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Abstract—A key idea in coding for the broadcast channel
(BC) is binning, in which the transmitter encode information
by selecting a codeword from an appropriate bin (the messages
are thus the bin indexes). This selection is normally done by
solving an appropriate (possibly difficult) combinatorial problem.
Recently it has been shown that binning for the Blackwell
channel –a particular BC– can be done by iterative schemes
based on Survey Propagation (SP). This method uses decimation
for SP and suffers a complexity of

�✂✁☎✄✝✆✟✞
. In this paper we

propose a new variation of the Belief Propagation (BP) algorithm,
named Reinforced BP algorithm, that turns BP into a solver.
Our simulations show that this new algorithm has complexity�✠✁☎✄☛✡✌☞✎✍✏✄✝✞

. Using this new algorithm together with a non-linear
coding scheme, we can efficiently achieve rates close to the border
of the capacity region of the Blackwell channel.

I. INTRODUCTION

Broadcast channels (BC) were first introduced and analyzed

by Cover [7]. The general BC with ✑ receivers is depicted
in Fig. 1. In a BC, a single transmitter sends simultaneously

independent information to multiple receivers.

Coding for each receiver independently with a normal point-

to-point code and sending the ✑ messages sequentially -by al-
locating proportions of time to each receiver- is known as time

sharing strategy. It is shown in [7] that jointly optimized codes

can have a larger capacity region for error–free communication

than that of time sharing codes [1], [7], [8].

A key idea in coding for the BC is the binning strategy,

which allows the transmitter to encode information by se-

lecting a codeword from an appropriate bin. In this paper

we deal with practical implementation of random binning

for the BC. Existing practical binning schemes for BC are

often based on structured codes and maximum likelihood

algorithms. Martinian and Yedidia in [11] have used for the

first time the random codes on graphs for quantization of a

binary erasure source. Still their method works only for erasure

sources and is not applicable to the general BC.
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Fig. 1. A single sender and ✒ receivers broadcast channel.
Recently, Wei Yu and M. Aleksic [18] showed that the

binning problem for a particular BC, namely the Blackwell

Channel (BWC), when coding is performed by random low-

density parity-check like codes, can be thought as a constraint

satisfaction problem. They proposed an iterative encoder that

works well at rates close to the border of the BC capacity

region.

The main difference of this problem with that of decoding

classical codes is that this combinatorial problem admits many

solutions. In fact in these cases the application of BP allows

to compute the cardinality of the solution space but fail to find

a particular solution.

In [18] they use Survey Propagation (SP) algorithm for

encoding, fixing one variable after each convergence (deci-

mation). The main drawback of this method is the encoding

complexity which grows as ✓✕✔✗✖✏✘✎✙ . Also the decimation works
well only when the connectivity of XOR nodes are very small

( ✚☛✛ 2, 3 and 4).
In this paper we use a modified version of BP, called Re-

inforced Belief Propagation (RBP), originally proposed in the

context of perceptron learning [3], which effectively turns BP

into a solver. Experiments show that RBP does not converge

for factor graphs with XOR function nodes. To overcome this,

we propose a new class of sparse non-linear codes. These two

modifications result in a more efficient encoding complexity

(from ✓✜✔✢✖✣✘✤✙ to ✓✕✔✗✖✦✥★✧✪✩✫✖✬✙ ) and a lower Frame Error Rate
(FER), i.e., the probability of not finding a solution to the



encoding problem.

This paper is organized as follows. In the next section we

introduce the general framework of broadcast channels and

their capacity regions. In section III we present the iterative

updates for BP and RBP algorithms. Our scheme for coding

for the BWC using non-linear nodes is explained in section

IV. Our results are presented in section V. The final section

is devoted to conclusions and outlooks.

II. NOTATIONS AND BASIC CONCEPTS

In this section we first introduce the basic concepts and then

briefly review some results on capacity region for deterministic

broadcast channels.

Definition 2.1: A broadcast channel consists of an input

alphabet ✭ , two output alphabets ✮✰✯ and ✮ ✘ and a probability
transition function ✱✲✔✗✳✴✯✶✵✷✳ ✘ ✸ ✹ ✙✻✺ The channel is said to be
memoryless if

✱✲✔✗✳✏✯✶✵✷✳ ✘ ✸ ✹ ✙✼✛ ✽✾✿★❀❂❁ ✱✲✔✢❃❄✯ ✿ ✵❅❃ ✘ ✿ ✸ ❆ ✿ ✙✻✺
A ❇❈✔❊❉ ✽✶❋✬● ✵✟❉ ✽✶❋❂❍ ✙✻✵✷✖✬■ code for a BC with independent infor-
mation consists of an encoder❏▲❑ ❉ ✽✪❋✬●◆▼ ❉ ✽✶❋❂❍P❖ ✭ ✽ ✵
and two decoders◗ ✯ ❑ ✮ ✽✯ ❖ ❉ ✽✶❋✬● ✵ ◗

✘ ❑ ✮ ✽✘ ❖ ❉ ✽✶❋❂❍ ✺
We assume that the transmitted message pair ✔❊❘ ✯ ✵❈❘ ✘ ✙ is
uniformly distributed over the set ❉ ✽✶❋✬● ▼ ❉ ✽✶❋❂❍ . The probability
of error ✱ ✽❙ is defined to be✱ ✽❙ ✛❚✱✲✔❯❘❱✯❳❲✛❩❨❘▲✯❭❬✤❪❫❘ ✘ ❲✛❩❨❘ ✘ ✙✻✺
Definition 2.2 (Capacity Region): A rate pair ✔✢❴✂✯❵✵❈❴ ✘ ✙ is
called achievable for the BC if there is a sequence of❛ ❇❈✔❊❉ ✽✶❋✬● ✵✟❉ ✽✶❋❂❍ ✙✻✵✷✖✬■❄❜ ✽ codes with ✱ ✽❙ ❖❞❝

as ✖ ❖❢❡
. The

capacity region of the broadcast channel is the closure of the

set of achievable rates.

A broadcast channel is deterministic if the channel transition

probabilities are deterministic, i.e., ✱✲✔✢✳ ✯ ✵❅✳ ✘ ✸ ✹ ✙ is a ❝❤❣❥✐
function. The largest achievable rate region for a general BC

using the binning strategy is known as the Marton’s region

[12]. This region is proved to be the capacity region for a

discrete deterministic channels [13].

A well-known example of a deterministic BC is the BWC

(see Fig. 2). The BWC has one input with three symbols and

two outputs each one with two symbols. Given two messages❘ ✯ and ❘ ✘ , the goal is to find the codewords ✳ ✯◆❦ ❉ ✽✪❋✬● and✳ ✘ ❦ ❉ ✽✶❋❂❍ such that ✔✗❃ ✯ ✿ ✵❅❃ ✘ ✿ ✙❧❲✛♠✔ ✐ ✵ ✐ ✙ for ♥✴✛ ✐ ✵✟❉♦✵♣✺q✺★✺q✵❅✖ . The
other three combinations are allowed and they can be reached

by selecting one of the three input symbols of the channel.

Even though this channel is not realistic, it is a non-trivial BC

which illustrates the conflict between transmitting information

to first receiver and transmitting to second receiver [10].

Since the channel is deterministic we have rs✔✢t✉✙✈✛rs✔✢✇❂✯✤✵❈✇ ✘ ✙ . In the rest we assume a uniform probability
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Fig. 2. The Blackwell channel.
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Fig. 3. Rate region for the BWC with uniform distribution.

distribution over t . With this input distribution the capacity
region for BWC becomes

❴➆✯➈➇ rs✔ ✐➉ ✙
❴ ✘ ➇ rs✔ ✐➉ ✙❴✦✯✼➊➋❴ ✘ ➇ ✥★✧✪✩ ✘ ➉ ✺

This capacity region is shown in Fig. 3.

III. BP AND RBP ALGORITHMS

Let ➌ ❑✴➍❥➎➐➏ ✽ ❖ ➏
be a real valued function over the

domain
➍
and ➌❂✔ ❆ ✯❵✵ ❆ ✘ ✵♣✺q✺★✺q✵ ❆ ✽ ✙➒➑ ✾➓✻➔➣→↕↔ ➓ ✔✗t ➓ ✙ (1)

where t ➓ is a subset of the set of variables.
Definition 3.1: A factor graph of a function ➌ factorized as
in (1) is a bipartite graph with ✖ vertex in one part (variable
nodes) and ➙ vertex in the second part (factor nodes). An

edge connects variable node
❆ ✿ to factor node ↔ ➓ if and only

if
❆ ✿ is an argument of the local function ↔ ➓ , i.e., ❆ ✿ ❦ t ➓ .
We show the ♥ th marginal function associated with➌❂✔ ❆ ✯ ✵ ❆ ✘ ✵♣✺q✺★✺q✵ ❆ ✽ ✙ by➌ ✿ ✔ ❆ ✿ ✙➒➑➜➛➝✴➞✷➟✎➠❊➡ ➌➢✔ ❆ ✯ ✵ ❆ ✘ ✵➤✺★✺★✺q✵ ❆ ✽ ✙
where the symbol ➥➧➦ ❆ ✿✷➨ indicates the set of all variable
configurations with the ♥ -th variable fixed to ❆ ✿ .
Calculating the marginal functions in general is a hard

task. BP is an efficient and exact algorithm to calculate all

marginal functions ➌ ✿ ✔ ❆ ✿ ✙ when the factor graph of ➌ is cycle-
free. It is possible to use BP also in the presence of loops.

The resulting algorithm will be iterative and calculates the
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Fig. 4. The modified factor graph for RBP. The black squares are dynamic
nodes which their value is a function of the marginal of the related variable
at a preceding iteration.

marginals approximately. In the rest of this section, first we

review the BP update rules and then present a generalization

of BP called Reinforced BP algorithm (RBP) [4].

Let ➽➢➾➟✤➚✠➪ ✔ ❆ ✙ denotes the message sent form variable node❆
to factor node ↔ at the ➶ th iteration. Similarly, ➽✣➾ ➪✤➚➆➟ ✔ ❆ ✙

denotes the message sent from factor node ↔ to variable node❆
at the iteration ➶ . Also, let➹ ✔ ❆ ✿ ✙❢➘ ➦✟➴ ✸ ❆ ✿ ❦ t ➓✶➨ ✵➷ ✔ ↔ ➓ ✙❢➘ ➦♣♥ ✸ ❆ ✿ ❦ t ➓ ➨ ✵
then the BP algorithm messages can be expressed as follows:

Local Function to Variable:➽ ➾ ➪➮➬❈➚✠➟♣➠ ✔ ❆ ✿ ✙✼➑➜➛➝✴➞✷➟ ➠ ➡
➱ ↔ ➓ ✔✗t ➓ ✙ ✾✃ ➔✪❐➋❒ ➪ ➬❅❮✢❰ ➞ ✿ ➡ ➽ ➾ ➟✤Ï★➚✂➪➮➬ ✔ ❆ ✃ ✙✷Ð (2)

Variable to Local Function:➽ ➾ÒÑ ✯➟ ➠ ➚✠➪ ➬ ✔ ❆ ✿ ✙✼➑ ✾✃ ➔♣Ó✲❒ ➟✎➠ ❮✢❰ ➞ ➓ ➡ ➽ ➾ ➪ Ï ➚➆➟ ➠ ✔ ❆ ✿ ✙ (3)

For ➶Ô✛ ✐
, we initialize the messages ➽❂➾➟✤➚✠➪ ✔ ❆ ✙ randomly.

These updating rules tell us how to produce locally outgoing

messages from incoming messages. We define the marginal

function of variable
❆ ✿ at iteration ➶✼➊ ✐ as

➌ ➾➮Ñ ✯✿ ✔ ❆ ✿ ✙➒➑ ✾✃ ➔♣Ó✲❒ ➟✎➠ ❮ ➽ ➾ ➪ Ï ➚➆➟ ➠ ✔ ❆ ✿ ✙Õ✺ (4)

The algorithm converges after ✑ iterations if and only if for
all variables

❆ ✿ and all function nodes ↔ ➓➽❂Ö Ñ ✯➪ ➬ ➚➆➟ ➠ ✔ ❆ ✿ ✙➒✛×➽ Ö➪ ➬ ➚➆➟ ➠ ✔ ❆ ✿ ✙
In practice we need to predefine maximum number of iter-

ations ➶➤ØÚÙ✷Û and a precision parameter Ü as the input to the
algorithm.

BP has been generalized/modified in many ways [2], [4],

[5], [15], [19]. BP and its generalizations have proven to

be efficient when the variables are biased toward a solution.

Unfortunately when this condition is not fulfilled marginal

themselves are not sufficient to find a solution to the com-

binatorial problem and one has to resort to some decimation

techniques ( [2], [18]), resulting in a high computational

complexity.

We will show here the RBP equations [3] that turn BP

into an efficient solver. The idea is to introduce a new set

of reinforcement messages which drive the equations toward

a single solution. First we modify the original factor graph by

adding to each variable node a new function node. In Fig. 4

these new function nodes are depicted by black squares. These

function nodes are dynamic and at the ➶ th iteration take the
value ❇❊➌ ➾❈Ý ✯✿ ✔ ❆ ✿ ✙✷■♣Þ ❒ ➾❈Ý ✯ ❮ , i.e, a power of the marginal of the
variable

❆ ✿ at the preceding iteration. ßà✔✗➶♣✙ is a non decreasing
function in á ❝ ✵ ✐✻â with ßÚ✔ ❝ ✙☛✛ ❝ . While the updating rule (2)
at function nodes does not change for RBP, the variable to

function messages should be modified as below.

Variable to Local Function for RBP:➽ ➾ÒÑ ✯➟♣➠✢➚✂➪➮➬ ✔ ❆ ✿ ✙✼➑ ❇ ➌ ➾✿ ✔ ❆ ✿ ✙ ■ Þ ❒ ➾ ❮ ✾✃ ➔♣Ó✲❒ ➟ ➠✗❮✢❰ ➞ ➓ ➡ ➽ ➾ ➪ Ï ➚➆➟✎➠ ✔ ❆ ✿ ✙✻✺ (5)

In this paper we deal only with binary constraint satisfaction

problems, where
✹ ❦ ➦ ❝ ✵ ✐ ➨ ✽ and the local functions ↔ ➓ ✔✗t ➓ ✙

are 0-1 indicator functions. A vector ✔ ❆ ✯ ✵ ❆ ✘ ✵➤✺★✺★✺q✵ ❆ ✽ ✙ satisfies↔ ➓ ✔✗t ➓ ✙ if ↔ ➓ ✔✢t ➓ ✙✰✛ ✐ . ✔ ❆ ✯ ✵ ❆ ✘ ✵➤✺★✺★✺q✵ ❆ ✽ ✙ is called a solution of
the constraint satisfaction problem if all local functions are

satisfied, i.e., ã ➓✻➔➣→ ↔ ➓ ✔✗t ➓ ✙✲✛ ✐
. It is easy to show that if

RBP converges, it converges to a solution of our problem (all

messages completely polarized to delta functions). This simple

modification provides us with a solver with complexity ✓✕✔✗✖✬✙
(assuming roughly constant convergence time). Note that the

number of iteration of RBP depends also on the choice of ßÚ✔☎➶♣✙
in (5). As our experiments show, choosing an optimal ß can
dramatically decrease the number of iterations of RBP at least

for the binning problem. For the rest of this paper we will setßà✔✗➶♣✙✼✛ ✐ä❣ ß ❁ ß ➾✯ ✵ (6)

where ß ❁ ✵✷ß ✯ are in á ❝ ✵ ✐✻â .
IV. CODING FOR THE BLACKWELL CHANNEL USING

NON-LINEAR NODES

One of the main coding strategies for deterministic broad-

cast channel is binning. The idea is to generate ❉ ✽✶å ❒★æ ● ❮
codewords ✳✴✯ and ❉ ✽✶å ❒★æ ❍ ❮ codewords ✳ ✘ and randomly assign
them into ❉ ✽✶❋ ● and ❉ ✽✶❋ ❍ bins. To transmit a particular pair of
bin indices ✔✢♥❈✵Ò➴ç✙ , the transmitter looks for a pair of codeword✔✗✳✏è♦✵✷✳✬é➣✙ ❦ ✔✢♥✟✵❯➴ç✙ such that they are jointly typical.
For the BWC, the joint typicality of ✳ è and ✳ é is equivalent
to being consistent with the channel constraints. Therefore, we

are looking for efficient ways to finding a pair ✔✗✳àèê✵✷✳✬é➣✙ such
that ✔✢❃❄✯ ✿ ✵❅❃ ✘ ✿ ✙➒✛ë✔ ✐ ✵ ✐ ✙ does not occur for ♥✴✛ ✐ ✵❈❉ê✵➤✺★✺q✺★✵✷✖ .
Wei Yu and Marko Aleksic in [18] have suggested a

random binning method for BWC based on low-density parity-

check like codes. In this section we first review their results

and then modify their scheme using non-linear nodes and

RBP algorithm. As we will see in the next section, these

modifications imply a better encoding complexity and a lower

FER for large function node connectivity.
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Fig. 5. Factor graph for LDPC like encoding for Blackwell channel.

Fig. 5 illustrates the graphical structure (factor graph) of

the coding scheme used in [18]. ✖ circles denote the variable
nodes, ✖✣❴➆✯✬➊ì✖✣❴ ✘ squares denote the parity check nodes and✖ crossed squares denote the product constraints (ensuring the✔ ✐ ✵ ✐ ✙ pair does not occur). The encoding process is as follows.
The information bits ✖✣❴✠✯ and ✖✣❴ ✘ are placed at the parity
checks. These values are actually the bin indices. The goal is

to find the set of variable assignments that satisfy the parity-

checks and product constraints simultaneously. These two sets

of constrains ensure the typicality of the pair ✔✗✳ è ✵❅✳ é ✙ . When✖ is large an exhaustive search is not feasible and practical
algorithms are desirable.

In [18] the survey propagation algorithm is suggested for

this encoding problem. The main drawback of using SP/BP

is the complexity which grows as ✓✜✔✢✖✬✘✤✙ because of the
decimation process. As it was also mentioned in [18], this

method works only for small function nodes connectivity.

On the other hand, the RBP algorithm, introduced in the

section III, do not converge –even for rates not close to the

capacity– for linear codes. To overcome this, we substitute

parity check nodes with non-linear (random) functions. These

kind of gates have been analyzed with methods from statistical

physics [6]. Intuitively, the reason for which random gates

may show a better performance with respect to the linear

nodes can be explained as follows. Strong symmetry properties

of XOR functions do not allow a decimation procedure to

choose a good decimation path that preserves the uncorrelation

hypothesis needed for BP; indeed, in any decimation step with

XOR gates, undecided variables have all equal probability of

taking 0 or 1.

Given ✚ variable input nodes we choose a non-linear func-
tion node randomly from all ❉➣í possible balanced truth-tables.
We eliminate from this choice fully-canalized nodes, i.e.,

random nodes for which a particular value of one of their

variables determine the output. For our code constructions we

have used 4 to 8 different random nodes for each connectivity✚ . Note that the complexity of updating messages on a random
node with degree ✚ is of order ❉ í . In this paper we confine
ourselves to a constant degree ✚î✛ðï and hence ignore this
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Fig. 6. Entropy as a function of rate ( ñ➒ò✏ó❤ñ ✆ ) for different function node
connectivity ô . At any given rate the entropy of codes with non-linear factor
nodes increases with ô and approaches the entropy of linear codes.
Rate 0.5 0.6 0.7 0.72 0.73 0.74 0.75

FER 0 0 0.03 0.1 0.35 0.825 0.975

BER 0 0 0.00011 0.0013 0.00425 0.0119 0.0347õ ò 0.99 0.995 0.999 0.9995 0.9999 0.99999 0.999995

TABLE I

BER AND FER OF NON-LINEAR LDPC LIKE ENCODERS AT A GIVEN RATE

( ñ✼ò✬ó❤ñ ✆ ) AND CONNECTIVITY ô✣ó❤ö .
factor in the rest.

In order to show the suitability of non-linear nodes to

the problem at hand we compute the normalized size of the

solution space, defined as r✜÷➐✛ø✥★✧✪✩➢✔✢ù❳úÕ✙❅û❵✖ , where ù❳ú is
the number of solutions. An approximation to r✕÷ can be
computed directly from the BP messages at a fixed point [19].

In Fig. 6 we plot r ÷ as a function of rate using linear nodes
and non linear nodes for different values of the function node

connectivity ✚ . The entropy of codes with non-linear function
nodes increases with ✚ and approaches the entropy of linear
codes. Note that for linear codes the entropy does not change

with connectivity. A connectivity ✚ü✛ýï thus guarantees a
solution space with cardinality near to those of LDPC codes

when using non-linear type nodes. This value of connectivity

has then been chosen for the code construction.

V. RESULTS

Table I shows the FER and BER of our constructed non-

linear codes for the BWC with ✖þ✛ ✐✎❝✪❝➣❝
and constant

connectivity ✚◆✛ÿï at different rates. The last line reports the
values we chose for ß ✯ .
We estimated the algorithmic complexity of the presented

coding scheme in a series of experiments described below. In

particular, we will show how the convergence time changes as

a function of ✖ and ß ✯ . The RBP algorithm was run with an
estimated optimal value of ß ✯ , and we have chosen a cutoff
time of

✯❒ ✯ Ý Þ ● ❮ to measure the bit and frame error rates.Fig. 7 shows the average number of iterations needed (in the

case of success) for a rate ❴✠✯✦✛ ❴ ✘ ✛ ❝ ✺ ✁ ❝ as a function of
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Fig. 7. The average number of needed iterations as a function of
õ ò at rateñÚò✬óìñ ✆ ó✄✂✆☎ ✝✞✂ for different values of ✟ . Note that for smaller õ ò we need

less number of iterations but both BER and FER are larger (see Fig. 8 and
table I).

 1e-05

 1e-04

 0.001

 0.01

 0.1

 0.999 0.997 0.995 0.993

B
E

R

γ1

n=1000
n=2000
n=4000
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✖ and ß ✯ and for 160 encoding operations. These simulations
indicate that the number of iterations increase as ✓✕✔✗✥★✧✪✩✼✖✬✙ .
Although the number of iterations increase (exponentially)

with ß ✯ , both the BER and FER decrease (exponentially) as it
can be seen in Fig. 8. Note that for rates closer to the capacity

bound ( ❴➆✯ä✛×❴ ✘ ✡ ❝ ✺ ✁☞☛✍✌ ) a value of ß ✯ closer to ✐ (and larger
number of iterations) is needed.

Although the results depicted in Fig. 7 indicate a logarithmic

increase in the number of iterations as a function of ✖ , this
result may be due to a not optimized choice of ßÚ✔☎➶♣✙ . For
example by choosing ß ❁ ✛ ❝ ✺ ☛ in (6) it is possible to reduce
the number of iterations for ✖ë✛✏✎

❝✪❝✪❝
and ß➫✯ì✛ ❝ ✺ ✑✍✑✒✑ by

nearly ❉ ✌✍✓ . In other words, one can avoid approximately the
first ❉ ❝✪❝ iterations of RBP without loosing in performance.

VI. CONCLUSION AND OUTLOOKS

We have introduced a novel variation of the BP algorithm,

called reinforced BP, that turns it into an efficient solver for

non-linear problems even when they have a large solution

space. The algorithm have the same complexity of BP and thus

considerably smaller than the decimation approach applied to

BP/SP proposed in [18].

Using RBP we have constructed a general and rather

efficient encoding scheme for the BWC. Our codes provide

good encoding performances for rates up to
❝ ✺ ✁ ❉ . This result

can be possibly improved by optimizing the function ßà✔✗➶♣✙ and
the degree distributions of the code.

Our scheme compares well with existing ones: for linear

codes with ❴ ✛ ❴ ✯ ✛ ❴ ✘ ✛ ❝ ✺ ✁✒✌ and decimation, as it was
reported also in [18], one can get the bit error rate of

✌ ✺ ✐✎❝ Ý✕✔ .
Still, simulations show that the FER in this case is 0.9 and

it does not improve for smaller rates like ❴❥✛ ❝ ✺ ✁ ❉ with the
same connectivity. On the other hand it works only for low

function node connectivity. Our scheme is much more flexible

and provides a comparable FER and BER at ❴ ✛ ❝ ✺ ✁☞✌ with
lower computational complexity. For smaller rates our codes

outperform the existing linear encoding schemes.
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