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Adaptive Alternating Minimization Algorithms

Urs Niesen, Devavrat Shah, Gregory Wornell

Abstract

The classical alternating minimization (or projectionya@ithm has been successful in the context of solving
optimization problems over two variables. The iterativdun@ and simplicity of the algorithm has led to its
application in many areas such as signal processing, irgtom theory, control, and finance.

A general set of sufficient conditions for the convergenat@rrectness of the algorithm are known when the
underlying problem parameters are fixed. In many practitaons, however, the underlying problem parameters
are changing over time, and the use of an adaptive algorithmadre appropriate. In this paper, we study such
an adaptive version of the alternating minimization altjon. More precisely, we consider the impact of having a
slowly time-varying domain over which the minimization éakplace. As a main result of this paper, we provide a
general set of sufficient conditions for the convergenceamckctness of the adaptive algorithm. Perhaps somewhat
surprisingly, these conditions seem to be the minimal omes would expect in such an adaptive setting. We
present applications of our results to adaptive decompasitf mixtures, adaptive log-optimal portfolio selectjon
and adaptive filter design.

|. INTRODUCTION
A. Background

Solving an optimization problem over two variables in a pddspace is central to many applications
in areas such as signal processing, information theoryistta, control, and finance. The alternating
minimization or projection algorithm has been extensivedged in such applications due to its iterative
nature and simplicity.

The alternating minimization algorithm attempts to solvaiaimization problem of the following form:
givenP, Q and a functionD : P x @ — R, minimize D overP x Q. That is, find

rdipo V@)
Often minimizing over both variables simultaneously is straightforward. However, minimizing with
respect to one variable while keeping the other one fixedtenadasy and sometimes possible analytically.
In such a situation, the alternating minimization algarithllescribed next is well suited: start with an
arbitrary initial pointQ, € Q; for n > 1, iteratively compute
P, € arg min D(P,Q,,_1),
PeP
Q. € arg min D(P,, Q).
QeQ
In other words, instead of solving the original minimizatiproblem over two variables, the alternating
minimization algorithm solves a sequence of minimizatiaowbbems over only one variable. If the
algorithm converges, the converged value is returned asdhsion to the original problem. Conditions
for the convergence and correctness of such an algorithamh jghconditions under which

lim D(P,,Q,) = in  D(P,Q), 2
lim D(F,, Qn) pdun (P,Q) (2)

(1)
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have been of interest since the early 1950s. A general sebrafitions, stated in the paper by Csiszar
and Tusnady [1, Theorem 2], is summarized in the next tmefre

Theorem 1. Let P and Q be any two sets, and lgb : P x Q — R such that for allP € P, Q € Q

arg min D(P, Q) # 0,
PeP

arg min D(P, Q) # 0.
QeQ
Then the alternating minimization algorithm convergess, ii2) holds, if there exists a nonnegative function
0 : P x P — R, such that the following two properties hold:

(a) Three point property @, P,Q): For all P € P, Q € Q, P € arg min D(P,Q),
Pep

§(P,P)+ D(P,Q) < D(P,Q).

(b) Four point property £, Q, P, @): Forall LPeP, Qe Q Q¢ arg minD(ﬁ, Q),
QeQ

D(P,Q) < D(P,Q) + §(P, P).

B. Our Contribution

In this paper, we consider an adaptive version of the abowénmzation problem. As before, suppose
we wish to find
min  D(P,
(P,Q)EPXQ ( Q)
by means of an alternating minimization algorithm. Howewer thenth iteration of the algorithm, we
are provided with set®,,, Q,, which aretime-varyingversions of the set® and O, respectively. That is,
we are given a sequence of optimization problems

{ pomin o DP.Q)} @

Such situations arise naturally in many applications. Kangple, in adaptive signal processing problems,
the changing parameters could be caused by a slowly timgnagasystem, with the index representing
time. An obvious approach is to solve each of the problen8)iin@dependently (one at each time instance
n). However, since the system varies only slowly with timegchsan approach is likely to result in a lot
of redundant computation. Indeed, it is likely that a salntio the problem at time instanee- 1 will be
very close to the one at time instanceA different approach is to use auaptivealgorithm instead. Such
an adaptive algorithm should be computationally efficigmien the tentative solution at time— 1, the
tentative solution at time should be easy to compute. Moreover, if the time-varyingesyiseventually
reaches steady state, the algorithm should converge toptial steady state solution. In other words,
instead of insisting that the adaptive algorithm solvésf@8)everyn, we only impose that it does so as
n — OoQ.

Given these requirement, a natural candidate for such amithlg is the following adaptation of the
alternating minimization algorithm: start with an arbiranitial Q, € Qy; for n > 1 compute (cf.[(I1))

P, € arg min D(P,Q,,_1),
PePy,

Q. € arg min D(P,, Q).
QeQn

The conditions in [1] are actually slightly more generalrttthe ones shown here and allow for functioBsthat take the valueroo,
ie,D:RxR—RU{+oc0}.



Suppose that the sequences of 46%s},,>0 and{Q,,},,>o converge (in a sense to be made precise later)
to setsP and Q, respectively. We are interested in conditions under which

lim D(P,,Q,) = i D(P,Q).

lim D(Pn, Q) pdun (P,Q)
As a main result of this paper, we provide a general set ofcserffi conditions under which this adaptive
algorithm converges. These conditions are essentiallyséimee as those of [1] summarized in Theorem
. The precise results are stated in Theokém 4.

C. Organization

The remainder of this paper is organized as follows. In 8afl, we introduce notation, and some pre-
liminary results. Sectiop_lll provides a convergence refarla fairly general class of adaptive alternating
minimization algorithms. We specialize this result to adegpminimization of divergences in SectiénllV,
and to adaptive minimization procedures in Hilbert spaeath(respect to inner product induced norm) in
Sectiorn V. This work was motivated by several applications/hich the need for an adaptive alternating
minimization algorithm arises. We present an applicatiorthe divergence minimization setting from
statistics and finance in SectibnllV, and an application & iilbert space setting from adaptive signal
processing in SectionlV. Secti@n]VI contains concluding asks.

[1. NOTATIONS AND TECHNICAL PRELIMINARIES

In this section, we setup notations and present technieinpinaries needed in the remainder of the
paper. Let(M, d) be a compact metric space. Given two sdtd3 C M, define theHausdorff distance
between them as

AeA BeB Bep A€A

It can be shown théy is a metric, and in particular satisfies the triangle ineityal
Consider a continuous functiob : M x M — R. For compact setsl, B ¢ M, define the set

G(A,B) £ arg min D(A, B).
(A,B)eAxB

di (A, B) £ max {sup inf d(A, B),sup inf d(A, B)} :

With slight abuse of notation, let

D(A,B) = min D(A,B).
(A,B)eAxB

Due to compactness of the sets B and continuity of D, we haveG(A, B) # (), and henceD(A, B) is
well-defined.

A. Some Lemmas
Here we state a few auxiliary lemmas used in the following.

Lemma 2 ([1, Lemma 1]) Let {a,}n>0, {bn}n>0 De sequences of real numbers, satisfying
an"'bn Sbn—1+c
for all n > 1 and some: € R. If limsup,,_, ., b, > —oo then

liminfa, <ec.

n—~0o0

If, in additiorf,
Z(C —ap)t < o0

n=0

2We use(z)t £ max{0, z}.



then
lim a, = c.

n—oo

Lemma3. Let{A,},>0 be a sequence of subsetskf. Let.4 be a closed subset @3# such thatA4,, dn

Consider any sequended,, },.>o such that4,, € A, for all n > 0, and such that4,, L A e M. Then
Ae A

Proof: Since A, € A, and A, iy A, the definition of Hausdorff distance implies that theresei
a sequencé A, },>o such thatA,, € A for all » andd(A,, A,,) — 0 asn — oco. Therefore

d(A,, A) < d(A,, A,) + d(A,, A) — 0

asn — oo. Since the sequenc{e@n}nzo is entirely in A, this implies thatA is a limit point of A. As A
is closed, we therefore havé € A. [ |
Let (X, d) be a metric space antl: ¥ — R. Define themodulus of continuityw, : R, — R, of f as
wi(t) £ sup [f(x) = f(2)].
z,x'eX:
d(z,z")<t
Remarkl. Note that if f is uniformly continuous them,(t) — 0 ast — 0. In particular, if (X, d) is
compact andf is continuous thery is uniformly continuous, and hendan, ., w¢(t) = 0.

[1I. ADAPTIVE ALTERNATING MINIMIZATION ALGORITHMS

Here we present the precise problem formulation. We thesepitean adaptive algorithm and sufficient
conditions for its convergence and correctness.

A. Problem Statement

Consider a compact metric spat#1,d), compact set?, Q C M, and a continuous functio® :
M x M — R. We want to findD(P, Q). However, we are not given the sé®s Q directly. Instead, we
are given a sequence of compact sgt®B,,, Q,)}n>o: Pn, Qn C M are revealed at time such that as

n — 0o, P, M P and 9, it Q. Given an arbitrary initial( Py, Q) € Py x Qy, the goal is to find a
sequence of point&P,, @,,) € P, x Q,, such that
lim D(P,,Q,) = D(P, Q).

n—oo

B. Algorithm

The problem formulation described in the last section sstggthe following adaptive version of the
alternating minimization algorithm. Initially, we havé%, Qo) € Py x Qo. Recursively forn > 1, pick
any

P, € arg min D(P,Q,,_1),
pPePn
Q. € arg min D(P,, Q).
QEQn
We call this the Adaptive Alternating Minimization (AAM) gérithm in the sequel. Note that®, = P
and Q,, = Q for all n, then the above algorithm specializes to the classicatrating minimization
algorithm.



C. Sufficient Conditions for Convergence

In this section, we present a set of sufficient conditionsenwhich the AAM algorithm converges to
D(P, Q). As we shall see, we need “three point” and “four point” pmtigs (generalizing those in [1])
also in the adaptive setup. To this end, assume there exfstsctio] § : M x M — R such that the
following conditions are satisfied.

(C1) Three point propertyP, P, Q): foralln > 1, P € P,, Q € Q,_1, P € arg min D(P,Q),
PEP,

§(P,P)+ D(P,Q) < D(P,Q).

(C2) Four point property(P, Q, P,Q): foralln > 1, P,P € P,, Q € Q,, Q € arg min D(P, Q),
QeQn

D(P,Q) < D(P,Q) + §(P, P).
Our main result is as follows.

Theorem 4. Let {(P,, Q,) }n>0, P, Q be compact subsets of the compact metric sgaded) such that
PP, Q.20

and letD : M x M — R be a continuous function. Let conditions C1 and C2 hold. Thewler the
AAM algorithm,
liminf D(P,,Q,) = D(P, Q),

n—oo

and all limit points of subsequences ©fP,, Q,)}.>0 achieving this lim inf belong tg (P, Q). If, in
addition,

f: w(2e,) < oo,

n=0
wheree, £ dy(P,, P) + dy(Q,, Q), andw £ wp is the modulus of continuity dP, then
lim D(P,,Q,) = D(P,Q),
and all limit points of{(P,, @.)}.>0 belong toG(P, Q).

Remark2. Compared to the conditions of [1, Theorem 2] summarized iecfén_1, the main additional
requirement here is in essence uniform continuity of thectiom D (which is implied by compactness
of M and continuity ofD), and summability of thev(2¢,). This is the least one would expect in this
adaptive setup to obtain a conclusion as in Thedrem 4.

D. Proof of Theoren]4
We start with some preliminaries. Given tha¥1, d) is compact, the product spa¢é1 x M, d,) with
d2((A, B), (A", B")) £ d(A, A') +d(B, B)

for all (A, B), (A", B") € M x M, is compact. Letv : R, — R be the modulus of continuity ab with
respect to the metric spa¢81 x M, d,). By definition ofw, for anye > 0 and(A, B), (A’, B’) € M x M
such that

d2((A> B)v (Alv B/)) <€,

we have
|D(A7 B) - D(Alv B/)| < w(&).

3Note that unlike the condition in [1], we do not requiféo be nonnegative here.



Moreover, continuity ofD and compactness o¥1 x M imply (see Remarkl1) that(s) — 0 ase — 0.

Recall the definition of
En é dH(Pn,P) + dH(Qn, Q)

By the hypothesis of Theorel 4, we haye— 0 asn — oo, and
dH(Pna Pn—l) + dH(Qnu Qn—l) S En—1 + €n é Tns

with v, — 0 asn — oc.

We now proceed to the proof of Theorém 4. Condition C1 impthed for alln > 1, P € P,,,Q € Q,,

0(P, ) + D(FPy, Qu-1) < D(P,Qn-1).
Condition C2 implies that for ath > 1, P € P,,Q € Q,,,
D(P,Q,) < D(P,Q)+ (P, F,).
Adding (@) and[(b), we obtain that forall > 1, P € P,,Q € Q,,
D(P,,Qn-1) + D(P,Q,) < D(P,Qn1) + D(P,Q).
Given thatdy (Q,,_1, Q,) < 7a, there exists@n € Q,, suchd(Q,_1, @n) < 7,. It follows that

dy((Poy Q) (P, Qn-1)) < Y,

and hence R
‘D(Pna Qn) - D(Pm Qn—l)‘ < w(%t)'

From [7) and the AAM algorithm, we have
< D(P,,Qn) (since@, € Q)
S D(Prw Qn—l) + w(%)
Adding inequalities[(6) and [8),
D(P,, Qn) + D(P,Qn) < D(P,Qu-1) + D(P, Q) + w(7n),
forall PeP,,Q € Q,.

(4)

(5)

(6)

(7)

(8)

(9)

SinceP, 2 P and 9, % Q, there exists a sequen¢e, Q) € P, x Q, such that(P;, Q) —
(P*,Q*) € G(P,Q) andds((P!,Qz), (P*,Q*)) < e, foralln > 0. Pick any such sequengéP:, Q*)},>o.

Replacing(P, Q) in (@) by this (P, Q%), we obtain
D(Po, Qu) + D(F;,@Qn) < D(P7, Qna) + D(B;, @) + w(n)-

By choice of the(P?, Q7),
D(P;,Q;) < D(P'.Q") + w(e.).

Moreover,
d(P;Lk—l7 P;?,k) S d(P;—la P*) + d(P*> P;)
S En—1 + En
= Tn,

and therefore
D(Py,Qun-1) < D(Py_1, Qn-1) + w(7n).

(10)

(11)

(12)



Combining inequalities (11) and (12) with {10), we obtain
D(P,,Qn) + D(Py, Qn) < D(Py_1, Qu-1) + D(P*, Q) + 2w(yn) + w(en). (13)
Define
(07%) = D(Pna Qn) - 2("}(7%) - w(€n>7
by = D(P;,Qn),
¢ 2 D(P",Q"),

and note that by[(13)
an + bn S bn—l +c.

Since D is a continuous function over the compact 8dtx M, it is also a bounded function. Hence we
havelim sup,, . |b,| < oo. Applying Lemma[2,

liminf D(P,., Q,) < D(P*,Q°) + limsup (2w(y,) + w(=,)). (14)

n—oo

Sincey,, — 0 ande,, — 0 imply 2w(v,) + w(e,) — 0, (14) yields
liminf D(F,, Q,) < D(P, Q). (15)

Now, let {n;}+>0 be a subsequence such that
lim inf D(P, Qu) = lim D(Py,, Qn,)-

By compactness aM x M, we can assume without loss of generality that < p, Qn,. 4, Q for some
P, € M. SinceP and Q are compact, Lemma 3 shows thatc P, () € Q. By continuity of D this
implies that

liminf D(P,, Qn) = lim D(P,,, Q)
= D(P,Q)
> D(P, Q).
Together with [(Ib), this shows that
lim inf D(P,, Qn) = D(P, Q),

and that all limit points of subsequences{¢®,,, @..) }.>o achieving this lim inf belong t@ (P, Q). This
completes the proof the first part of Theoréim 4.
Suppose now that we have in addition

iw(%n) < 00. (16)

n=0
Since
- )
D(P,Qn) =, _min  D(P,Q)

> in D(P —
> min D(P,Q) —w(e)

= D(P*, Q") —w(en),



we have

(¢ = an)" = (D(P*, Q) = D(Pa, Qu) + 2w() + w(en))
< 2(w(m) + w(en))
< 2(w(2en) + w(2en-1) +w(en))
< 2(2w(2e,) + w(2e,-1)).
Thus by [16),
Z(c —a,)" < oo,
n=0
and applying again Lemnid 2 yields
lim D(P,, Qu) = D(P*, Q). (17)

As every limit point of {(P,, Q) }»>0 belongs toP x Q by Lemmal3, [(1I7) and continuity @D imply
that if (18) holds then every limit point of (P, @,)}.>0 must also belong t¢ (P, Q). This concludes
the proof of Theorenl4.

V. DIVERGENCE MINIMIZATION

In this section, we specialize the algorithm from Sectfiolhtdl the case of alternating divergence
minimization. A large class of problems can be formulated asnimization of divergences. For example,
computation of channel capacity and rate distortion fuomctj2], [3], selection of log-optimal portfo-
lios [4], and maximum likelihood estimation from incompmedata [5]. These problems were shown to be
divergence minimization problems in [1]. For further apptions of alternating divergence minimization
algorithms, see [6]. We describe applications to the probté adaptive mixture decomposition and of
adaptive log-optimal portfolio selection.

A. Setting

Given a finite set. and some constait< b < B, let M = M(X, b, B) be the set of all measure3
on X such that
> P(o)< B, andP(0) > b, Vo € %. (18)
oeY

Endow M with the topology induced by the metrit: M x M — R, defined as
d(P,Q) £ max|P(0) - Q(o)].

It is easy to check that the metric spdcet, d) is compact. The cost functioP of interest is divergenﬂe

D(P.Q) £ DPIQ) £ Y Plo)los 2

oeY )

for any P, ) € M. Note that[(IB) ensures that is well defined (|.e., does not take the valu®. It is
well-known (and easy to check) that the functibnis continuous and convex in both arguments. Finally,
define the functiod : M x M — R

8(P,P) £ D(P|P) - Y (P(0) - P())

oeY

In [1], it has been established that for convBxand Q the pair of functionsD, § satisfy the “three
point” and “four point” properties C1 and C2. As stated ahdhe spaceM = M(X, b, B) with metric
d is a compact metric space, and the functigris continuous. Hence Theordr 4 applies in this setting.

4All logarithms are with respect to base



B. Application: Decomposition of Mixtures and Log-Optinfalrtfolio Selection

We consider an application of our adaptive divergence migation algorithm to the problem of
decomposing a mixture. A special case of this setting yildgproblem of log-optimal portfolio selection.
We are given a sequence of i.i.d. random variall&g;>,, each taking values in the finite sgt
Y, is distributed according to the mixturEf:1 cipii, Where the{c;}._, sum to onec; > ¢y > 0 for
all i € {1,...,I}, and where{y;}!_, are distributions ony. We assume that;(y) > o > 0 for all
yeY,ie{l,...,I}. The goal is to compute an estimate{ef}’_, from {Y;}, and knowing{;}._;.

Let P, : Y — [0,1],

_ 1 <&
Puy) = — D yimyy,
/=1

be the empirical distribution ofY;}7,. The maximum likelihood estimator dfc;}._, is given by (see,
e.g., [7, Lemma 3.1)])

arg min D (?n ‘ } Eleéi,ui> , (29)
{ei}

Following [7, Example 5.1], we define
S2{L,... I} x Y,
Q,=09=2{Q:Q(i,y) = éuly), for some{é} with 3,6 = 1,¢ > ¢ Vi}, (20)
Po 2 {P: 3, Pli,y) = Puly), Pli,y) > O¥i, y}.
Note thatP,, and Q are convex and compact. From [7, Lemma 5.1], we have

. = I ~ . .
r?é?D(PnHZizlcmi) = min min D(P||Q),

and the minimizer of the left hand side (and hericd (19)) isvered from the corresponding marginal
of the optimal@ on the right hand side.
We now show how the projections on the s@sand Q can be computed. Fix &, assuming without

loss of generality that
Y P(Ly) =Y P2y >...> ) P(Ly).

yey yeY yey

We want to minimizeD(P||Q) over all@Q € Q, or, equivalently, over all valid¢;}. The {¢;} minimizing
D(P||Q) can be shown to be of the forf > ¢, for all i« < J* and¢; = ¢, for all i > J*. More precisely,
define

n(J) = ﬁZZP(i,y),

i=1 ye)y

and choose/* € {1, ..., I} such that

1
P(i,y) > c for1 <i<J*,
g 2 D) > e

1 . .
J*)ze:yp(zvy)SCO for J <1 <.

n(

Then the optimal¢;} are given by

1
Ci = P(i, for1 <i< J",
n(J*) yezy (9)

C; = Co for J* <i <.
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For fixedQ(i,y) = & u,i(y), the minimizing P is

Pli _ Citi(Y)
K e
We now check thaf(18) is satisfied for some values ahd B. As P,, and Q are sets of distributions,
we can choose3 = 1. For allQ € Q,i € {1,...,I}, y € Y, we haveQ(i,y) > poco > 0. However,
for P € P,, we have in general only(i,y) > 0. In order to apply the results from Sectibn TV-A, we
need to show that we can, without loss of optimality, restihe setsP, to contain only distributiong”
that are bounded below by somg > 0. In other words, we need to show that the projectionsPprare
bounded below by,.
Assume for the moment that the empirical distributiBp is close to the true one in the sense that

‘Fn(y) - Zciﬂi(y)) <

Pn(y). (21)

-2

forall y € Y. As Y. cipi(y) > po this implies P, (y) > £ for all y. From [21), this implies that the
projection P in P,, of any point inQ satisfiesP(i,y) > gcoug £y forallie{1,...,1},y €Y. Hence
in this caseM (X, b, B) satisfies [(IB) withh = c¢oud and B = 1.

It remains to argue tha®,, is close toy . ¢;i;(y). Suppose instead of constructing the Bet(see [(2D))
with respect toP,,, we construct it with respect to the distributidh, defined as

—_—= A @ N _ @ +

Puly) 2 2+ A(Pay) - 57)
where A is chosen such that® ?n(y) — 1. P, is bounded below by by construction. Moreover, by
the strong law of large numbers,

P(P, +# P, i.0.) = 0.

Hence we haveP, 4 P almost surely, whereP is constructed as in_(20) with respect to the true
distribution . c; ;.
Applying now the results from Sectidn TV}A and Theoréin 4 giethat under the AAM algorithm

liminf D(P,,Q,) = D(P, Q)

almost surely, and that every limit point §fP,,, @,.) }.>o achieving this lim inf is an element &f(P, Q).

Since by the law of the iterated logarithm, convergencePpfto P is only ©(y/loglogn/\/n) as
n — oo almost surely, and sincdem. _.ow(e)/e = 0 only if D is a constant [8], we can in this scenario
not conclude from Theorel 4 théitn,, ... D(P,,Q,) = D(P, Q).

As noted in [7], a special case of the decomposition of m&tproblem is that of maximizing the
expected value ofog Y, ¢;WW;, where {W;}._, is distributed according t@,. The standard alternating
divergence minimization algorithm is then the same as Cevaortfolio optimization algorithm [4].
Thus the AAM algorithm applied as before yields also an adaptersion of this portfolio optimization
algorithm.

V. PROJECTIONS INHILBERT SPACE

In this section, we specialize the algorithm from Secfidhtdl the case of minimization in a Hilbert
space. A large class of problems can be formulated as diitegnprojections in Hilbert spaces. For
example, problems in filter design, signal recovery, ancctspkeestimation. For an extensive overview,
see [9]. In the context of Hilbert spaces, the alternatingimization algorithm is often called POCS
(Projection Onto Convex Sets).
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A. Settin
Let M g::)e a compact subset of a Hilbert space with the usual ntithy B)? £ (A — B, A — B). Then
(M, d) is a compact metric space. The cost functiorof interest is
D(A, B) 2 d(A, B)*.
The functionD is continuous and convex. Define the functidifas part of conditions C1 and C2), as
5(A, A) £ d(A, A).

In [1], it is established that for conveR and Q the pair of functionsD, ¢ satisfies the “three point”
and “four point” properties C1 and C2. Hence Theofdm 4 apphethis setting.

B. Application: Set Theoretic Signal Processing and Adegpkilter Design

In this section, we consider a problem in the Hilbert spadéingeas defined in Section_ViA. Let
{S;}1_, be a collection of convex compact subsets of the Hilbert esfdcwith the usual inner product,
and let{c;}._, be positive weights summing to one. In set-theoretic signatessing, the objective is to
find a pointA minimizing

I
> cd(A,S), (22)

whered(A, S;) £ minges, d(A, S). Many problems in signal processing can be formulated is tay.
Applications can be found for example in control, filter dgsiand estimation. For an overview and
extensive list of references, see [9]. As an example, inex filesign problem, th§; could be constraints
on the impulse and frequency responses of a filter [10], [11].

Following [12], this problem can be formulated in our franmewby defining the Hilbert spack = R’*

with inner product
1

(A, B) £ ci(Ai, By),

=1
where A;, B; € R* fori € {1,...,I} are the components of and B. Let
S £ conv{UL_,S;} C R,
be the convex hull of the union of the constraint sgfs}/_,, and let
MES' CH

be its /-fold product. Since each of the sefsis compact,M is compact and by definition also convex.
We define the seP C M as

PL{(P,....,P)eH:PeS}

and the se©@ c M as
Q28 x--xXS8;. (23)

We now show how the projections on the sBtand Q can be computed. For a fixdd= (P, ..., P) €
P, the @ € Q minimizing D(P, Q) has the form

(S1(P),...,Si(P)),

where S;(P) is the Q; € S; minimizing || P — Q,||*. For a fixedQ = (Q1,....Q;) € Qthe P € P
minimizing D(P, Q) is given by
(ZiI:1CiQia S Zf:lciQi)-
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Moreover, a solution td (22) can be found from the standastr@ting minimization algorithm for Hilbert
spaces orP and Q.

To this point, we have assumed that the constraint{sgts_, are constant. The results from Secfion IlI,
enable us to look at situations in which the constraint $&s,}/_, are time-varying. Returning to the
filter design example mentioned above, we are now interasteth adaptive filter. The need for such
filters arises in many different situations (see, e.g.,)[13]

The time-varying set$S; .}/, give rise to set®,,, defined in analogy td (23). We assume again that

Sin 1S, for all i € {1,...,1}, and letQ be defined with respect to the limitingS;}._, as before.
Applying the results from Section VA and Theoréin 4, we abtedbnvergence and correctness of the
AAM algorithm.

VI. CONCLUSIONS

We considered a fairly general adaptive alternating mipation algorithm, and found sufficient condi-
tions for its convergence and correctness. This adaptg@idhm has applications in a variety of settings.
We discussed in detail how to apply it to three different peois (from statistics, finance, and signal
processing).
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