individually. Therefore the
product

P =
∏

β

Pβ (5)

has degreedν, with each variable of degreed or less.
The lower bound (1) results from a modified Schwartz-

Zippel bound, which takes into account the individual variable
degree constraint ofPβ [5, Lemma 1]. We reproduce this
lemma for reference.

Lemma 1:Let P be a multivariate polynomial of degree
dν, with the exponent of any individual variable at mostd.
Let each variable be chosen uniformly fromFq. Then if P is
not identically zero,

Pr (P 6= 0) ≥

(

1−
d

q

)ν

. (6)

We make two remarks on this approach. First, application
of Lemma 1 toP as defined in (5) implies an independence of
the eventsPβ1

= 0 andPβ2
= 0. Depending on the structure

of the network, these events may be strongly dependent. For
example, considerP1 = P2 = · · · = Pd, meaning all sinks
have identical incoming signals (B1 = B2 = · · · = Bd). Then
Lemma 1 yields a lower bound(1 − d/q)ν , rather than(1 −
1/q)ν. Obviously this is an extreme example, yet it illustrates
the point that (1) may be loose.

Secondly, the modified Schwartz-Zippel bound itself can be
very loose, as the following example shows. LetH ∈ F

m×m
q

with each entryhij chosen independently with a uniform
distribution onFq. Then it is well known that

Pr (detH 6= 0) = πm(q) =

m
∏

i=1

(

1− q−i
)

. (7)

In contrast, Lemma 1 gives the lower bound

Pr (detH 6= 0) ≥
(

1− q−1
)m

, (8)

which also could be obtained from (7) by lower bounding each
term in the product by the minimum term(1− q−1).

We emphasize that (6) applies only whenP is not identi-
cally zero for every choice of variables (e.g. all coefficients
are zero). This precludes application of (6) to non-solvable
networks, i.e. networks where every choice ofF makesZβ

singular and henceP = 0.
In Section III we partially address the dependency between

thePβ , while in Section V we consider large random networks,
where we also discuss the extent to which (7) improves (8).

III. T HE NEW BOUND

According to our assumption regarding sources and sinks,
and the ancestral ordering of edges, we can further assume
without loss of generality that

A =
[

Ir×r 0r×(E−r)

]

Bβ =
[

0r×kβ
Ir×r 0r×(E−r−kβ)

]

, β = 1, 2, . . . , d

where k1 > r and kβ > r + kβ−1, β > 1. This means
that the sources inject messages into the network via edges
1, 2, . . . , r and that each sink observes signals onr consecu-
tively numbered edges. No sink shares edges with any other
sink or source. See Figure 1 for an example of how to arrive
at this formulation.

Then the Edmonds matrix for sinkβ has the following
structure:

Zβ =













Ir 0 0 0 0
U1 W11 W12 W13 0
0 U2 W21 W22 0
0 0 U3 W31 Ir
0 0 0 U4 0













(9)



where theUi are square, upper triangular with diagonal
elements all equal to1. The matricesU1 andU3 arer× r, U2

is (kβ−2r)×(kβ−2r) andU4 is (E−r−kβ)×(E−r−kβ).
Definition 1: Thecritical matrix for sink β is the following

(kβ − r)× (kβ − r) principal sub-matrix ofZβ ,

Cβ =

(

W11 W12

U2 W21

)

. (10)

Lemma 2:The determinant of the Edmonds matrix for sink
β has the same magnitude as the determinant of its critical
matrix.

| detZβ| = | detCβ |
Proof: Straightforward from either the Laplace expansion

of detZβ , or repeated application of the partitioned matrix
determinant formula.
We can immediately apply Lemma 1 todetCβ to bound the
probability for a given sink

Pr (detZβ 6= 0) = Pr (detCβ 6= 0) ≥

(

1−
1

q

)ηβ

, (11)

whereηβ is the number of columns inCβ with variable terms,
i.e. the number of edges in the subset{r + 1, r + 2, . . . , kβ}
receiving signals with random coefficients.

For the d receiver problem, we have the following very
useful property of the critical matrices, which is guaranteed
by their construction.

Lemma 3 (Nesting of critical matrices):Cβ1
is a principal

sub-matrix ofCβ2
for β2 > β1.

Hence each critical matrixCβ has as nested principal sub-
matrices, all the critical matrices for sinks1, 2, . . . , β − 1.

Proof: [Proof of main result (3)] LetEβ, β = 1, 2, . . . , d
be the event that sinkβ can decode. By Lemma 2,Eβ ⇐⇒
detZβ 6= 0 ⇐⇒ detCβ 6= 0. Now the probability that all
sinks can decode is given by

Pr





d
⋂

β=1

Eβ



 = Pr(E1) Pr(E2 | E1) . . .Pr(Eβ | E1 . . .Eβ−1)

(12)
Now considerPr(Em | E1, . . . ,Em−1) = Pr(detCm 6= 0 |
detC1 6= 0, . . . , detCm−1 6= 0) for some2 ≤ m ≤ β. By
Lemma 3,Cm can be partitioned

Cm =

(

Cm−1 U
V W

)

for appropriate choices ofU, V,W .
Conditioned ondetCm−1 6= 0, we can use the partitioned

matrix determinant formula to write

detCm = det(Cm−1) det
(

W − V C−1
m−1U

)

, (13)

which (conditioned ondetCm−1 6= 0) is zero if and only if
det

(

W − V C−1
m−1U

)

= 0.
Let φm be the multivariate polynomial corresponding to

detCm, and letσm−1 be the multivariate polynomial corre-
sponding todet

(

W − V C−1
m−1U

)

. Then from (13)deg φm =
deg φm−1+deg σm−1. This relation also holds for the degree
of any individual variable. From the Leibniz formula and the

structure of the Edmonds matrix (as explained previously for
Pβ), we also know that the individual degree of any variable
in φm or φm−1 is zero or one. Hence

deg σm−1 = degφm − deg φm−1,

and the degree of any individual variable inσm−1 is at most
1. Collecting results so far and applying Lemma 1,

Pr(Em | E1, . . . ,Em−1) = Pr
(

det
(

W − V C−1
m−1U

)

6= 0
)

= Pr (σm−1 6= 0)

≤

(

1−
1

q

)degφm−degφm−1

Finally, substitution into (12) results in a telescoping sum for
the exponents,degφ1+degφ2−degφ1+degφ3−degφ2+. . . ,
leaving only

Pr





d
⋂

β=1

Eβ



 ≥

(

1−
1

q

)degφd

This directly yields (3) viadν ≤ η , degφd = ηd ≤ E.
Let

z(d, q) =
log(1− d/q)

log(1 − 1/q)
.

Then (3) is tighter than (1) whenever

η < ν z(d, q).

Furthermore,z(d, q) > d and

lim
q→d

z(d, q) = ∞

lim
q→∞

z(d, q) = d.

Roughly speaking, the new bound is tighter for networks with
E = O(νd) and sufficiently smallq.

In some instances it may be useful to have a bound which
depends only on the total number of edges carrying signals
with random coefficients. Replacingν with η in (1) results in
(2) which is looser than (3), since

(1− d/q)η < (1− 1/q)η .

Note that successful decoding at a particular sinkβ in
general depends on only part ofCβ . There can be a much
smaller sub-matrix that determines singularity, for example,
Cβ might be block diagonal, with successful decoding of sink
β depending only on one of the blocks (this case arises when
there are disjoint paths from the sources to each sink). Thus
Cβ may be larger than strictly required for analysis of sinkβ
alone, however defining the critical matrix this way yields the
nesting property that results in the new bound.



IV. EXAMPLE : THE BUTTERFLY NETWORK

Figure 1 shows the well-known butterfly network, with
additional nodes and edges introduced in order to satisfy our
assumptions on sources and sinks. The sources has r = 2
messages, and the edge labels indicate the edge ordering.
Edges1 and2 carry the two messages from the source, while
edges12 resp.13 duplicate the signals on edges5 resp.10,
and edges14 resp.15 duplicate8 resp.11. Supposing that
all other edges carry random linear combinations of signals,
ν = 7 andη = 9.

1 2

3 4

5

9

8

6 7

10 11

12 13 14 15

s

t1 t2

Fig. 1. The butterfly network.

Figure 2 shows the structure of the Edmonds matrixZ1,
and the nested critical matricesC1 andC2. To see how the
nesting arises,B2 has been placed alongside. For clarity, most
of the zeros have been omitted from each matrix. The solid
disks represent random entries ofF .
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1
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1
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Fig. 2. Critical matrices for the butterfly network.

Figure 3 shows the empirically measured probability of

decoding success versus the field sizeq for the network of
Figure 1 (filled circles). This was achieved using monte-carlo
simulation, selecting each of the coefficients uniformly from
Fq. Results for the first ten prime fields are shown. Also shown
are the existing bounds (1), dashed line, (2), solid line, and the
new bound (3), dot-dashed line. In this case, the new bound
is considerably tighter.

5 10 15 20 25

0.2

0.4

0.6

0.8

1

(1)

(2)

(3)

q

p

Fig. 3. Success probabilityp versus field sizeq compared to bounds (1),
(2) and (3) for the butterfly network.

V. RANDOM GRAPHS

Successful decoding for a particular sinkβ depends on the
non-singularity of its critical matrixCβ . To obtain (3) we used
Lemma 1 to bound the probability that this matrix is non-
singular. It is interesting to consider however circumstances
under which (7) might be applicable, providing an even tighter
bound.

There are two main obstacles to the application of (7) for
determination of the probability thatdetCβ 6= 0. Firstly,
(7) applies to “full” matrices, with each element chosen
independently and uniformly fromFq. In contrast,Cβ is of
the form (10), with all elements below ther-th diagonal equal
to zero (the strictly lower triangular part ofU2). Secondly, the
non-zero elements in the upper portion (upper triangular part
of U2 and all ofW11, W12 andW21) of Cβ are determined by
the topology of the network itself. For a sparsely connected
network, the proportion of zeros in this part of the matrix will
greatly exceed1/q.

Assuming that the random network code coefficients are
chosen from the non-zero elements ofFq, the total number of
non-zero elements inF is

σ ,
∑

v∈V

din (v) dout (v) ≤ E2.

Let ρ = σ/E2 be the proportion of non-zero elements.
Ignoring the structure required by (10), generate a random
m × m matrix C(m) with elements identically distributed
according to

Pr (cij = f) =

{

1− ρ f = 0
ρ

q−1 f 6= 0



It is a remarkable fact that providedρ does not tend to zero
or one too quickly withm,

lim
m→∞

Pr
(

detC(m) 6= 0
)

= πm(q).

See [7] for a discussion of this threshold effect. Conditioned
on the event thatC(m) has no all-zero rows or columns (if it
did, the network flow would anyway be infeasible regardless
of choice of code), the requirement is

ρ >
1

m

(

1

2
logm+ log logm

)

.

This result even holds for independent, but non-identically
distributed entries, as discussed by Cooper [7].

Now for sufficiently smallρ, C(m) can be permuted with
high probability into the form (10). This leads us to conjecture
that there exist conditions onσ such thatπm(q) is the success
probability for a large, randomly generated network with
a given degree distribution. The remainder of this section
analyzes some properties ofπm(q), and demonstrates the
improvement that may be obtained compared to (8).

To guarantee a particular probabilityp using (8), the field
sizeq must satisfy

q ≥
1

1− p1/m
=

1

2
+m log

1

p
+O

(

1

m

)

.

Hence the required field size increases linearly with the size
of the matrix.

Let π∞(q) = limm→∞ πm(q) then

π∞(q) =

∞
∏

i=1

(

1− q−i
)

= q1/24
(

1

2
ϑ′
1

(

q−1/2
)

)1/3

,

whereϑ1 is the Jacobi theta function [8, Equation 8.181.3]
and

ϑ′
1(q) =

∂

∂z
ϑ1(z, q)

∣

∣

∣

∣

z=0

= 2

∞
∑

i=0

(−1)i(1 + 2i)q−
1

2
(i+ 1

2
)2 .

Truncating the latter series gives the following lower bound,

π∞(q) ≥

(

1−
3

x

)1/3

.

This lower bound is compared toπ∞ for the first 20 primes
in Figure 4. For a given probabilityp in (7), the required field
sizeq for m → ∞ satisfies

q ≥
3

1− p3
.

which does not depend onm.

10 20 30 40 50 60 70

0.2

0.4

0.6

0.8

1

q

π∞

Fig. 4. Lower bound (solid line) andπ∞(q) (dots).

VI. CONCLUDING REMARKS

Random network coding is a promising decentralized ap-
proach for multicast. One of the main implementation con-
siderations is the size of the finite field required to achievea
specified probability that every sink can decode every source.
This paper presented a new bound on the success probability,
which in certain circumstances is tighter that the previous
bound. We also presented a heuristic argument that motivates
the investigation of tighter bounds for large random networks,
based on the distribution of rank of large random finite field
matrices.
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