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Abstract— The Grassmann manifold G, , (L) is the set of all
p-dimensional planes (through the origin) in the n-dimensional
Euclidean spacelL”, where L is either R or C. This paper
considers an unequal dimensional quantization in which a sagce
in G, (L) is quantized through a code inG, 4 (L), where p and
q are not necessarily the same. It is different from most works
in literature where p = ¢. The analysis for unequal dimensional
quantization is based on the volume of a metric ball inG, , (L)
whose center is inG, 4 (L). Our chief result is a closed-form
formula for the volume of a metric ball when the radius is
sufficiently small. This volume formula holds for Grassmann
manifolds with arbitrary n, p, ¢ and LL, while previous results
pertained only to some special cases. Based on this volume-fo
mula, several bounds are derived for the rate distortion traleoff
assuming the quantization rate is sufficiently high. The lowr and
upper bounds on the distortion rate function are asymptotially
identical, and so precisely quantify the asymptotic rate ditortion
tradeoff. We also show that random codes are asymptotically
optimal in the sense that they achieve the minimum achievabl
distortion with probability one as n and the code rate approach
infinity linearly.

Finally, we discuss some applications of the derived resut
to communication theory. A geometric interpretation in the
Grassmann manifold is developed for capacity calculation o
additive white Gaussian noise channel. Further, the derivé
distortion rate function is beneficial to characterizing the effect of
beamforming matrix selection in multi-antenna communicatons.

Index Terms—the Grassmann manifold, rate distortion trade-
off, channel capacity, beamforming, MIMO communications

I. INTRODUCTION

The Grassmann manifold G, , (L) is the set of allp-
dimensional planes (through the origin) in thedimensional
Euclidean spack™, whereL is eitherR or C. It forms a com-
pact Riemann manifold of real dimensigip (n — p), where

systems with finite rate feedback, the quantization of eigen
channel vectors is related to the quantization on the Graissm
manifold [4]-[8].

This paper studies unequal dimensional quantization on the
Grassmann manifold. Roughly speaking, a quantization is a
representation of a source: it maps an elemegt,p (L) (the
source) into a subset C G, 4 (L), which is often discrete
and referred to as aode. While it is traditionally assumed
thatp = ¢ [1], [9]-[11], we are interested in a more general
case where may not necessarily equal tg thus the term
unequal dimensional quantization. The performance lirhit o
guantization is given by the so called rate distortion todfle
Let the source be randomly distributed and defirdéstortion
metric between elements i, , (L) and G, 4 (L). The rate
distortion tradeoff is described by the minimum average dis
tortion achievable for a given code size, or equivalently th
minimum code size required to achieve a particular average
distortion. This paper will quantify the rate distortiomdeoff
for unequal dimensional quantization.

This paper appears to be the first to explore unequal dimen-
sional quantization systematically. According to the auth
knowledge, works in literature assume that ¢: The Rankin
bound ingG, , (R) is obtained in [9] when the code size is
large. Wherp is fixed andn is asymptotically large, approx-
imations to the Gilbert-Varshamov and Hamming bounds on
Gn,p (L) are drived by Laplace method in [10] and by volume
estimates in [11], [12]. The distortion rate tradeoff foeth
p = 1 case is quantified in [4], [5] by direct volume calculation
and in [7] using high resolution quantization theory. Oup@a
[1] characterizes the tradeoff for the genepalcase when
guantization rate is sufficiently high. While the= ¢ case has
been extensively studied, unequal dimensional quantizati
does arise in some multi-antenna communication systeras, se

B =1whenL =R andj =2 whenL = C. The Grassmann [8] for an example. It is thus worthwhile to go beyond the
manifold is a useful analysis tool for multi-antenna comiunp = ¢ case.

cations (also known as multiple-input multiple-output (¥D)

The main contribution of this paper is to derive a closed-

communication systems). The capacity of non-coherent MIMform formula for the volume of a small ball in the Grassmann

systems at high signal-to-noise ratio (SNR) region wasvddri manifold and then accurately quantify the rate distortion

by analysis in the Grassmann manifold [2]. The well knowtradeoff accordingly. Specifically:

spherical codes for MIMO systems can be viewed as codesl) An explicit volume formula for a metric ball is derived

in the Grassmann manifold [3]. Further, for coherent MIMO for arbitrary n, p, ¢ and L. when the radiuss is
sufficiently small. Useful lower and upper bounds on
the volume are also presented.

2) Tight lower and upper bounds are derived for the rate
distortion tradeoff. Further, fiyx and ¢ but let n and
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the code rate (logarithm of the code size) approadptimal quantization to minimize the distortion is given by
infinity linearly. The lower and upper bounds are in facf (P) = arg min d. (P, Q) . The corresponding distortion is
asymptotically identical, and so precisely quantify the Qec

asymptotic rate distortion tradeoff. We also show that .o

random codes are asymptotically optimal in the sense D) =Ep [glgg de (P, Q)] :

that they achieve the minimum achievable distortion . , . .
with probability one in this asymptotic region. The rate distortion tradeoff can be described bydistortion

. L _ __rate function: the infimum achievable distortion given a code
Finally, some applications of the derived results to comimu ize K

cation theory are presented. We show that data transmigsion X .

additive white Gaussian noise (AWGN) channel is essentiall D™ (K) = c;\lcﬂlix D), 2)
communication on the Grassmann manifold. A geometric in- the rate distortion function: th - ired cod
terpretation for AWGN channel is developed in the Grassmafh "€ rate distortion function. the-minimum required code

manifold accordingly. Moreover, the beamforming matrix se'?€ to achieve a given distortial

lection in a MIMO system is closely related to quantization K*(D)= inf |C|. 3)
on the Grassmann manifold. The results for the distortion D(C)<D

rate tradeoff are therefore helpful to characterize theoff

of beamforming matrix selection. 1. METRIC BALLS IN THE GRASSMANN MANIFOLD

This section derives an explicit volume formula for a metric
[l. PRELIMINARIES ball B () in the Grassmann manifold. It is the essential tool

For the sake of applications [4]-[6], the projection Frobd® quantify the rate distortion tradeoff. o
nius metric ¢hordal distance) and the invariant measure on 1he volume of a ball can be expressed as a multivariate
the Grassmann manifold are employed throughout this pag8fégral. Assume the invariant measyreand the chordal
Without loss of generality, we assume that< ¢. For any distanced.. For any givenP € G, , (L) and @ € Gy 4 (L),
two planesP € G, (L) andQ € G, (L), we define the define

principle angles and the chordal distance betwé&eand @ Br(8)={0c L: d (PO)<s
as follows. Letp; € P andq; € Q be the unit vectors such p () {Q Gnq (L) C( ’Q) - }

that ‘piqll is maximal. Inductively, letp; € P andq; € @ and

i _ To. — N .
be thg un'lt vectoas su_ch thpgpj =0 and %9 = 0 for all Bo (6) = {P € Gnyp(L): d, (RQ) < 5}_
1 <j<iand ’piqi is maximal. The principle angles are

It has been shown that (Bp (6)) = u(Bg () and the
value is independent of the choice of the center [13]. For
convenience, we denof®p (4) and Bg (6) by B (§) without
distinguishing them. Then, the volume of a metric bal(J)

then defined a#; = arccos |p/q,| for i = 1,---,p [9], and
the chordal distance betwedhand @ is then given by

P . .
Zsm2 0;. (1) Isgiven by
=1
o _ 1 (B (8)) = // dpeg, (4)
The invariant measurg on G, , (L) is the Haar measure Y el g
on G, , (L). Let O (n) and U (n) be the groups of x n Lz sin i<
orthogonal and unitary matrices respectively. L&B € wherel <6, < %,---,1 <6, < % are the principle angles

O(n) whenL = R, or A,B € U (n) whenL = C. For and the differential formipe is the joint density of thed;’s
any measurable se¥t C G, , (L) and arbitraryA andB, p  [13], [14].

satisfies Theorem[dl computes the multivariate integfal (4) into a
w(AM) = p (M) = u(MB). simple exponential form.
_ . _ . _ . ... Theorem1: When¢ < 1, the volume of a metric balB ()
The invariant measure defines the uniform/isotropic distri ;¢ given by

tion on g, , (L) [13].
This paper addresses an unequal dimensional quantizatiQn(B (§)) = cn_’p_’q_ﬂzsﬂp("“” (1 + cfllzg q ﬂ52 +o0 (62)) , (5)

problem. LetC be a finite size discrete subset@f , (L) (also o

known as a code). An unequal dimensional quantization iswdere .

mapping from theg, , (L) to the setC, q : G, , (L) — C, 8= { 1 %fL =R

wherep and ¢ are not necessarily the same integer. Without 2 ifL=C"

loss of generality, we assume < ¢. We are interested in

B8 .
quantifying therate distortion tradeoff. Assume that a source W - ?((é((zi—:g))
P € G, , (L) is isotropically distributed. Define the distortion ifp+g<n
measure as the square of the chordal distatide, -). Then Cn.p,q,8 = X n—g F(g(n_iﬂ))_ . (6)
the distortion associated with a quantizatigris defined as Wnizl (4 (n—p—it1))

D £ Ep [d? (P,q(P))] . For a given cod€ C G, , (L), the ifp+qg>n



and Volume of small balls in the Grassmann manifold (n,p,qf)

10° :
B 0" Volume Simulated
CSZ; WB=— (é (q —p+ 1) _ 1) KFMLQ) (7) OZru\r/n(jurr'lzl,‘Azprox. ’r
N2 P (n—q)+1
The proof is given in the journal version of this paper [15] 107

There are two cases where the volume formula becorr
exact.
Corollary 1: Whend < 1, in either of the following two

cases, % 10°
1) L =C andgq = p; q
2) L=Randg=p+1,
the volume of a metric balB (9) is exactly 10°
(B (8)) = Cnpq,s0"" "7,
wherec,, , , 5 is defined in [(B). 10° 5 -
We also have the general bounds: &2

Corollary 2: Assumed < 1. If L = R andp = ¢ , the

volume of B (§) is bounded by Fig. 1. Volume of small balls in the Grassmann manifold. Theegers
besides curves are, from left to right, p, q, and 3 respectively.

18P < i (B (8)) < cnppndPP) (1-62) 7%

For all other cases, rate function is bounded as in
B ( — +1)_ n— /Bp (TL— q) —+ *
(1 g2)srlavi=p, sop(n=0) (=) 3 CrpasK) T (L0 (1)) < D" (K)
< 1 (B (5)) < enpg a0, o ()
Proof: Corollaryl1 and follow the proof of Theorefmh 1 < Ar(n—q) (Cnp.qsK) 700 (1+0(1)).
by tracking the higher order terms. [ ] Bp(n—q)
Theorent1l is of course consistent with the previous results (8)

Remark 1: For engineering purposes, the main order terms
(@) are usually accurate enough to characterize thertisto
rate function. The details of thél + o (1)) correction are
spelled out in the journal version of this paper [15].

The proof is provided in the journal version of this paper
[}5] We sketch it as follows.

The lower bound is proved by a sphere covering argument.
The key is to construct an ideal quantizer, which may not

|n [1], [4], [10], which pertain to special choices of p, g or

L. Importantly though, Theorefd 1 is distinct in that it holdén
for arbitraryn, p, ¢ andL.

For engineering purposes, it is often satisfactory to appro
imate the volume of a metric balB (6) by ¢, 4 507"~
whend < 1. Fig.[d compares the simulated volunié (4) an
the approximatiom,, ,, , 56°7("~%). Since it is often difficult to

directly evaluate the multivariate integral inl (4), we siate . L . .
y gral il (4) exist, to minimize the distortion. Suppose that there exist

p(B(9)) = Pr{P € Gnp (L) de (P’ Q) < 6} by fixing metric balls of the same radiuwg packing and covering the
@ and generating isotropically distributéel The simulation whole G,, , (L) at the same time. Then the quantizer which
results show that our volume approximation, , 56°?("~%  maps each of those balls into its ceng@re G, , (L) gives
(solid lines) is close to the simulated volume (circles) whethe minimum distortion among all quantizers. Of course such
0 < 1. We also compare our approximation with Bargan ideal covering may not exist. Therefore, the correspandi
Nogin apprOX|matlon developed in [10]. There, an volumgistortion may not be achievable. It is only a lower bound on
apprOX|mat|0n(6/\/_) is derived by Laplace method andthe distortion rate function.
is only valid for thep = ¢ < n. Simulations show that the Next the upper bound is obtained by calculating the average
simulated volume and Barg-Nogin approximation (dash Jinedistortion of random codes. The basic idea is that the distor
may not be of the same order while our approximation is muci any particular code is an upper bound of the distortioa rat
more accurate. function and so is the average distortion of random codes. A
random cod€,,,q = {Q1, - ,Qxk} is generated by drawing
the codewords);’s independently from the isotropic distribu-
tion on G, , (L). The average distortion of random codes is
This section quantifies the rate distortion tradeoff for thgiven byEc . [D (Crana)]. By €xtreme order statistics, see for
unequal dimensional quantization problem. The resultsl hQixampIe [16], the calculation dc [D (Crana)] is directly

IV. QUANTIZATION BOUNDS

rand

for arbitraryn, p, ¢ andL. related to the volumd{4). Based on our volume form[la (5),
Recall the distortion rate function defined [ (2). A lowethe asymptotic value oEc, . [D (Crana)] is computed and
bound and an upper bound are derived. thus the upper bound is obtained for large
Theorem 2: When K is sufficiently large  As the dual part of the distortion rate tradeoff, lower and

((cn,p,q,BK)_ﬂﬂz*q) < 1 necessarily), the distortion upper bounds are constructed for the rate distortion fancti



distortion rate function for Gn p(C)

Corollary 3: When the required distortioP is sufficiently
small (D < 1 necessarily), the rate distortion function satisfie 08k +  Simulated distortion |

the following bounds, « - ffﬁg Egﬂ:g
0.7k Gy (C) X Approx: by M:R.H. "
_Bp(gfq)
1 - 0.6f
Cn _ 2 S osf
0,a,8 \ 2T (ﬂp(n_q)) % 05
1 B ( ) P 751)(37!}) g

n— B 04

< ( P4 D) (1+0(1)). 804

Cn,p,q,B Bp (n - q) 0.3

(9)

It is interesting to observe that the lower and upper boun
are asymptotically the same. As a result, the asymptote r:
distortion tradeoff is exactly quantified. ‘ 1

Theorem 3: Suppose thap andq are fixed. Letn and the 2 25 3 35 4 45 5 55 6
code ratelog, K approach infinity linearly with®&2% —, 7. 109,19
If the normalized code rateis sufficiently Iarge;(>2_6%F <1
necessarily), then

o
)

‘\f“tT—Jr— B

o
[

Fig. 2. Bounds on the distortion rate function

( I}i)ril+ D™ (K) :p2_ﬁl’j' V. APPLICATIONS TOCOMMUNICATION THEORY
’ A. Channel Capacity of AWGN Channel

Although the capacity of AWGN channel is well known,

is interesting to re-calculate it from an interpretationthe

Grassmann manifold.

_log, K*(D)  Bp p The signal transmission model for an AWGN channel is

JHm = - log, (5 (10) thatY = X + W, whereY, X, W € L" are the received

Remark 2: That the(1 + o (1)) multiplicative errors in[(B) signal, the transmitted signal and the additive Gaussiaseno

and [9) disappear is the content of [15]. We omit the correéespectively, and. is eitherR or C. Assume thaiX and W

sponding details due to the space limitation. are Gaussian vectors with zero mean and covariance matrices
Fig.[d compares the simulated distortion rate function (tHe [XXT} =TandE {WWT} = 0”1 respectively. For any

plus markers) with its lower bound (the dashed lines) ard> 0, construct a random codebodl« = {X;,---,Xx}

upper bound (the solid lines) ifl(8). To simulate the distort with €2 — R, and 1 [|X;||*> € (1 —2¢,1—¢) for all k =

rate function, we use the max-min criterion to design codes. .. K.

and the employ the corresponding distortion as an estinfate oNow suppose that a codewolX, is transmitted. We con-

the distortion rate function. Simulation results show tthe sider a receiver given by

bounds in[(B) hold for larg&’. WhenK is relatively small, the 5 Y

formula [8) can serve as good approximations to the distorti X = a;gegjjn de (P (X),P(Y)),

rate function as well. Further‘r‘nf)re, we compare our boungv%ereP(X) € Gy1 (L) andP(Y) € G,.1 (L) are planes

with the approximation (the “xX” markers) derived in [17], . "
which is partly based on Barg-Nogin volume approximatior%’.em:"r{jltEd byX andY respectively. It can be ver|2f|ed that

Simulations show that the approximation in [17] is neither a o < lim d2 (P (X1),P(Y)) < '
upper bound nor a lower bound. It works for the case that 1 +02 — € ~ n—oo © ’ T 140%—2€
n = 10 andp = 2 but doesn’t work whem < 8 andp = 2. By similar argument to the proof of Theordrh 2, if

As a comparison, our bounds (8) hold for arbitraryndp. . o2
logy K (m)_él 1—2¢
- 2 Og 9

On the other hand, if the required distortidhis sufficiently
small (O < 1 necessarily), then the minimum code sizﬁ
required to achieve the distortiab satisfies

While the asymptotic rate distortion tradeoff is precisely R. < lim 14
guantified, the next question could be how to achieve it.” “© ~ n—oo n o2
Same to many cases in information theawndom codes are . , )
asymptotically optimal with probability one. then Pr (X 7 Xl) = Pr(3j#1, 2 (P(X;),P(Y)) <
Corollary 4: Consider unequal dimensional quantizatior{ﬁ) — 0. Finally, let e — 0. The achievable error-
from Gp, (L) 10 Gn g (L). Let Crana C Gnq (L) be @ code oo yaie for AWGN channel is then given Bylog (1 + L),
rf_;mdomly _generated from the isotropic dlstr_lbutfi)n I?ndhw'twhich is the well known capacity of AWGN channel.”
slze K;L Fix p andg. Let n,log, K — oo with =5= — = 'rpoofore. fransmission in an AWGN channel is essentially
" eﬁ%g If the normgllzed code rate is sufficiently large . mmynication on the Grassmann manifold: The decoder in
(p27 7" < 1 necessarily), then fore > 0, the Grassmann manifold is asymptotically optimal. Further
) _2 more, based on the proof of Theoréin 2, the capacity can be
(n}?)rim Pr (D (Crana) > p2777" + 6) =0 geometrically interpreted as sphere packing in the Grassma
The proof is omitted due to the space limitation. manifold.



B. MIMO Communications with Beamforming Matrix Selec- VI. CONCLUSION

tion This paper considers unequal dimensional quantization on

The Grassmann manifold also provides a useful analy$f¢ Grassmann manifold. An explicit volume formula for

tool to MIMO communications with finite rate feedback orsmall balls is derived and then the rate distortion tradesoff
beamforming matrix selection. accurately characterized. The random codes are proved to be

Consider a MIMO systems witti- transmit antennas angasymptotically optimal with probability one. As appliaatis

Lr receive antennasl{z < Ly is assumed). Suppose thaPf the derived results, a geometric model for the capacity of
the transmitter sends (s < L) independent data stream™WGN channel is developed, and the effect of beamforming

to the receiver. Le€A/ (0, 1) denote the symmetric complexMatrix selection in MIMO systems is discussed.
Gaussian distribution with zero mean and unit variancenThe
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