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Abstract— The problem of designing high rate, full diversity only scaled unitary codeword matrices. In this paper, we
noncoherent space-time block codes (STBCs) with low encadj design signal sets for the rate-1 linear designs proposed in

and decoding complexity is addressed. First, the notion af-group ; _ ; ;
encodable andg-group decodable linear STBCs is introduced. [ulnzizatrr;/ué'll'eBaC(:j;n\?vittg ::Slllj_r dgiilrgruspi)t;jecodable differentialleda

Then for a known class of rate-1 linear designs, an explicit . o )
construction of fully-diverse signal sets that lead to fourgroup The main contributions can be summarized as follows:
encodable and four-group decodable differential scaled utary « The notion ofg-group encodable linear space-time codes

STBCs for any power of two number of antennas is provided. . . . . . .
Previous works on differential STBCs either sacrifice decoithg is formally introduced and the inter-relationship wigh

complexity for higher rate or sacrifice rate for lower decoding grou_p_decodable_linear space_—time ches is made cI_ear.
complexity. « Explicit construction of fully diverse signal sets leading

to scaled-unitary codewords is provided for the designs in
) _ ) [12] for arbitrary transmission rate and dimensions being
Itis well known that multiple antenna systems can offer in- 4 power of two. Previous algebraic approaches [3], [5]

I. INTRODUCTION

creased data rate and reliability as compared to singleaate involved intensive computations which was code specific
systems when the fading coefficients are known at the receive  anq did not permit an explicit closed form solution for
However, in practice, learning the fading coefficients lmees arbitrary rate and dimension.

increasingly difficult as either the fading rate or number of | The resulting codes trade off rate and decoding complex-
transmit antennas increases. Motivated by this problerfi]in ity without sacrificing either of them completely. Previous

[2], a transmission strategy called differential unitapase- works either sacrifice decoding complexity for higher rate
time modulation was introduced for the noncoherent MIMO o sacrifice rate for lower decoding complexity.

channel where neither the transmitter nor the receiver has]_ . . i .
knowledge of the channel. Essentially, using this stratibgy he rest of the paper is organized as follows: Section
: ' introduces the notion ofj-group encodable ang-group

roblem of noncoherent space-time coding becomes sirmila%] . . . Bt
fhe problem of coherent sBace-time coding with the addition ecodable linear STBCs and describes its application and

requirement for unitary codewords. Since the introductibn ggggrécnﬁe tr']ré trr;?ed(';eerecrgﬁl Iizcgdrl:l?(/)?sec%(:lr::%asner:le]:?.use
differential space-time codes, several works includingy [3 ' P y P '

[10] and the references in them have focused along differezzlrigroup decodable design of [12] is briefly described. The

directions to obtain full diversity differential spaceate codes Issues involved n the construction of fully dlverse_S|gnaI.
(DSTCs). Most of these previous works obtained full divigrsi sets for these designs so that they are usable as diffdrentia
i scaled-unitary STBCs with full-diversity are highlighted

DSTCs by neglecting the issue of encoding and decod ction[I¥ and one particular class of fully diverse signal

complexity which are crucial for practically realizing higate . L . . :
systems. Though few works [6]-[10] have addressed thiseis ﬁets is explicitly constructed for arbitrary transmissiate in

partially, there seems to be no systematic constructiorighf h its/sec/Hz. Section]V contains some concluding remarks.
rate full diversity DSTCs guided by the requirement for low
encoding and decoding complexity.

The differential encoding/decoding setup utilized in [8], We first introduce the notion oj-group encodable ang-
[10] is more general than the differential unitary spaoeeti group decodable linear STBCs and explain their significance
modulation scheme originally proposed in [1], [2] in thén the context of differential STBCs.
sense that those originally proposed demand all the codewor Definition 1: A linear designS(si,s2,...,sk) in K real
matrices to be unitary whereas the generalized one asks ifateterminates or variables, so, ..., sk IS an x n matrix
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with entries being a complex linear combination of the varbbtaining the conditions for low decoding complexity, walkh
ables. It can be written a$/(sq, s2,...,8x) = Zfil s;A; first briefly introduce the notion of-group decodable linear

where, A; € C™*" are called thewveight matricesA linear STBCs [13]. Thoughg-group decodable STBCs have been
STBC ¥ is a finite set ofn x n complex matrices which can studied in previous works [13], the strong inter-relatioips

be obtained by taking a linear desigi{z1,z2,...,zx) and between encoding complexity and decoding complexity was
specifying a signal setZ ¢ RX from which the information not highlighted and it was implicitly assumed. Further the
vector X = [ S1 82 ... Sk }T take values from, with notion of encoding complexity was not put in formal terms.

the additional condition that(a) # S(a'),V a # o € . 1) g-group decodable linear STBCSuppose we partition
A linear STBC¥ = {S(X)|X € &/} is said to beg-group the set of weight matrices of(X) into g-groups, thek-
encodable (0& real symbol encodablec%% complex symbol th group containingX/g matrices and also the information
encodable) ifg divides K and if o = o/ x o/ x --- x o/, symbol vector asX = [ X X7 ... XT ]T where, X, =
where each#;,i =1,...,9 C R . S (e-1yi 7’

Example 2.1:The popular Alamouti design along Withwritter% asH
square QAM constellation for each complex symbol id-a '
group encodable linear STBC, since square QAM constetiatio

SU—DK 5 -0 SEK } , then S(X) can be

kK
g

g
can be realized as a Cartesian product of two PAM constella- S(X) = Z Sp(Xk), Se(Xg) = Z 5i ;.
tions. k=1 PECESTY: S
A. Differential encoding/decoding setup Minimizing
Consider a MIMO channel wittN; transmit antennas and 1 )
Ng receive antennas. Laf; denote theNt x N channel | R — at_IS(X)Rtfl I )

matrix at time framl@¢. Let X; be the transmittedNy x Nr
matrix at time framet. Then the received matrix at time
framet is R; = X H; + W; where,WW, is the additive white
Gaussian noise at the receiver at time fram€he differential
encoding is performed as follows. A known unitary codewor%
Xy is first transmitted to start with. The transmitted matri>t<h
at time framet is then X, = ﬁUtXt,l where,U; € €
is the codeword containing the information at time frame
which satisfies/7U, = a?1. In other words, we restrict the g-group encodable also.

code¥ to contain only scaled unitary matrices. Note that the Definition 2: A linear STBC®" = {S(X)|X € 7} Is said

differential STBC schemes in [1], [2] further restrict allet  be g-group decodable (of; real symhol decodable #

. ; complex symbol decodablei’ if it ig-group encodable and if
codewords to be unitary matrices to ensure that the pOVYFsrdecoding metric in({2) can be simplified as @ (3).

does not tend to zero or infinity. However, even if we allow A - o
scaled unitary codewords it is possible to ensure that th Theorem 1. A linear STBC%" = {S(X)|X €./} is g

average transmit power constraint sByis met by requiring g?oup d(?codable if the following two conditions are satukfie
that E(XZ X,) = E(UHU,) = E(a?) = P. 1) ¥ is g-group encodable . . .

For such systems, a near-optimal differential decoder hag?) !f Ai and 4; are the weight matrices of two variables
been utilized in [8], [10] which detects; as follows: bel_onglng to tW(_) dlfferen_t groups, then they should

satisfy the following equatiom/’ A; + A¥ 4; = 0.

1 UiRi_1 ||? (1) Proof: Proof is straightforward and identical to the proof
at—1 in [11]. [ |
where, a,_; can be estimated from the previous decision In the light of the definition of encoding complexity, for
U,_1. Note that the channel matri# is not required for the Cayley codes [4], [5] if we look at the matrices obtained
decodingl;. Further, it has been shown [8], [10] that the codafter applying Cayley transform, the encoding complexdty i
design criteria for full diversity and coding gain is sameiras €xponential. In this paper, we have taken the viewpoint of
the case of unitary differential STBCs, i.e, the well know#defining encoding complexity of the matrices which are used
rank and determinant criteria. Also note that in genérdl to perform differential encoding. Moreover, Cayley travst
computations are required to perform the decoding. requires appropriate computation of matrix inverses.

To reduce the encoding complexity our strategy would
to choose# to be a linear STBC. Le¥’ = {S(X)|X € «/}. b§ Probl.em Sta.ltement _ _ _ _
Now the higher the value of, the lower the encoding com- The differential STBC design problem is to design a linear
plexity. Moreover, decoding; is same as decoding the infor-STBC %" = {S(X)|X € #} such that
mation symbol vectoX = [ S1 S2 ... Sk ]T_ Towards 1) All codewords are scaled unitary matrices and the aver-

age scale factor should meet the power constraint.
IHere the term time frame is used to dendfe: channel uses. 2) K andg are maximized

is in general not same as minimizing
1
| Ry = ——Sk(Xp) R |2 ®)
at—1

r eachl < k < g individually. However if it so happens,
en the decoding complexity is reduced by a large amount.
Note that it is not possible to computd (3) unless the code is

U, = in || Ry —
t argé?é%ﬂ t



3) ming, g,e¢ |S1 — S2| is maximized. where, the linear desigB (zx 11, Tk +2, - - ., T2k ) IS identical

We now briefly highlight the various issues involved in satig0 the linear designd(zy, s, ..., zx) except that it is in dif-
fying the above stated requirements by illustrating witmeo ferent complex variables 1, 2 +2, ..., 22 . We call this
examples. construction as the 'doubling construction’. This constian

Example 2.2:Let us consider the Golden code fotrans- has also been reported in [14].
mit antennas. It hag real variables. For the coherent MIMO We are now ready to describe our iterative construction. For
channel, the signal set used is QAM for each complex variabfe= 1, we h_ave the Alamouti design. _ .
Hence this code is a&-group encodable (since QAM is Construction 3.1:[12] For A > 1, consider the linear
a Cartesian product of two PAM signal sets) ahdroup designC;(a1,22) = | ~* “2 |. Now, to obtain a linear
decodable linear STBC and thus has low encoding complexiF% T2

. o .
However, if we now impose the requirement for scaled unitaffSian forNz = 27,1 > 1, we follow the steps given below.
ch Step 1: Starting witlC;, keep applying ABBA construction

iteratively on it till a2*~! x 221 linear designC' is obtained.
Step 2: Then apply doubling construction 6hto obtain the

codewords, then we will have to solve for signal sets whi
will yield scaled unitary codewords inside the divisionetiga.
Although this approach can potentially offer excellentiogd

gain, it may amount to entangling all tBereal variables which équired design. ,
will make the code-group encodable antgroup decodable. A detailed description of these and the proof that the design

This approach was recently attempted in [3]. given by the above construction argyroup decodable is given

Example 2.3:Let us take the example of the Alamouti coddn [12]. _ i _
for 2 transmit antennas. It has real variables. Now if we Example 3.1:Now, the design forl transmit antennas ac-

choose the signal set to be PSK (points on the unit circle§rding to Construction 3.1 is

for every complex variable, then all the codewords become T wy —xy —x}
unitary matrices, since the Alamouti code is an orthogonal ro ® —xf —ak
design. Hence such a code 2sgroup encodable as well S = T3 14 i 3
as 2-group decodable. Further this code also provides full T4 T3 3 z

diversity. However, note that if we take square QAM to be . )
the signal set for each complex variable, then we get a and thg design for larger number of transmit antennas can als
group encodable (square QAM is a Cartesian product of tf§ €asily constructed.
PAM signal sets) and-group decodable full diversity code,
but now the codewords are scaled unitary matrices as opposed
to unitary matrices. Thus relaxing the codewords to be gcale In this section, we construct fully diverse signal sets for
unitary matrices allows us to lower the encoding and deapdithe linear designs constructed in the previous subsecTioe.
complexity. signal sets should be designed in such a way that the folgpwin
The above two examples show thilae choice of signal sets isimportant requirements are met by the code simultaneously.
crucial in obtaining low encoding and decoding complexity 1) Scaled unitary codewords meeting power constraint
2) Four-group encodable and Four-group decodable
I1l."A 4-GROUP DECODABLE DESIGN 3) Difference of any two different codewords should be full
In this section, we briefly describe the construction of  rank (Full diversity)

a rate-one linear which satisfies the conditions 4egroup We shall first illustrate the procedure for construction of
decadability. This construction was first proposed in [12]. signal sets for4 transmit antennas and then generalize the

IV. CHOICE OF SIGNAL SETS

Given an x n linear designA(z1,z2,...,2x) In K ideas for anyNy = 2* transmit antennas. For the design for
complex variablesr, z2,...,zx, One can construct a new4 transmit antennas we study
2n x 2n linear designD as follows.
a b 0 0
Az, 22,...,0K) B(xg4+1,ZK+42,- -, T2K) gHg _ b a 0 0
B(rki1,2r42,-.-,22k) A(T1,22,...,7K) 0 0 a b
where, the linear desigB(zx 11, k42, - - ., T2k ) IS identical 00 b a
to the Imear designA(zy, x2,...,xx) except that itis in whereq = 2?21 252 andb = 2% @y + xha1 + aiws + ahas,
different variablesr 41, 2k 12, ..., 22x. We call this con- to find out the conditions on the signal sets under which
first introduced in [15], albeit only for Alamouti design.  signal set should be chosen such that the following comitio
Given an x n linear designA(z1,zs,...,7x) I K s satisfied for all the signal points:
complex variablesry, xs,...,2x, One can also construct a
new 2n x 2n linear designS as follows. TiT2 + 571 + 1374 + 2373 = 0.
A(xy,z2,...,TK) —BH (2g 11,25 49,...,22k) | However, we should be careful to not to distuttgroup en-

B(xk41,Tr42, .- T2k) A(x1,290,...,7K) codability in the process. Hence we first identify the grogpi



of the variables. According to the construction of [12], the
four groups are as follows. e

{@1r,war}s {21Q. 720} {xsr,war}; {230,740} :

@
T

The chosen signal sets should be in such a way that there are o
no joint constraints on variables from different groupsthit 2
happens, then the code will no longer $eroup encodable I}
and 4-group decodable. Putting together all the requirements
for scaled unitary codewords, we have

T1IT2] = —T1QT2Q;  X3IT4I = —T3QT4Q-

The above equations can be satisfied without disturlding
group encodability as shown below. ‘ : ‘ : . ! ‘ : L

X ====>

T17T2] = —T1QT2Q = C1; T3IT4] = —T3QT4Q =C2 (4 ) ) ) . )
Qh2Q ’ @749 “) Fig. 1. Signal set structure in 2 dimensions

where,c; andc, are positive real constants. Then, the average
power constraint requirement can be met by satisfying the

conditions u
with increasing radii-y, 72, . . ., Ty such thaty_2, r? = 4.
Then find those points intersecting with the hyperhaja= ¢

where, ¢ is a positive number less tlﬁmf In this manner

where, without loss of generalfywe have considered theWe can get the desired signal set for the variables 22
average power on a symbol to equal Solutions to [(4) @ndzsr,zar. The signal set for the variables g, 72 and
are simply points on a hyperbola. Thus a common set $§@:Z4q can be obtained by considering a different hyperbola.
solutions of [#) and{5) can be obtained by taking points Q‘Hus is illustrated in Fig 2. Now, .generahz.mg the abovedd,
the intersection of circles and hyperbolas. But we haverd thit can be shown that Construction #.1 gives the closed form
requirement of full diversity which has to be met. For this waolution of the signal sets that satisfies all the requirdmen
use the structure of the constructedeesigns. The construdPr any power of two number of antennas.

A -B Construction 4.1:Suppose we want &/-points signal set

B A" |” It can be shown c R2™™" for the constructed design faNy = 2* transmit
[12] that [ASTAS| > max(JAA|?,|AB|?*)?. Thus we can antennas. Then, the resulting signal seR2" " should be a
guarantee full diversity by ensuring thatz, # +Az, and Cartesian product of signal sets inR?"°, since we insist
Azz # £Azy. Just like before, we should be careful not t@n 4-group encodability. In our case, we choose all the four
disturb 4-group encodability in the process. We take care @kts to be identical and each contaifi9/ points. Let the
that requirement also by satisfying the following condiso  signal points inR2" " pe labeled ag;, i = 1,..., VM. If

E(zi;+73;) = E(alg+230) = E(z3;+21;) = E(z3g+alo) :( 1)
5

designs have the form8 =

Azip # £Azor; Azig # £A22q; ®) i =2q+r, thenp; is given by

A:Z?gj # :EA:Z?4]; Ang 75 :|:A£C4Q.
The solution satisfying all the three conditiofis (&), (5)i48) pilj] =0 Vj # (g mod 227%) +1
can be found simply by finding the intersection of points on pi[(g mod 223) + 1] = ry, if =0 @
the unit circlez? + y? = 1 with a hyperbolary = ¢, where pil(g mod 2*73) + 1] =1, if r =1

¢ < 1 on the two dimensionaty plane. This is illustrated in
Fig.[d. Observe that the hyperbola intersects the circleat f

different points. But the full diversity criterion demantsat where, for a vectow, z[i] denotes the-th entry of the vector

Az # +Ay. After enforcing this condition, only two points* @1d7g, ¢ = 1,..., =5~ are positive re%numbers such that
survive out of the four points. They can be either the set of ., >  vg=1,..., @ —landY 2 2= i‘/zﬁ

points markedA or the set of points marke# in Fig.[d. Thus

. . . . Theorem 2: Constructiod 411 provides fully diverse signal
we have obtained a signal set containihgoints. If we need L4l p y 9

. ; .._sets for the designs given by Construction 3.1.
more points, we can then invoke the fact that scaled unitary gns g y

codewords are sufficient. We can draw more circles (centered=x@mple 4.1:Let Ny = 2% = 8 and M 21\1164- Thus the
at origin) with radii such that the average power constrizint "ate of transmission of this code will b&2= = 2 bits per
met and then find those points intersecting with the hyperbofhannel use. The correspondidgdimensional signal set is
More precisely, to gef/ points, draw% concentric circles

2We can always scale all the constellation points accordinpe transmit 3This condition is necessary since otherwise the hyperbalaet intersect
power requirement. the circle with least radius.
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Fig. 2. General signal set for four transmit antennas
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