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Abstract— The Grassmann manifoldGn,p (L) is the set of all
p-dimensional planes (through the origin) in then-dimensional
Euclidean spaceLn, where L is either R or C. This paper
considers an unequal dimensional quantization in which a source
in Gn,p (L) is quantized through a code inGn,q (L), where p and
q are not necessarily the same. It is different from most works
in literature where p ≡ q. The analysis for unequal dimensional
quantization is based on the volume of a metric ball inGn,p (L)
whose center is inGn,q (L). Our chief result is a closed-form
formula for the volume of a metric ball when the radius is
sufficiently small. This volume formula holds for Grassmann
manifolds with arbitrary n, p, q and L, while previous results
pertained only to some special cases. Based on this volume for-
mula, several bounds are derived for the rate distortion tradeoff
assuming the quantization rate is sufficiently high. The lower and
upper bounds on the distortion rate function are asymptotically
identical, and so precisely quantify the asymptotic rate distortion
tradeoff. We also show that random codes are asymptotically
optimal in the sense that they achieve the minimum achievable
distortion with probability one as n and the code rate approach
infinity linearly.

Finally, we discuss some applications of the derived results
to communication theory. A geometric interpretation in the
Grassmann manifold is developed for capacity calculation of
additive white Gaussian noise channel. Further, the derived
distortion rate function is beneficial to characterizing the effect of
beamforming matrix selection in multi-antenna communications.

Index Terms— the Grassmann manifold, rate distortion trade-
off, channel capacity, beamforming, MIMO communications

I. I NTRODUCTION

The Grassmann manifold Gn,p (L) is the set of all p-
dimensional planes (through the origin) in then-dimensional
Euclidean spaceLn, whereL is eitherR or C. It forms a com-
pact Riemann manifold of real dimensionβp (n− p), where
β = 1 whenL = R andβ = 2 whenL = C. The Grassmann
manifold is a useful analysis tool for multi-antenna communi-
cations (also known as multiple-input multiple-output (MIMO)
communication systems). The capacity of non-coherent MIMO
systems at high signal-to-noise ratio (SNR) region was derived
by analysis in the Grassmann manifold [2]. The well known
spherical codes for MIMO systems can be viewed as codes
in the Grassmann manifold [3]. Further, for coherent MIMO
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Part of this work was published in [1]. This paper extends thequantization
in [1] to the unequal dimensional case.

systems with finite rate feedback, the quantization of eigen-
channel vectors is related to the quantization on the Grassmann
manifold [4]–[8].

This paper studies unequal dimensional quantization on the
Grassmann manifold. Roughly speaking, a quantization is a
representation of a source: it maps an element inGn,p (L) (the
source) into a subsetC ⊂ Gn,q (L), which is often discrete
and referred to as acode. While it is traditionally assumed
that p ≡ q [1], [9]–[11], we are interested in a more general
case wherep may not necessarily equal toq; thus the term
unequal dimensional quantization. The performance limit of
quantization is given by the so called rate distortion tradeoff.
Let the source be randomly distributed and define adistortion
metric between elements inGn,p (L) and Gn,q (L). The rate
distortion tradeoff is described by the minimum average dis-
tortion achievable for a given code size, or equivalently the
minimum code size required to achieve a particular average
distortion. This paper will quantify the rate distortion tradeoff
for unequal dimensional quantization.

This paper appears to be the first to explore unequal dimen-
sional quantization systematically. According to the authors’
knowledge, works in literature assume thatp = q: The Rankin
bound inGn,p (R) is obtained in [9] when the code size is
large. Whenp is fixed andn is asymptotically large, approx-
imations to the Gilbert-Varshamov and Hamming bounds on
Gn,p (L) are drived by Laplace method in [10] and by volume
estimates in [11], [12]. The distortion rate tradeoff for the
p = 1 case is quantified in [4], [5] by direct volume calculation
and in [7] using high resolution quantization theory. Our paper
[1] characterizes the tradeoff for the generalp case when
quantization rate is sufficiently high. While thep = q case has
been extensively studied, unequal dimensional quantization
does arise in some multi-antenna communication systems, see
[8] for an example. It is thus worthwhile to go beyond the
p = q case.

The main contribution of this paper is to derive a closed-
form formula for the volume of a small ball in the Grassmann
manifold and then accurately quantify the rate distortion
tradeoff accordingly. Specifically:

1) An explicit volume formula for a metric ball is derived
for arbitrary n, p, q and L when the radiusδ is
sufficiently small. Useful lower and upper bounds on
the volume are also presented.

2) Tight lower and upper bounds are derived for the rate
distortion tradeoff. Further, fixp and q but let n and
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the code rate (logarithm of the code size) approach
infinity linearly. The lower and upper bounds are in fact
asymptotically identical, and so precisely quantify the
asymptotic rate distortion tradeoff. We also show that
random codes are asymptotically optimal in the sense
that they achieve the minimum achievable distortion
with probability one in this asymptotic region.

Finally, some applications of the derived results to communi-
cation theory are presented. We show that data transmissionin
additive white Gaussian noise (AWGN) channel is essentially
communication on the Grassmann manifold. A geometric in-
terpretation for AWGN channel is developed in the Grassmann
manifold accordingly. Moreover, the beamforming matrix se-
lection in a MIMO system is closely related to quantization
on the Grassmann manifold. The results for the distortion
rate tradeoff are therefore helpful to characterize the effect
of beamforming matrix selection.

II. PRELIMINARIES

For the sake of applications [4]–[6], the projection Frobe-
nius metric (chordal distance) and the invariant measure on
the Grassmann manifold are employed throughout this paper.
Without loss of generality, we assume thatp ≤ q. For any
two planesP ∈ Gn,p (L) and Q ∈ Gn,q (L), we define the
principle angles and the chordal distance betweenP andQ
as follows. Letp1 ∈ P andq1 ∈ Q be the unit vectors such
that

∣

∣

∣p
†
1q1

∣

∣

∣ is maximal. Inductively, letpi ∈ P andqi ∈ Q

be the unit vectors such thatp†
ipj = 0 andq

†
iqj = 0 for all

1 ≤ j < i and
∣

∣

∣p
†
iqi

∣

∣

∣ is maximal. The principle angles are

then defined asθi = arccos
∣

∣

∣p
†
iqi

∣

∣

∣ for i = 1, · · · , p [9], and
the chordal distance betweenP andQ is then given by

dc (P,Q) ,

√

√

√

√

p
∑

i=1

sin2 θi. (1)

The invariant measureµ on Gn,p (L) is the Haar measure
on Gn,p (L). Let O (n) and U (n) be the groups ofn × n
orthogonal and unitary matrices respectively. LetA,B ∈
O (n) when L = R, or A,B ∈ U (n) when L = C. For
any measurable setM ⊂ Gn,p (L) and arbitraryA andB, µ
satisfies

µ (AM) = µ (M) = µ (MB) .

The invariant measure defines the uniform/isotropic distribu-
tion onGn,p (L) [13].

This paper addresses an unequal dimensional quantization
problem. LetC be a finite size discrete subset ofGn,q (L) (also
known as a code). An unequal dimensional quantization is a
mapping from theGn,p (L) to the setC, q : Gn,p (L) → C,
wherep and q are not necessarily the same integer. Without
loss of generality, we assumep ≤ q. We are interested in
quantifying therate distortion tradeoff. Assume that a source
P ∈ Gn,p (L) is isotropically distributed. Define the distortion
measure as the square of the chordal distanced2c (·, ·). Then
the distortion associated with a quantizationq is defined as
D , EP

[

d2c (P, q (P ))
]

. For a given codeC ⊂ Gn,q (L), the

optimal quantization to minimize the distortion is given by
q (P ) = arg min

Q∈C
dc (P,Q) . The corresponding distortion is

D (C) = EP

[

min
Q∈C

d2c (P,Q)

]

.

The rate distortion tradeoff can be described by thedistortion
rate function: the infimum achievable distortion given a code
sizeK

D∗ (K) = inf
C:|C|=K

D (C) , (2)

or the rate distortion function: the minimum required code
size to achieve a given distortionD

K∗ (D) = inf
D(C)≤D

|C| . (3)

III. M ETRIC BALLS IN THE GRASSMANN MANIFOLD

This section derives an explicit volume formula for a metric
ball B (δ) in the Grassmann manifold. It is the essential tool
to quantify the rate distortion tradeoff.

The volume of a ball can be expressed as a multivariate
integral. Assume the invariant measureµ and the chordal
distancedc. For any givenP ∈ Gn,p (L) andQ ∈ Gn,q (L),
define

BP (δ) =
{

Q̂ ∈ Gn,q (L) : dc

(

P, Q̂
)

≤ δ
}

and

BQ (δ) =
{

P̂ ∈ Gn,p (L) : dc

(

P̂ , Q
)

≤ δ
}

.

It has been shown thatµ (BP (δ)) = µ (BQ (δ)) and the
value is independent of the choice of the center [13]. For
convenience, we denoteBP (δ) andBQ (δ) by B (δ) without
distinguishing them. Then, the volume of a metric ballB (δ)
is given by

µ (B (δ)) =

∫

· · ·
∫

Pp

i=1 sin2 θi≤δ2

dµθ, (4)

where1 ≤ θ1 ≤ π
2 , · · · , 1 ≤ θp ≤ π

2 are the principle angles
and the differential formdµθ is the joint density of theθi’s
[13], [14].

Theorem 1 computes the multivariate integral (4) into a
simple exponential form.

Theorem 1: Whenδ ≤ 1, the volume of a metric ballB (δ)
is given by

µ (B (δ)) = cn,p,q,βδ
βp(n−q)

(

1 + c
(1)
n,p,q,βδ

2 + o
(

δ2
)

)

, (5)

where

β =

{

1 if L = R

2 if L = C
,

cn,p,q,β =



























1

Γ(β

2 p(n−q)+1)

∏p
i=1

Γ( β

2 (n−i+1))
Γ( β

2 (q−i+1))
if p+ q ≤ n

1

Γ(β

2 p(n−q)+1)

∏n−q
i=1

Γ( β

2 (n−i+1))
Γ( β

2 (n−p−i+1))
if p+ q ≥ n

, (6)
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and

c
(1)
n,p,q,β = −

(

β

2
(q − p+ 1)− 1

) β
2 p (n− q)

β
2 p (n− q) + 1

. (7)

The proof is given in the journal version of this paper [15].
There are two cases where the volume formula becomes

exact.
Corollary 1: When δ ≤ 1, in either of the following two

cases,

1) L = C andq = p;
2) L = R andq = p+ 1,

the volume of a metric ballB (δ) is exactly

µ (B (δ)) = cn,p,q,βδ
βp(n−q),

wherecn,p,q,β is defined in (6).
We also have the general bounds:
Corollary 2: Assumeδ ≤ 1. If L = R and p = q , the

volume ofB (δ) is bounded by

cn,p,p,1δ
p(n−p) ≤ µ (B (δ)) ≤ cn,p,p,1δ

p(n−p)
(

1− δ2
)− p

2 .

For all other cases,

(

1− δ2
)

β

2 p(q−p+1)−p
cn,p,q,βδ

βp(n−q)

≤ µ (B (δ)) ≤ cn,p,q,βδ
βp(n−q).

Proof: Corollary 1 and 2 follow the proof of Theorem 1
by tracking the higher order terms.

Theorem 1 is of course consistent with the previous results
in [1], [4], [10], which pertain to special choices ofn, p, q or
L. Importantly though, Theorem 1 is distinct in that it holds
for arbitraryn, p, q andL.

For engineering purposes, it is often satisfactory to approx-
imate the volume of a metric ballB (δ) by cn,p,q,βδ

βp(n−q)

when δ ≤ 1. Fig. 1 compares the simulated volume (4) and
the approximationcn,p,q,βδβp(n−q). Since it is often difficult to
directly evaluate the multivariate integral in (4), we simulate
µ (B (δ)) = Pr

{

P̂ ∈ Gn,p (L) : dc

(

P̂ , Q
)

≤ δ
}

by fixing

Q and generating isotropically distributed̂P . The simulation
results show that our volume approximationcn,p,q,βδβp(n−q)

(solid lines) is close to the simulated volume (circles) when
δ ≤ 1. We also compare our approximation with Barg-
Nogin approximation developed in [10]. There, an volume
approximation

(

δ/
√
p
)βnp

is derived by Laplace method and
is only valid for thep = q ≪ n. Simulations show that the
simulated volume and Barg-Nogin approximation (dash lines)
may not be of the same order while our approximation is much
more accurate.

IV. QUANTIZATION BOUNDS

This section quantifies the rate distortion tradeoff for the
unequal dimensional quantization problem. The results hold
for arbitraryn, p, q andL.

Recall the distortion rate function defined in (2). A lower
bound and an upper bound are derived.

Theorem 2: When K is sufficiently large
((cn,p,q,βK)

− 2
βp(n−q) ≤ 1 necessarily), the distortion

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

δ2

µ(
B

(δ
))

Volume of small balls in the Grassmann manifold (n,p,q,β)

Volume Simulated
Our Volume Approx.
Barg−Nogin Approx.

10,2,2,2

6,2,2,2

4,1,2,1

4,1,2,2
6,2,4,2 6,3,4,2

Fig. 1. Volume of small balls in the Grassmann manifold. The integers
besides curves are, from left to right,n, p, q, and β respectively.

rate function is bounded as in
βp (n− q)

βp (n− q) + 2
(cn,p,q,βK)−

2
βp(n−q) (1 + o (1)) ≤ D∗ (K)

≤
2Γ

(

2
βp(n−q)

)

βp (n− q)
(cn,p,q,βK)

− 2
βp(n−q) (1 + o (1)) .

(8)
Remark 1: For engineering purposes, the main order terms

in (8) are usually accurate enough to characterize the distortion
rate function. The details of the(1 + o (1)) correction are
spelled out in the journal version of this paper [15].

The proof is provided in the journal version of this paper
[15]. We sketch it as follows.

The lower bound is proved by a sphere covering argument.
The key is to construct an ideal quantizer, which may not
exist, to minimize the distortion. Suppose that there exists K
metric balls of the same radiusδ0 packing and covering the
whole Gn,p (L) at the same time. Then the quantizer which
maps each of those balls into its centerQ ∈ Gn,q (L) gives
the minimum distortion among all quantizers. Of course such
an ideal covering may not exist. Therefore, the corresponding
distortion may not be achievable. It is only a lower bound on
the distortion rate function.

Next the upper bound is obtained by calculating the average
distortion of random codes. The basic idea is that the distortion
of any particular code is an upper bound of the distortion rate
function and so is the average distortion of random codes. A
random codeCrand = {Q1, · · · , QK} is generated by drawing
the codewordsQi’s independently from the isotropic distribu-
tion on Gn,q (L). The average distortion of random codes is
given byECrand

[D (Crand)]. By extreme order statistics, see for
example [16], the calculation ofECrand

[D (Crand)] is directly
related to the volume (4). Based on our volume formula (5),
the asymptotic value ofECrand

[D (Crand)] is computed and
thus the upper bound is obtained for largeK.

As the dual part of the distortion rate tradeoff, lower and
upper bounds are constructed for the rate distortion function.
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Corollary 3: When the required distortionD is sufficiently
small (D ≤ 1 necessarily), the rate distortion function satisfies
the following bounds,

1

cn,p,q,β





βp (n− q)

2Γ
(

2
βp(n−q)

)D





−
βp(n−q)

2

(1 + o (1)) ≤ K∗ (D)

≤ 1

cn,p,q,β

(

βp (n− q) + 2

βp (n− q)
D

)−βp(n−q)
2

(1 + o (1)) .

(9)
It is interesting to observe that the lower and upper bounds

are asymptotically the same. As a result, the asymptotic rate
distortion tradeoff is exactly quantified.

Theorem 3: Suppose thatp andq are fixed. Letn and the
code ratelog2 K approach infinity linearly withlog2 K

n
→ r̄.

If the normalized code ratēr is sufficiently large (p2−
2
βp

r̄ ≤ 1
necessarily), then

lim
(n,K)→+∞

D∗ (K) = p2−
2
βp

r̄.

On the other hand, if the required distortionD is sufficiently
small (D ≤ 1 necessarily), then the minimum code size
required to achieve the distortionD satisfies

lim
n→+∞

log2 K
∗ (D)

n
=

βp

2
log2

( p

D

)

. (10)

Remark 2: That the(1 + o (1)) multiplicative errors in (8)
and (9) disappear is the content of [15]. We omit the corre-
sponding details due to the space limitation.

Fig. 2 compares the simulated distortion rate function (the
plus markers) with its lower bound (the dashed lines) and
upper bound (the solid lines) in (8). To simulate the distortion
rate function, we use the max-min criterion to design codes
and the employ the corresponding distortion as an estimate of
the distortion rate function. Simulation results show thatthe
bounds in (8) hold for largeK. WhenK is relatively small, the
formula (8) can serve as good approximations to the distortion
rate function as well. Furthermore, we compare our bounds
with the approximation (the “x” markers) derived in [17],
which is partly based on Barg-Nogin volume approximation.
Simulations show that the approximation in [17] is neither an
upper bound nor a lower bound. It works for the case that
n = 10 andp = 2 but doesn’t work whenn ≤ 8 andp = 2.
As a comparison, our bounds (8) hold for arbitraryn andp.

While the asymptotic rate distortion tradeoff is precisely
quantified, the next question could be how to achieve it.
Same to many cases in information theory,random codes are
asymptotically optimal with probability one.

Corollary 4: Consider unequal dimensional quantization
from Gn,p (L) to Gn,q (L). Let Crand ⊂ Gn,q (L) be a code
randomly generated from the isotropic distribution and with
size K. Fix p and q. Let n, log2 K → ∞ with log2 K

n
→

r̄ ∈ R+. If the normalized code ratēr is sufficiently large
(p2−

2
βp

r̄ ≤ 1 necessarily), then for∀ǫ > 0,

lim
(n,K)→∞

Pr
(

D (Crand) > p2−
2
βp

r̄ + ǫ
)

= 0

The proof is omitted due to the space limitation.
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Fig. 2. Bounds on the distortion rate function

V. A PPLICATIONS TOCOMMUNICATION THEORY

A. Channel Capacity of AWGN Channel

Although the capacity of AWGN channel is well known,
it is interesting to re-calculate it from an interpretationin the
Grassmann manifold.

The signal transmission model for an AWGN channel is
that Y = X +W, whereY, X, W ∈ Ln are the received
signal, the transmitted signal and the additive Gaussian noise
respectively, andL is eitherR or C. Assume thatX andW
are Gaussian vectors with zero mean and covariance matrices
E
[

XX†
]

= I and E
[

WW†
]

= σ2I respectively. For any

ǫ > 0, construct a random codebookBX = {X1, · · · ,XK}
with log2 K

n
→ Rǫ and 1

n
‖Xk‖2 ∈ (1− 2ǫ, 1− ǫ) for all k =

1, · · · ,K.
Now suppose that a codewordX1 is transmitted. We con-

sider a receiver given by

X̂ = arg min
X∈BX

d2c (P (X) ,P (Y)) ,

whereP (X) ∈ Gn,1 (L) and P (Y) ∈ Gn,1 (L) are planes
generated byX andY respectively. It can be verified that

σ2

1 + σ2 − ǫ
≤ lim

n→∞
d2c (P (X1) ,P (Y)) ≤ σ2

1 + σ2 − 2ǫ
.

By similar argument to the proof of Theorem 2, if

Rǫ < lim
n→∞

log2 K
∗
(

σ2

1+σ2−2ǫ

)

n
=

β

2
log

(

1 +
1− 2ǫ

σ2

)

,

then Pr
(

X̂ 6= X1

)

= Pr
(

∃j 6= 1, d2c (P (Xj) ,P (Y)) ≤
σ2

1+σ2−2ǫ

)

→ 0. Finally, let ǫ → 0. The achievable error-

free rate for AWGN channel is then given byβ2 log
(

1 + 1
σ2

)

,
which is the well known capacity of AWGN channel.

Therefore, transmission in an AWGN channel is essentially
communication on the Grassmann manifold: The decoder in
the Grassmann manifold is asymptotically optimal. Further-
more, based on the proof of Theorem 2, the capacity can be
geometrically interpreted as sphere packing in the Grassmann
manifold.
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B. MIMO Communications with Beamforming Matrix Selec-
tion

The Grassmann manifold also provides a useful analysis
tool to MIMO communications with finite rate feedback on
beamforming matrix selection.

Consider a MIMO systems withLT transmit antennas and
LR receive antennas (LR < LT is assumed). Suppose that
the transmitter sendss (s ≤ LT ) independent data streams
to the receiver. LetCN (0, 1) denote the symmetric complex
Gaussian distribution with zero mean and unit variance. Then
the received signalY ∈ CLR×1 is given byY = HQX+W,
where H ∈ CLR×LT is the Rayleigh fading channel state
matrix with i.i.d. CN (0, 1) entries,Q ∈ C

LT×s is the beam-
forming matrix satisfyingQ†Q = I, X ∈ Cs×1 is the encoded
Gaussian data source with zero mean and covariance matrix
ρ
s
I, andW ∈ CLR×1 is the additive Gaussian noise with i.i.d.

CN (0, 1) entries. In our feedback model, we assume that only
the receiver knows channel stateH perfectly. It will help the
transmitter choose a beamforming matrix through a finite rate
feedback up toRfb bits/channel realization. Specifically, A
codebook ofQ, sayBQ, satisfying |BQ| = 2Rfb is declared
to both the transmitter and the receiver. Given a channel
realization, the receiver selects aQ in BQ and feeds the
corresponding index back to the transmitter.

The Grassmann manifold is related to throughput analysis
of the above system. LetH = UΛV† be the singular value
decomposition ofH whereV ∈ CLT×LR satisfiesV†V = I.
We consider a suboptimal feedback function: for a givenH,
the selected beamforming matrix̄Q ∈ BQ is given by

Q̄ = arg min
Q∈BQ

d2c (P (V) ,P (Q))

where P (V) ∈ GLT ,LR
(C) and P (Q) ∈ GLT ,s (C) are

planes generated byV andQ respectively. Then the expected
throughputI is upper bounded by

I , EH

[

log
∣

∣

∣I+
ρ

s
HQ̄Q̄†H†

∣

∣

∣

]

≤ LR · log
(

1 +
ρ

s

LT

LR

EV

[

tr
(

V†Q̄Q̄†V
)]

)

. (11)

It is well known that the matrixV is isotropically distributed.
Hence,

EV

[

tr
(

V†Q̄Q̄†V
)]

= min (s, LR)−D (BQ) ,

whereBQ = {P (Q) : Q ∈ BQ} is the codebook generated
from BQ. Based on the distortion rate bounds (8), the bound
(11) can be quantified for a given feedback rateRfb.

It is noteworthy that beamforming matrix selection is es-
sentially unequal dimensional quantization whens 6= LR.
Similar models, with minor modifications, have been adopted
and explored in many papers. Thes = LR = 1 case has
been studied in [4], [5], [7], while [6] discussed a more
general equal dimensional quantization wheres ≥ 1. Recently,
unequal dimensional quantization (s = 1, LR > 1) received
attention for multi-user MIMO communications in [8]. Our
model can be viewed as a generalization of all these works.

VI. CONCLUSION

This paper considers unequal dimensional quantization on
the Grassmann manifold. An explicit volume formula for
small balls is derived and then the rate distortion tradeoffis
accurately characterized. The random codes are proved to be
asymptotically optimal with probability one. As applications
of the derived results, a geometric model for the capacity of
AWGN channel is developed, and the effect of beamforming
matrix selection in MIMO systems is discussed.
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