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Adaptive Alternating Minimization Algorithms
Urs Niesen, Devavrat Shah, Gregory Wornell

Abstract

The classical alternating minimization (or projection) algorithm has been successful in the context of solving
optimization problems over two variables. The iterative nature and simplicity of the algorithm has led to its
application in many areas such as signal processing, information theory, control, and finance.

A general set of sufficient conditions for the convergence and correctness of the algorithm are known when the
underlying problem parameters are fixed. In many practical situations, however, the underlying problem parameters
are changing over time, and the use of an adaptive algorithm is more appropriate. In this paper, we study such
an adaptive version of the alternating minimization algorithm. More precisely, we consider the impact of having a
slowly time-varying domain over which the minimization takes place. As a main result of this paper, we provide a
general set of sufficient conditions for the convergence andcorrectness of the adaptive algorithm. Perhaps somewhat
surprisingly, these conditions seem to be the minimal ones one would expect in such an adaptive setting. We
present applications of our results to adaptive decomposition of mixtures, adaptive log-optimal portfolio selection,
and adaptive filter design.

I. INTRODUCTION

A. Background

Solving an optimization problem over two variables in a product space is central to many applications
in areas such as signal processing, information theory, statistics, control, and finance. The alternating
minimization or projection algorithm has been extensivelyused in such applications due to its iterative
nature and simplicity.

The alternating minimization algorithm attempts to solve aminimization problem of the following form:
givenP, Q and a functionD : P ×Q → R, minimizeD overP ×Q. That is, find

min
(P,Q)∈P×Q

D(P, Q).

Often minimizing over both variables simultaneously is notstraightforward. However, minimizing with
respect to one variable while keeping the other one fixed is often easy and sometimes possible analytically.
In such a situation, the alternating minimization algorithm described next is well suited: start with an
arbitrary initial pointQ0 ∈ Q; for n ≥ 1, iteratively compute

Pn ∈ arg min
P∈P

D(P, Qn−1),

Qn ∈ arg min
Q∈Q

D(Pn, Q).
(1)

In other words, instead of solving the original minimization problem over two variables, the alternating
minimization algorithm solves a sequence of minimization problems over only one variable. If the
algorithm converges, the converged value is returned as thesolution to the original problem. Conditions
for the convergence and correctness of such an algorithm, that is, conditions under which

lim
n→∞

D(Pn, Qn) = min
(P,Q)∈P×Q

D(P, Q), (2)
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have been of interest since the early 1950s. A general set of conditions, stated in the paper by Csiszár
and Tusnády [1, Theorem 2], is summarized in the next theorem.1

Theorem 1. Let P andQ be any two sets, and letD : P ×Q → R such that for allP̃ ∈ P, Q̃ ∈ Q
arg min

P∈P
D(P, Q̃) 6= ∅,

arg min
Q∈Q

D(P̃ , Q) 6= ∅.

Then the alternating minimization algorithm converges, i.e., (2) holds, if there exists a nonnegative function
δ : P × P → R+ such that the following two properties hold:
(a) Three point property (P, P̃ , Q̃): For all P ∈ P, Q̃ ∈ Q, P̃ ∈ arg min

P∈P
D(P, Q̃),

δ(P, P̃ ) + D(P̃ , Q̃) ≤ D(P, Q̃).

(b) Four point property (P, Q, P̃ , Q̃): For all P, P̃ ∈ P, Q ∈ Q, Q̃ ∈ arg min
Q∈Q

D(P̃ , Q),

D(P, Q̃) ≤ D(P, Q) + δ(P, P̃ ).

B. Our Contribution

In this paper, we consider an adaptive version of the above minimization problem. As before, suppose
we wish to find

min
(P,Q)∈P×Q

D(P, Q)

by means of an alternating minimization algorithm. However, on thenth iteration of the algorithm, we
are provided with setsPn,Qn which aretime-varyingversions of the setsP andQ, respectively. That is,
we are given a sequence of optimization problems

{
min

(P,Q)∈Pn×Qn

D(P, Q)
}

n≥0
. (3)

Such situations arise naturally in many applications. For example, in adaptive signal processing problems,
the changing parameters could be caused by a slowly time-varying system, with the indexn representing
time. An obvious approach is to solve each of the problems in (3) independently (one at each time instance
n). However, since the system varies only slowly with time, such an approach is likely to result in a lot
of redundant computation. Indeed, it is likely that a solution to the problem at time instancen−1 will be
very close to the one at time instancen. A different approach is to use anadaptivealgorithm instead. Such
an adaptive algorithm should be computationally efficient:given the tentative solution at timen − 1, the
tentative solution at timen should be easy to compute. Moreover, if the time-varying system eventually
reaches steady state, the algorithm should converge to the optimal steady state solution. In other words,
instead of insisting that the adaptive algorithm solves (3)for everyn, we only impose that it does so as
n → ∞.

Given these requirement, a natural candidate for such an algorithm is the following adaptation of the
alternating minimization algorithm: start with an arbitrary initial Q0 ∈ Q0; for n ≥ 1 compute (cf. (1))

Pn ∈ arg min
P∈Pn

D(P, Qn−1),

Qn ∈ arg min
Q∈Qn

D(Pn, Q).

1The conditions in [1] are actually slightly more general than the ones shown here and allow for functionsD that take the value+∞,
i.e., D : R × R → R ∪ {+∞}.
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Suppose that the sequences of sets{Pn}n≥0 and{Qn}n≥0 converge (in a sense to be made precise later)
to setsP andQ, respectively. We are interested in conditions under which

lim
n→∞

D(Pn, Qn) = min
(P,Q)∈P×Q

D(P, Q).

As a main result of this paper, we provide a general set of sufficient conditions under which this adaptive
algorithm converges. These conditions are essentially thesame as those of [1] summarized in Theorem
1. The precise results are stated in Theorem 4.

C. Organization

The remainder of this paper is organized as follows. In Section II, we introduce notation, and some pre-
liminary results. Section III provides a convergence result for a fairly general class of adaptive alternating
minimization algorithms. We specialize this result to adaptive minimization of divergences in Section IV,
and to adaptive minimization procedures in Hilbert spaces (with respect to inner product induced norm) in
Section V. This work was motivated by several applications in which the need for an adaptive alternating
minimization algorithm arises. We present an application in the divergence minimization setting from
statistics and finance in Section IV, and an application in the Hilbert space setting from adaptive signal
processing in Section V. Section VI contains concluding remarks.

II. NOTATIONS AND TECHNICAL PRELIMINARIES

In this section, we setup notations and present technical preliminaries needed in the remainder of the
paper. Let(M, d) be a compact metric space. Given two setsA,B ⊂ M, define theHausdorff distance
between them as

dH(A,B) , max

{
sup
A∈A

inf
B∈B

d(A, B), sup
B∈B

inf
A∈A

d(A, B)

}
.

It can be shown thedH is a metric, and in particular satisfies the triangle inequality.
Consider a continuous functionD : M×M → R. For compact setsA,B ⊂ M, define the set

G(A,B) , arg min
(A,B)∈A×B

D(A, B).

With slight abuse of notation, let

D(A,B) , min
(A,B)∈A×B

D(A, B).

Due to compactness of the setsA,B and continuity ofD, we haveG(A,B) 6= ∅, and henceD(A,B) is
well-defined.

A. Some Lemmas

Here we state a few auxiliary lemmas used in the following.

Lemma 2 ([1, Lemma 1]). Let {an}n≥0, {bn}n≥0 be sequences of real numbers, satisfying

an + bn ≤ bn−1 + c

for all n ≥ 1 and somec ∈ R. If lim supn→∞ bn > −∞ then

lim inf
n→∞

an ≤ c.

If, in addition2,
∞∑

n=0

(c − an)+ < ∞

2We use(x)+ , max{0, x}.
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then
lim

n→∞
an = c.

Lemma 3. Let{An}n≥0 be a sequence of subsets ofM. LetA be a closed subset ofM such thatAn
dH→ A.

Consider any sequence{An}n≥0 such thatAn ∈ An for all n ≥ 0, and such thatAn
d→ A ∈ M. Then

A ∈ A.

Proof: SinceAn ∈ An andAn
dH→ A, the definition of Hausdorff distance implies that there exists

a sequence{Ân}n≥0 such thatÂn ∈ A for all n andd(Ân, An) → 0 asn → ∞. Therefore

d(Ân, A) ≤ d(Ân, An) + d(An, A) → 0

asn → ∞. Since the sequence{Ân}n≥0 is entirely inA, this implies thatA is a limit point ofA. As A
is closed, we therefore haveA ∈ A.

Let (X , d) be a metric space andf : X → R. Define themodulus of continuityωf : R+ → R+ of f as

ωf(t) , sup
x,x′∈X :

d(x,x′)≤t

|f(x) − f(x′)|.

Remark1. Note that if f is uniformly continuous thenwf(t) → 0 as t → 0. In particular, if (X , d) is
compact andf is continuous thenf is uniformly continuous, and hencelimt→0 wf (t) = 0.

III. A DAPTIVE ALTERNATING M INIMIZATION ALGORITHMS

Here we present the precise problem formulation. We then present an adaptive algorithm and sufficient
conditions for its convergence and correctness.

A. Problem Statement

Consider a compact metric space(M, d), compact setsP,Q ⊂ M, and a continuous functionD :
M×M → R. We want to findD(P,Q). However, we are not given the setsP,Q directly. Instead, we
are given a sequence of compact sets{(Pn,Qn)}n≥0: Pn,Qn ⊂ M are revealed at timen such that as

n → ∞, Pn
dH→ P andQn

dH→ Q. Given an arbitrary initial(P0, Q0) ∈ P0 × Q0, the goal is to find a
sequence of points(Pn, Qn) ∈ Pn ×Qn such that

lim
n→∞

D(Pn, Qn) = D(P,Q).

B. Algorithm

The problem formulation described in the last section suggests the following adaptive version of the
alternating minimization algorithm. Initially, we have(P0, Q0) ∈ P0 × Q0. Recursively forn ≥ 1, pick
any

Pn ∈ arg min
P∈Pn

D(P, Qn−1),

Qn ∈ arg min
Q∈Qn

D(Pn, Q).

We call this the Adaptive Alternating Minimization (AAM) algorithm in the sequel. Note that ifPn = P
and Qn = Q for all n, then the above algorithm specializes to the classical alternating minimization
algorithm.
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C. Sufficient Conditions for Convergence

In this section, we present a set of sufficient conditions under which the AAM algorithm converges to
D(P,Q). As we shall see, we need “three point” and “four point” properties (generalizing those in [1])
also in the adaptive setup. To this end, assume there exists afunction3 δ : M ×M → R such that the
following conditions are satisfied.

(C1) Three point property(P, P̃ , Q): for all n ≥ 1, P ∈ Pn, Q ∈ Qn−1, P̃ ∈ arg min
P∈Pn

D(P, Q),

δ(P, P̃ ) + D(P̃ , Q) ≤ D(P, Q).

(C2) Four point property(P, Q, P̃ , Q̃): for all n ≥ 1, P, P̃ ∈ Pn, Q ∈ Qn, Q̃ ∈ arg min
Q∈Qn

D(P̃ , Q),

D(P, Q̃) ≤ D(P, Q) + δ(P, P̃ ).

Our main result is as follows.

Theorem 4. Let {(Pn,Qn)}n≥0,P,Q be compact subsets of the compact metric space(M, d) such that

Pn
dH→ P, Qn

dH→ Q,

and let D : M × M → R be a continuous function. Let conditions C1 and C2 hold. Then, under the
AAM algorithm,

lim inf
n→∞

D(Pn, Qn) = D(P,Q),

and all limit points of subsequences of{(Pn, Qn)}n≥0 achieving this lim inf belong toG(P,Q). If, in
addition,

∞∑

n=0

ω(2εn) < ∞,

whereεn , dH(Pn,P) + dH(Qn,Q), and ω , ωD is the modulus of continuity ofD, then

lim
n→∞

D(Pn, Qn) = D(P,Q),

and all limit points of{(Pn, Qn)}n≥0 belong toG(P,Q).

Remark2. Compared to the conditions of [1, Theorem 2] summarized in Theorem 1, the main additional
requirement here is in essence uniform continuity of the function D (which is implied by compactness
of M and continuity ofD), and summability of theω(2εn). This is the least one would expect in this
adaptive setup to obtain a conclusion as in Theorem 4.

D. Proof of Theorem 4

We start with some preliminaries. Given that(M, d) is compact, the product space(M×M, d2) with

d2((A, B), (A′, B′)) , d(A, A′) + d(B, B′)

for all (A, B), (A′, B′) ∈ M×M, is compact. Letω : R+ → R+ be the modulus of continuity ofD with
respect to the metric space(M×M, d2). By definition ofω, for anyε > 0 and(A, B), (A′, B′) ∈ M×M
such that

d2((A, B), (A′, B′)) ≤ ε,

we have
|D(A, B) − D(A′, B′)| ≤ ω(ε).

3Note that unlike the condition in [1], we do not requireδ to be nonnegative here.
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Moreover, continuity ofD and compactness ofM×M imply (see Remark 1) thatω(ε) → 0 asε → 0.
Recall the definition of

εn , dH(Pn,P) + dH(Qn,Q).

By the hypothesis of Theorem 4, we haveεn → 0 asn → ∞, and

dH(Pn,Pn−1) + dH(Qn,Qn−1) ≤ εn−1 + εn , γn,

with γn → 0 asn → ∞.
We now proceed to the proof of Theorem 4. Condition C1 impliesthat for alln ≥ 1, P ∈ Pn, Q ∈ Qn,

δ(P, Pn) + D(Pn, Qn−1) ≤ D(P, Qn−1). (4)

Condition C2 implies that for alln ≥ 1, P ∈ Pn, Q ∈ Qn,

D(P, Qn) ≤ D(P, Q) + δ(P, Pn). (5)

Adding (4) and (5), we obtain that for alln ≥ 1, P ∈ Pn, Q ∈ Qn,

D(Pn, Qn−1) + D(P, Qn) ≤ D(P, Qn−1) + D(P, Q). (6)

Given thatdH(Qn−1,Qn) ≤ γn, there existsQ̂n ∈ Qn suchd(Qn−1, Q̂n) ≤ γn. It follows that

d2((Pn, Q̂n), (Pn, Qn−1)) ≤ γn,

and hence ∣∣D(Pn, Q̂n) − D(Pn, Qn−1)
∣∣ ≤ ω(γn). (7)

From (7) and the AAM algorithm, we have

D(Pn, Qn) = min
Q∈Qn

D(Pn, Q)

≤ D(Pn, Q̂n) (sinceQ̂n ∈ Qn)

≤ D(Pn, Qn−1) + ω(γn).

(8)

Adding inequalities (6) and (8),

D(Pn, Qn) + D(P, Qn) ≤ D(P, Qn−1) + D(P, Q) + ω(γn), (9)

for all P ∈ Pn, Q ∈ Qn.
SincePn

dH→ P and Qn
dH→ Q, there exists a sequence(P ∗

n , Q∗
n) ∈ Pn × Qn such that(P ∗

n , Q∗
n) →

(P ∗, Q∗) ∈ G(P,Q) andd2((P
∗
n , Q∗

n), (P ∗, Q∗)) ≤ εn for all n ≥ 0. Pick any such sequence{(P ∗
n , Q∗

n)}n≥0.
Replacing(P, Q) in (9) by this (P ∗

n , Q∗
n), we obtain

D(Pn, Qn) + D(P ∗
n , Qn) ≤ D(P ∗

n , Qn−1) + D(P ∗
n , Q∗

n) + ω(γn). (10)

By choice of the(P ∗
n , Q∗

n),
D(P ∗

n , Q∗
n) ≤ D(P ∗, Q∗) + ω(εn). (11)

Moreover,

d(P ∗
n−1, P

∗
n) ≤ d(P ∗

n−1, P
∗) + d(P ∗, P ∗

n)

≤ εn−1 + εn

= γn,

and therefore
D(P ∗

n , Qn−1) ≤ D(P ∗
n−1, Qn−1) + ω(γn). (12)
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Combining inequalities (11) and (12) with (10), we obtain

D(Pn, Qn) + D(P ∗
n , Qn) ≤ D(P ∗

n−1, Qn−1) + D(P ∗, Q∗) + 2ω(γn) + ω(εn). (13)

Define

an , D(Pn, Qn) − 2ω(γn) − ω(εn),

bn , D(P ∗
n , Qn),

c , D(P ∗, Q∗),

and note that by (13)
an + bn ≤ bn−1 + c.

SinceD is a continuous function over the compact setM×M, it is also a bounded function. Hence we
havelim supn→∞ |bn| < ∞. Applying Lemma 2,

lim inf
n→∞

D(Pn, Qn) ≤ D(P ∗, Q∗) + lim sup
n→∞

(
2ω(γn) + ω(εn)

)
. (14)

Sinceγn → 0 andεn → 0 imply 2ω(γn) + ω(εn) → 0, (14) yields

lim inf
n→∞

D(Pn, Qn) ≤ D(P,Q). (15)

Now, let {nk}k≥0 be a subsequence such that

lim inf
n→∞

D(Pn, Qn) = lim
k→∞

D(Pnk
, Qnk

).

By compactness ofM×M, we can assume without loss of generality thatPnk

d→ P , Qnk

d→ Q for some
P, Q ∈ M. SinceP andQ are compact, Lemma 3 shows thatP ∈ P, Q ∈ Q. By continuity of D this
implies that

lim inf
n→∞

D(Pn, Qn) = lim
k→∞

D(Pnk
, Qnk

)

= D(P, Q)

≥ D(P,Q).

Together with (15), this shows that

lim inf
n→∞

D(Pn, Qn) = D(P,Q),

and that all limit points of subsequences of{(Pn, Qn)}n≥0 achieving this lim inf belong toG(P,Q). This
completes the proof the first part of Theorem 4.

Suppose now that we have in addition
∞∑

n=0

ω(2εn) < ∞. (16)

Since

D(Pn, Qn) ≥ min
P∈Pn,Q∈Qn

D(P, Q)

≥ min
P∈P,Q∈Q

D(P, Q) − ω(εn)

= D(P ∗, Q∗) − ω(εn),
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we have

(c − an)+ =
(
D(P ∗, Q∗) − D(Pn, Qn) + 2ω(γn) + ω(εn)

)+

≤ 2
(
ω(γn) + ω(εn)

)

≤ 2
(
ω(2εn) + ω(2εn−1) + ω(εn)

)

≤ 2
(
2ω(2εn) + ω(2εn−1)

)
.

Thus by (16),
∞∑

n=0

(c − an)+ < ∞,

and applying again Lemma 2 yields

lim
n→∞

D(Pn, Qn) = D(P ∗, Q∗). (17)

As every limit point of{(Pn, Qn)}n≥0 belongs toP × Q by Lemma 3, (17) and continuity ofD imply
that if (16) holds then every limit point of{(Pn, Qn)}n≥0 must also belong toG(P,Q). This concludes
the proof of Theorem 4.

IV. D IVERGENCE M INIMIZATION

In this section, we specialize the algorithm from Section III to the case of alternating divergence
minimization. A large class of problems can be formulated asa minimization of divergences. For example,
computation of channel capacity and rate distortion function [2], [3], selection of log-optimal portfo-
lios [4], and maximum likelihood estimation from incomplete data [5]. These problems were shown to be
divergence minimization problems in [1]. For further applications of alternating divergence minimization
algorithms, see [6]. We describe applications to the problem of adaptive mixture decomposition and of
adaptive log-optimal portfolio selection.

A. Setting

Given a finite setΣ and some constant0 < b < B, let M = M(Σ, b, B) be the set of all measuresP
on Σ such that ∑

σ∈Σ

P (σ) ≤ B, andP (σ) ≥ b, ∀ σ ∈ Σ. (18)

EndowM with the topology induced by the metricd : M×M → R+ defined as

d(P, Q) , max
σ∈Σ

|P (σ) − Q(σ)|.

It is easy to check that the metric space(M, d) is compact. The cost functionD of interest is divergence4

D(P, Q) , D(P‖Q) ,
∑

σ∈Σ

P (σ) log
P (σ)

Q(σ)

for any P, Q ∈ M. Note that (18) ensures thatD is well defined (i.e., does not take the value∞). It is
well-known (and easy to check) that the functionD is continuous and convex in both arguments. Finally,
define the functionδ : M×M → R

δ(P, P̃ ) , D(P‖P̃ ) −
∑

σ∈Σ

(
P (σ) − P̃ (σ)

)
.

In [1], it has been established that for convexP andQ the pair of functionsD, δ satisfy the “three
point” and “four point” properties C1 and C2. As stated above, the spaceM = M(Σ, b, B) with metric
d is a compact metric space, and the functionD is continuous. Hence Theorem 4 applies in this setting.

4All logarithms are with respect to basee.
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B. Application: Decomposition of Mixtures and Log-OptimalPortfolio Selection

We consider an application of our adaptive divergence minimization algorithm to the problem of
decomposing a mixture. A special case of this setting yieldsthe problem of log-optimal portfolio selection.

We are given a sequence of i.i.d. random variables{Yl}l≥0, each taking values in the finite setY .
Yl is distributed according to the mixture

∑I
i=1 ciµi, where the{ci}I

i=1 sum to one,ci ≥ c0 > 0 for
all i ∈ {1, . . . , I}, and where{µi}I

i=1 are distributions onY . We assume thatµi(y) ≥ µ0 > 0 for all
y ∈ Y , i ∈ {1, . . . , I}. The goal is to compute an estimate of{ci}I

i=1 from {Yl}n
l=1 and knowing{µi}I

i=1.
Let P n : Y → [0, 1],

P n(y) ,
1

n

n∑

ℓ=1

11{Yℓ=y},

be the empirical distribution of{Yl}n
l=1. The maximum likelihood estimator of{ci}I

i=1 is given by (see,
e.g., [7, Lemma 3.1])

arg min
{c̃i}

D
(
P n

∥∥∑I
i=1c̃iµi

)
, (19)

Following [7, Example 5.1], we define

Σ , {1, . . . , I} × Y ,

Qn = Q , {Q : Q(i, y) = c̃iµi(y), for some{c̃i} with
∑

ic̃i = 1, c̃i ≥ c0∀i},
Pn , {P :

∑I

i=1P (i, y) = P n(y), P (i, y) ≥ 0∀i, y}.
(20)

Note thatPn andQ are convex and compact. From [7, Lemma 5.1], we have

min
{c̃i}

D
(
P n

∥∥∑I

i=1c̃iµi

)
= min

P∈Pn

min
Q∈Q

D(P‖Q),

and the minimizer of the left hand side (and hence (19)) is recovered from the corresponding marginal
of the optimalQ on the right hand side.

We now show how the projections on the setsPn andQ can be computed. Fix aP , assuming without
loss of generality that ∑

y∈Y

P (1, y) ≥
∑

y∈Y

P (2, y) ≥ . . . ≥
∑

y∈Y

P (I, y).

We want to minimizeD(P‖Q) over allQ ∈ Q, or, equivalently, over all valid{c̃i}. The{c̃i} minimizing
D(P‖Q) can be shown to be of the form̃ci > c0 for all i ≤ J∗ and c̃i = c0 for all i > J∗. More precisely,
define

η(J) ,
1

1 − (I − J)c0

J∑

i=1

∑

y∈Y

P (i, y),

and chooseJ∗ ∈ {1, . . . , I} such that

1

η(J∗)

∑

y∈Y

P (i, y) > c0 for 1 ≤ i ≤ J∗,

1

η(J∗)

∑

y∈Y

P (i, y) ≤ c0 for J∗ < i ≤ I.

Then the optimal{c̃i} are given by

c̃i =
1

η(J∗)

∑

y∈Y

P (i, y) for 1 ≤ i ≤ J∗,

c̃i = c0 for J∗ < i ≤ I.
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For fixedQ(i, y) = c̃iµi(y), the minimizingP is

P (i, y) =
c̃iµi(y)∑
j c̃jµj(y)

P n(y). (21)

We now check that (18) is satisfied for some values ofb andB. As Pn andQ are sets of distributions,
we can chooseB = 1. For all Q ∈ Q, i ∈ {1, . . . , I}, y ∈ Y , we haveQ(i, y) ≥ µ0c0 > 0. However,
for P ∈ Pn, we have in general onlyP (i, y) ≥ 0. In order to apply the results from Section IV-A, we
need to show that we can, without loss of optimality, restrict the setsPn to contain only distributionsP
that are bounded below by somep0 > 0. In other words, we need to show that the projections onPn are
bounded below byp0.

Assume for the moment that the empirical distributionP n is close to the true one in the sense that
∣∣∣P n(y) −

∑

i

ciµi(y)
∣∣∣ ≤ µ0

2

for all y ∈ Y . As
∑

i ciµi(y) ≥ µ0 this impliesP n(y) ≥ µ0

2
for all y. From (21), this implies that the

projectionP in Pn of any point inQ satisfiesP (i, y) ≥ 1
2
c0µ

2
0 , p0 for all i ∈ {1, . . . , I}, y ∈ Y . Hence

in this caseM(Σ, b, B) satisfies (18) withb = 1
2
c0µ

2
0 andB = 1.

It remains to argue thatP n is close to
∑

i ciµi(y). Suppose instead of constructing the setPn (see (20))
with respect toP n, we construct it with respect to the distributionP n defined as

P n(y) ,
µ0

2
+ λ

(
P n(y) − µ0

2

)+

,

whereλ is chosen such that
∑

y P n(y) = 1. P n is bounded below byµ0

2
by construction. Moreover, by

the strong law of large numbers,
P(P n 6= P n i.o.) = 0.

Hence we havePn
dH→ P almost surely, whereP is constructed as in (20) with respect to the true

distribution
∑

i ciµi.
Applying now the results from Section IV-A and Theorem 4 yields that under the AAM algorithm

lim inf
n→∞

D(Pn, Qn) = D(P,Q)

almost surely, and that every limit point of{(Pn, Qn)}n≥0 achieving this lim inf is an element ofG(P,Q).
Since by the law of the iterated logarithm, convergence ofP n to P is only Θ(

√
log log n/

√
n) as

n → ∞ almost surely, and sincelimε→0 ω(ε)/ε = 0 only if D is a constant [8], we can in this scenario
not conclude from Theorem 4 thatlimn→∞ D(Pn, Qn) = D(P,Q).

As noted in [7], a special case of the decomposition of mixture problem is that of maximizing the
expected value oflog

∑
i ciWi, where{Wi}I

i=1 is distributed according toP n. The standard alternating
divergence minimization algorithm is then the same as Cover’s portfolio optimization algorithm [4].
Thus the AAM algorithm applied as before yields also an adaptive version of this portfolio optimization
algorithm.

V. PROJECTIONS INHILBERT SPACE

In this section, we specialize the algorithm from Section III to the case of minimization in a Hilbert
space. A large class of problems can be formulated as alternating projections in Hilbert spaces. For
example, problems in filter design, signal recovery, and spectral estimation. For an extensive overview,
see [9]. In the context of Hilbert spaces, the alternating minimization algorithm is often called POCS
(Projection Onto Convex Sets).
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A. Setting

Let M be a compact subset of a Hilbert space with the usual normd(A, B)2 , 〈A−B, A−B〉. Then
(M, d) is a compact metric space. The cost functionD of interest is

D(A, B) , d(A, B)2.

The functionD is continuous and convex. Define the functionδ (as part of conditions C1 and C2), as

δ(A, Ã) , d(A, Ã)2.

In [1], it is established that for convexP andQ the pair of functionsD, δ satisfies the “three point”
and “four point” properties C1 and C2. Hence Theorem 4 applies in this setting.

B. Application: Set Theoretic Signal Processing and Adaptive Filter Design

In this section, we consider a problem in the Hilbert space setting as defined in Section V-A. Let
{Si}I

i=1 be a collection of convex compact subsets of the Hilbert space R
k with the usual inner product,

and let{ci}I
i=1 be positive weights summing to one. In set-theoretic signalprocessing, the objective is to

find a pointA minimizing
I∑

i=1

cid(A,Si), (22)

whered(A,Si) , minS∈Si
d(A, S). Many problems in signal processing can be formulated in this way.

Applications can be found for example in control, filter design, and estimation. For an overview and
extensive list of references, see [9]. As an example, in a filter design problem, theSi could be constraints
on the impulse and frequency responses of a filter [10], [11].

Following [12], this problem can be formulated in our framework by defining the Hilbert spaceH = R
Ik

with inner product

〈A, B〉 ,

I∑

i=1

ci〈Ai, Bi〉,

whereAi, Bi ∈ R
k for i ∈ {1, . . . , I} are the components ofA andB. Let

S , conv{∪I
i=1Si} ⊂ R

k,

be the convex hull of the union of the constraint sets{Si}I
i=1, and let

M , SI ⊂ H
be itsI-fold product. Since each of the setsSi is compact,M is compact and by definition also convex.
We define the setP ⊂ M as

P , {(P̃ , . . . , P̃ ) ∈ H : P̃ ∈ S}
and the setQ ⊂ M as

Q , S1 × · · · × SI . (23)

We now show how the projections on the setsP andQ can be computed. For a fixedP = (P̃ , . . . , P̃ ) ∈
P, the Q ∈ Q minimizing D(P, Q) has the form

(
S1(P̃ ), . . . , SI(P̃ )

)
,

where Si(P̃ ) is the Qi ∈ Si minimizing ‖P̃ − Q̃i‖2. For a fixedQ = (Q1, . . . , QI) ∈ Q the P ∈ P
minimizing D(P, Q) is given by (∑I

i=1ciQi, . . . ,
∑I

i=1ciQi

)
.
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Moreover, a solution to (22) can be found from the standard alternating minimization algorithm for Hilbert
spaces onP andQ.

To this point, we have assumed that the constraint sets{Si}I
i=1 are constant. The results from Section III,

enable us to look at situations in which the constraint sets{Si,n}I
i=1 are time-varying. Returning to the

filter design example mentioned above, we are now interestedin an adaptive filter. The need for such
filters arises in many different situations (see, e.g., [13]).

The time-varying sets{Si,n}I
i=1 give rise to setsQn, defined in analogy to (23). We assume again that

Si,n
dH→ Si for all i ∈ {1, . . . , I}, and letQ be defined with respect to the limiting{Si}I

i=1 as before.
Applying the results from Section V-A and Theorem 4, we obtain convergence and correctness of the
AAM algorithm.

VI. CONCLUSIONS

We considered a fairly general adaptive alternating minimization algorithm, and found sufficient condi-
tions for its convergence and correctness. This adaptive algorithm has applications in a variety of settings.
We discussed in detail how to apply it to three different problems (from statistics, finance, and signal
processing).
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