
ar
X

iv
:0

70
4.

25
09

v1
  [

cs
.IT

]  
19

 A
pr

 2
00

7

Signal Set Design for Full-Diversity
Low-Decoding-Complexity Differential

Scaled-Unitary STBCs
G. Susinder Rajan
ECE Department

Indian Institute of Science
Bangalore 560012, India
susinder@ece.iisc.ernet.in

B. Sundar Rajan
ECE Department

Indian Institute of Science
Bangalore 560012, India
bsrajan@ece.iisc.ernet.in

Abstract— The problem of designing high rate, full diversity
noncoherent space-time block codes (STBCs) with low encoding
and decoding complexity is addressed. First, the notion ofg-group
encodable andg-group decodable linear STBCs is introduced.
Then for a known class of rate-1 linear designs, an explicit
construction of fully-diverse signal sets that lead to four-group
encodable and four-group decodable differential scaled unitary
STBCs for any power of two number of antennas is provided.
Previous works on differential STBCs either sacrifice decoding
complexity for higher rate or sacrifice rate for lower decoding
complexity.

I. I NTRODUCTION

It is well known that multiple antenna systems can offer in-
creased data rate and reliability as compared to single antenna
systems when the fading coefficients are known at the receiver.
However, in practice, learning the fading coefficients becomes
increasingly difficult as either the fading rate or number of
transmit antennas increases. Motivated by this problem, in[1],
[2], a transmission strategy called differential unitary space-
time modulation was introduced for the noncoherent MIMO
channel where neither the transmitter nor the receiver has
knowledge of the channel. Essentially, using this strategythe
problem of noncoherent space-time coding becomes similar to
the problem of coherent space-time coding with the additional
requirement for unitary codewords. Since the introductionof
differential space-time codes, several works including [3]-
[10] and the references in them have focused along different
directions to obtain full diversity differential space-time codes
(DSTCs). Most of these previous works obtained full diversity
DSTCs by neglecting the issue of encoding and decoding
complexity which are crucial for practically realizing high rate
systems. Though few works [6]-[10] have addressed this issue
partially, there seems to be no systematic construction of high
rate full diversity DSTCs guided by the requirement for low
encoding and decoding complexity.

The differential encoding/decoding setup utilized in [8],
[10] is more general than the differential unitary space-time
modulation scheme originally proposed in [1], [2] in the
sense that those originally proposed demand all the codeword
matrices to be unitary whereas the generalized one asks for

only scaled unitary codeword matrices. In this paper, we
design signal sets for the rate-1 linear designs proposed in
[12] thus leading to four-group decodable differential scaled-
unitary STBCs with full-diversity.

The main contributions can be summarized as follows:

• The notion ofg-group encodable linear space-time codes
is formally introduced and the inter-relationship withg-
group decodable linear space-time codes is made clear.

• Explicit construction of fully diverse signal sets leading
to scaled-unitary codewords is provided for the designs in
[12] for arbitrary transmission rate and dimensions being
a power of two. Previous algebraic approaches [3], [5]
involved intensive computations which was code specific
and did not permit an explicit closed form solution for
arbitrary rate and dimension.

• The resulting codes trade off rate and decoding complex-
ity without sacrificing either of them completely. Previous
works either sacrifice decoding complexity for higher rate
or sacrifice rate for lower decoding complexity.

The rest of the paper is organized as follows: Section
II introduces the notion ofg-group encodable andg-group
decodable linear STBCs and describes its application and
significance in the differential encoding/decoding setup.In
Section III, the rate one complex symbols per channel use,
4-group decodable design of [12] is briefly described. The
issues involved in the construction of fully diverse signal
sets for these designs so that they are usable as differential
scaled-unitary STBCs with full-diversity are highlightedin
Section IV and one particular class of fully diverse signal
sets is explicitly constructed for arbitrary transmissionrate in
bits/sec/Hz. Section V contains some concluding remarks.

II. PRELIMINARIES

We first introduce the notion ofg-group encodable andg-
group decodable linear STBCs and explain their significance
in the context of differential STBCs.

Definition 1: A linear designS(s1, s2, . . . , sK) in K real
indeterminates or variabless1, s2, . . . , sK is a n × n matrix
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with entries being a complex linear combination of the vari-
ables. It can be written asS(s1, s2, . . . , sK) =

∑K

i=1 siAi

where,Ai ∈ Cn×n are called theweight matrices. A linear
STBC C is a finite set ofn× n complex matrices which can
be obtained by taking a linear designS(x1, x2, . . . , xK) and
specifying a signal setA ⊂ RK from which the information
vectorX =

[

s1 s2 . . . sK
]T

take values from, with
the additional condition thatS(a) 6= S(a′), ∀ a 6= a′ ∈ A .
A linear STBCC = {S(X)|X ∈ A } is said to beg-group
encodable (orK

g
real symbol encodable orK

2g
complex symbol

encodable) ifg dividesK and if A = A1 × A2 × · · · × Ag

where eachAi, i = 1, . . . , g ⊂ R
K
g .

Example 2.1:The popular Alamouti design along with
square QAM constellation for each complex symbol is a4-
group encodable linear STBC, since square QAM constellation
can be realized as a Cartesian product of two PAM constella-
tions.

A. Differential encoding/decoding setup

Consider a MIMO channel withNT transmit antennas and
NR receive antennas. LetHt denote theNT × NR channel
matrix at time frame1 t. Let Xt be the transmittedNT ×NT

matrix at time framet. Then the received matrix at time
frame t is Rt = XtHt +Wt where,Wt is the additive white
Gaussian noise at the receiver at time framet. The differential
encoding is performed as follows. A known unitary codeword
X0 is first transmitted to start with. The transmitted matrix
at time framet is thenXt = 1

at−1
UtXt−1 where,Ut ∈ C

is the codeword containing the information at time framet
which satisfiesUH

t Ut = a2t I. In other words, we restrict the
codeC to contain only scaled unitary matrices. Note that the
differential STBC schemes in [1], [2] further restrict all the
codewords to be unitary matrices to ensure that the power
does not tend to zero or infinity. However, even if we allow
scaled unitary codewords it is possible to ensure that the
average transmit power constraint sayP is met by requiring
thatE(XH

t Xt) = E(UH
t Ut) = E(a2t ) = P.

For such systems, a near-optimal differential decoder has
been utilized in [8], [10] which detectsUt as follows:

Ût = arg min
Ut∈C

‖ Rt −
1

at−1

UtRt−1 ‖2 (1)

where, at−1 can be estimated from the previous decision
Ût−1. Note that the channel matrixH is not required for
decodingUt. Further, it has been shown [8], [10] that the code
design criteria for full diversity and coding gain is same asin
the case of unitary differential STBCs, i.e, the well known
rank and determinant criteria. Also note that in general|C |
computations are required to perform the decoding.

To reduce the encoding complexity our strategy would be
to chooseC to be a linear STBC. LetC = {S(X)|X ∈ A }.
Now the higher the value ofg, the lower the encoding com-
plexity. Moreover, decodingUt is same as decoding the infor-
mation symbol vectorX =

[

s1 s2 . . . sK
]T

. Towards

1Here the term time frame is used to denoteNT channel uses.

obtaining the conditions for low decoding complexity, we shall
first briefly introduce the notion ofg-group decodable linear
STBCs [13]. Though,g-group decodable STBCs have been
studied in previous works [13], the strong inter-relationship
between encoding complexity and decoding complexity was
not highlighted and it was implicitly assumed. Further the
notion of encoding complexity was not put in formal terms.

1) g-group decodable linear STBCs:Suppose we partition
the set of weight matrices ofS(X) into g-groups, thek-
th group containingK/g matrices and also the information
symbol vector as,X =

[

XT
1 X

T
2 . . . XT

g

]T
where,Xk =

[

s (k−1)K
g

+1
s (k−1)K

g
+2

. . . s kK
g

]T

, thenS(X) can be
written as,

S(X) =

g
∑

k=1

Sk(Xk), Sk(Xk) =

kK
g

∑

i=
(k−1)K

g
+1

siAi.

Minimizing

‖ Rt −
1

at−1

S(X)Rt−1 ‖2 (2)

is in general not same as minimizing

‖ Rt −
1

at−1

Sk(Xk)Rt−1 ‖2 (3)

for each1 ≤ k ≤ g individually. However if it so happens,
then the decoding complexity is reduced by a large amount.
Note that it is not possible to compute (3) unless the code is
g-group encodable also.

Definition 2: A linear STBCC = {S(X)|X ∈ A } is said
to be g-group decodable (orK

g
real symbol decodable orK

2g

complex symbol decodable) if it isg-group encodable and if
its decoding metric in (2) can be simplified as in (3).

Theorem 1: A linear STBC C = {S(X)|X ∈ A } is g-
group decodable if the following two conditions are satisfied.

1) C is g-group encodable
2) If Ai andAj are the weight matrices of two variables

belonging to two different groups, then they should
satisfy the following equationAH

i Aj +AH
j Ai = 0.

Proof: Proof is straightforward and identical to the proof
in [11].

In the light of the definition of encoding complexity, for
the Cayley codes [4], [5] if we look at the matrices obtained
after applying Cayley transform, the encoding complexity is
exponential. In this paper, we have taken the viewpoint of
defining encoding complexity of the matrices which are used
to perform differential encoding. Moreover, Cayley transform
requires appropriate computation of matrix inverses.

B. Problem Statement

The differential STBC design problem is to design a linear
STBC C = {S(X)|X ∈ A } such that

1) All codewords are scaled unitary matrices and the aver-
age scale factor should meet the power constraint.

2) K andg are maximized



3) minS1,S2∈C |S1 − S2| is maximized.

We now briefly highlight the various issues involved in satis-
fying the above stated requirements by illustrating with some
examples.

Example 2.2:Let us consider the Golden code for2 trans-
mit antennas. It has8 real variables. For the coherent MIMO
channel, the signal set used is QAM for each complex variable.
Hence this code is a8-group encodable (since QAM is
a Cartesian product of two PAM signal sets) and1-group
decodable linear STBC and thus has low encoding complexity.
However, if we now impose the requirement for scaled unitary
codewords, then we will have to solve for signal sets which
will yield scaled unitary codewords inside the division algebra.
Although this approach can potentially offer excellent coding
gain, it may amount to entangling all the8-real variables which
will make the code1-group encodable and1-group decodable.
This approach was recently attempted in [3].

Example 2.3:Let us take the example of the Alamouti code
for 2 transmit antennas. It has4 real variables. Now if we
choose the signal set to be PSK (points on the unit circle)
for every complex variable, then all the codewords become
unitary matrices, since the Alamouti code is an orthogonal
design. Hence such a code is2-group encodable as well
as 2-group decodable. Further this code also provides full
diversity. However, note that if we take square QAM to be
the signal set for each complex variable, then we get a4-
group encodable (square QAM is a Cartesian product of two
PAM signal sets) and4-group decodable full diversity code,
but now the codewords are scaled unitary matrices as opposed
to unitary matrices. Thus relaxing the codewords to be scaled
unitary matrices allows us to lower the encoding and decoding
complexity.
The above two examples show thatthe choice of signal sets is
crucial in obtaining low encoding and decoding complexity.

III. A 4-GROUP DECODABLE DESIGN

In this section, we briefly describe the construction of
a rate-one linear which satisfies the conditions for4-group
decadability. This construction was first proposed in [12].

Given a n × n linear designA(x1, x2, . . . , xK) in K
complex variablesx1, x2, . . . , xK , one can construct a new
2n× 2n linear designD as follows.
[

A(x1, x2, . . . , xK) B(xK+1, xK+2, . . . , x2K)
B(xK+1, xK+2, . . . , x2K) A(x1, x2, . . . , xK)

]

where, the linear designB(xK+1, xK+2, . . . , x2K) is identical
to the linear designA(x1, x2, . . . , xK) except that it is in
different variablesxK+1, xK+2, . . . , x2K . We call this con-
struction as the ’ABBA construction’. This construction was
first introduced in [15], albeit only for Alamouti design.

Given a n × n linear designA(x1, x2, . . . , xK) in K
complex variablesx1, x2, . . . , xK , one can also construct a
new 2n× 2n linear designS as follows.
[

A(x1, x2, . . . , xK) −BH(xK+1, xK+2, . . . , x2K)
B(xK+1, xK+2, . . . , x2K) AH(x1, x2, . . . , xK)

]

where, the linear designB(xK+1, xK+2, . . . , x2K) is identical
to the linear designA(x1, x2, . . . , xK) except that it is in dif-
ferent complex variablesxK+1, xK+2, . . . , x2K . We call this
construction as the ’doubling construction’. This construction
has also been reported in [14].

We are now ready to describe our iterative construction. For
λ = 1, we have the Alamouti design.

Construction 3.1:[12] For λ > 1, consider the linear

designC1(x1, x2) =

[

x1 x2

x2 x1

]

. Now, to obtain a linear

design forNT = 2λ, λ > 1, we follow the steps given below.
Step 1: Starting withC1, keep applying ABBA construction

iteratively on it till a2λ−1×2λ−1 linear designC is obtained.
Step 2: Then apply doubling construction onC to obtain the
required design.
A detailed description of these and the proof that the designs
given by the above construction are4-group decodable is given
in [12].

Example 3.1:Now, the design for4 transmit antennas ac-
cording to Construction 3.1 is

S =









x1 x2 −x∗
3 −x∗

4

x2 x1 −x∗
4 −x∗

3

x3 x4 x∗
1 x∗

2

x4 x3 x∗
2 x∗

1









and the design for larger number of transmit antennas can also
be easily constructed.

IV. CHOICE OF SIGNAL SETS

In this section, we construct fully diverse signal sets for
the linear designs constructed in the previous subsection.The
signal sets should be designed in such a way that the following
important requirements are met by the code simultaneously.

1) Scaled unitary codewords meeting power constraint
2) Four-group encodable and Four-group decodable
3) Difference of any two different codewords should be full

rank (Full diversity)

We shall first illustrate the procedure for construction of
signal sets for4 transmit antennas and then generalize the
ideas for anyNT = 2λ transmit antennas. For the design for
4 transmit antennas we study

SHS =









a b 0 0
b a 0 0
0 0 a b
0 0 b a









wherea =
∑4

i=1 |xi|2 andb = x∗
1x2 + x∗

2x1 + x∗
3x4 + x∗

4x3,
to find out the conditions on the signal sets under which
the codewords are scaled unitary matrices. We see that the
signal set should be chosen such that the following condition
is satisfied for all the signal points:

x∗
1x2 + x∗

2x1 + x∗
3x4 + x∗

4x3 = 0.

However, we should be careful to not to disturb4-group en-
codability in the process. Hence we first identify the grouping



of the variables. According to the construction of [12], the
four groups are as follows.

{x1I , x2I} ; {x1Q, x2Q} ; {x3I , x4I} ; {x3Q, x4Q}

The chosen signal sets should be in such a way that there are
no joint constraints on variables from different groups. Ifthat
happens, then the code will no longer be4-group encodable
and 4-group decodable. Putting together all the requirements
for scaled unitary codewords, we have

x1Ix2I = −x1Qx2Q; x3Ix4I = −x3Qx4Q.

The above equations can be satisfied without disturbing4-
group encodability as shown below.

x1Ix2I = −x1Qx2Q = c1; x3Ix4I = −x3Qx4Q = c2 (4)

where,c1 andc2 are positive real constants. Then, the average
power constraint requirement can be met by satisfying the
conditions

E(x2

1I+x
2

2I) = E(x2

1Q+x
2

2Q) = E(x2

3I+x
2

4I) = E(x2

3Q+x
2

4Q) = 1
(5)

where, without loss of generality2 we have considered the
average power on a symbol to equal1. Solutions to (4)
are simply points on a hyperbola. Thus a common set of
solutions of (4) and (5) can be obtained by taking points on
the intersection of circles and hyperbolas. But we have a third
requirement of full diversity which has to be met. For this we
use the structure of the constructed designs. The constructed

designs have the formS =

[

A −BH

B AH

]

. It can be shown

[12] that |∆SH∆S| ≥ max(|∆A|2, |∆B|2)2. Thus we can
guarantee full diversity by ensuring that∆x1 6= ±∆x2 and
∆x3 6= ±∆x4. Just like before, we should be careful not to
disturb 4-group encodability in the process. We take care of
that requirement also by satisfying the following conditions:

∆x1I 6= ±∆x2I ; ∆x1Q 6= ±∆x2Q;
∆x3I 6= ±∆x4I ; ∆x3Q 6= ±∆x4Q.

(6)

The solution satisfying all the three conditions (4), (5) and (6)
can be found simply by finding the intersection of points on
the unit circlex2 + y2 = 1 with a hyperbolaxy = c, where
c < 1 on the two dimensionalxy plane. This is illustrated in
Fig. 1. Observe that the hyperbola intersects the circle at four
different points. But the full diversity criterion demandsthat
∆x 6= ±∆y. After enforcing this condition, only two points
survive out of the four points. They can be either the set of
points markedA or the set of points markedB in Fig. 1. Thus
we have obtained a signal set containing2 points. If we need
more points, we can then invoke the fact that scaled unitary
codewords are sufficient. We can draw more circles (centered
at origin) with radii such that the average power constraintis
met and then find those points intersecting with the hyperbola.
More precisely, to getM points, drawM

2
concentric circles

2We can always scale all the constellation points according to the transmit
power requirement.
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Fig. 1. Signal set structure in 2 dimensions

with increasing radiir1, r2, . . . , rM
2

such that
∑

M
2
i=1 r

2
i = M

2
.

Then find those points intersecting with the hyperbolaxy = c
where,c is a positive number less than3 r21 . In this manner
we can get the desired signal set for the variablesx1I , x2I

and x3I , x4I . The signal set for the variablesx1Q, x2Q and
x3Q, x4Q can be obtained by considering a different hyperbola.
This is illustrated in Fig. 2. Now, generalizing the above ideas,
it can be shown that Construction 4.1 gives the closed form
solution of the signal sets that satisfies all the requirements
for any power of two number of antennas.

Construction 4.1:Suppose we want aM -points signal set
⊂ R2

λ+1

for the constructed design forNT = 2λ transmit
antennas. Then, the resulting signal set⊂ R2

λ+1

should be a
Cartesian product of4 signal sets inR2

λ−3

, since we insist
on 4-group encodability. In our case, we choose all the four
sets to be identical and each contains4

√
M points. Let the

signal points inR2λ−3

be labeled aspi, i = 1, . . . , 4
√
M . If

i = 2q + r, thenpi is given by

pi[j] = 0 ∀j 6= (q mod 2λ−3) + 1
pi[(q mod 2λ−3) + 1] = rq , if r = 0
pi[(q mod 2λ−3) + 1] = rq , if r = 1

(7)

where, for a vectorx, x[i] denotes thei-th entry of the vector
x andrq , q = 1, . . . ,

4√
M
2

are positive real numbers such that

rq+1 > rq, ∀q = 1, . . . ,
4√
M
2

− 1 and
∑

4√
M
2

i=1 r2i =
4√
M
2

.

Theorem 2: Construction 4.1 provides fully diverse signal
sets for the designs given by Construction 3.1.

Example 4.1:Let NT = 23 = 8 andM = 164. Thus the
rate of transmission of this code will belog2 M

8
= 2 bits per

channel use. The corresponding4 dimensional signal set is

3This condition is necessary since otherwise the hyperbola will not intersect
the circle with least radius.
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Fig. 2. General signal set for four transmit antennas

shown below:

p1 =
[

r1 0 0 0
]T

; p2 =
[

−r1 0 0 0
]T

p3 =
[

0 r2 0 0
]T

; p4 =
[

0 −r2 0 0
]T

p5 =
[

0 0 r3 0
]T

; p6 =
[

0 0 −r3 0
]T

p7 =
[

0 0 0 r4
]T

; p8 =
[

0 0 0 −r4
]T

p9 =
[

r5 0 0 0
]T

; p10 =
[

−r5 0 0 0
]T

p11 =
[

0 r6 0 0
]T

; p12 =
[

0 −r6 0 0
]T

p13 =
[

0 0 r7 0
]T

; p14 =
[

0 0 −r7 0
]T

p15 =
[

0 0 0 r8
]T

; p16 =
[

0 0 0 −r8
]T

where,

r1 = 0.3235; r2 =
√

3r1; r3 = r2 +
r5−r2

3
; r4 = r2 + 2

`

r5−r2
3

´

r5 = 3r1; r6 =
“

2 +
p

(3)
”

r1; r7 = r3 + 2r1; r8 = r4 + 2r1.

V. D ISCUSSION

An important direction for further research is to optimize
the signal sets for maximizing the coding gain. Extending this
work to generalg-group ML decodable STBCs is also another
interesting direction for further work.
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