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Abstract— Consider a multi-user private information-hiding
scenario in which two information hiders separately embed
correlated sources (S1, S2) into a common host source U
(covertext). The i-th information hider embeds the secret source
Si into the covertext U subject to a distortion constraint Di

(i = 1, 2). The outputs (stegotexts) are corrupted by a multiple
access channel attack WY |X1X2 . A sufficient condition (in single-
letter form) under which (S1, S2) can be successfully embedded
into U under WY |X1X2 is established.

I. INTRODUCTION

Information hiding is the means to embed a secret message
into a host message (covertext) so that the information hider is
able to transmit the information even though the transmission
is subject to manipulation by an attacker attempting to render
the hidden information undetectable. A large body of litera-
ture including theoretical studies as well as various practical
applications have recently been devoted to this new area (see,
e.g., [1]–[8] and the references therein).

In the literature, the information-hiding scenario is usually
modeled as a constrained channel coding problem. The secret
messages, assumed to be uniformly distributed over a given
message set, are one-by-one embedded into the host messages.
Since the secret messages should not interfere perceptually
with the host messages, a distortion constraint is placed
between the encoder output and the original host messages.
From an information-theoretic point of view, the problem
is to find the largest embedding rate (known as embedding
capacity) for which, at the encoder, the distortion between the
host messages and the output (stegotexts) does not exceed a
preset threshold, and at the decoder, the secret messages can
be reproduced with an arbitrarily small probability of error.

In practical situations (e.g., instant (online) data-hiding), in
order to reduce the complexity of coding, we may need to
directly hide an information source (or correlated sources) with
a nonuniform distribution. In this work we extend the point-
to-point information-hiding model to a multi-user setting. Our
model is depicted in Fig. 1. Instead of embedding uniformly
distributed indices, two encoders independently embed two
(arbitrarily distributed) discrete memoryless correlated sources
(S1, S2) into a common memoryless host source U , and
transmit the resulting sequences to a common destination in
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the presence of discrete memoryless multiple access channel
(MAC) attacks. One possible application of this scenario is
that two agents separately embed noisy observations of the
same source, and transmit the hidden information over a
MAC attack channel. Throughout the paper, we deal with
private information hiding; i.e., we assume that the decoder
has perfect knowledge of U .
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Fig. 1. A joint source coding and embedding model for multi-user
information hiding.

Given the secret sources (S1, S2), a MAC WY |X1X2 , the
host source U , and a distortion level pair (D1, D2), one may
ask whether there exists a coding scheme, such that (S1, S2)
can be embedded in U within distortion levels (D1, D2), and
transmitted over WY |X1X2 with an arbitrarily small probability
of error. To begin, we note that, especially in a multi-user
system, jointly source coding and embedding the sources
(S1, S2) into U might perform better than the traditional
separate coding (i.e., concatenating lossless data compression
and embedding). In this paper we investigate whether (S1, S2)
can be successfully transmitted under the MAC attacks by joint
source coding and embedding codes. In particular, we establish
a sufficient condition for successfully embedding (S1, S2) into
U under the MAC WY |X1X2 ; see Theorem 1. Since our model
jointly deals with information embedding (privacy protection)
and compression of (nonuniform) correlated secret sources in
a multiuser setting, it adds a new dimension to the traditional
point-to-point information hiding problem. Note also that our
problem can be viewed as a generalization of the problem of
transmitting correlated sources over ordinary MAC channels
[9]–[12].

II. PRELIMINARIES

Throughout, random variables (RV’s) are denoted by capital
letters, e.g., X , specific values are denoted by lower case
letters, e.g., x, and their alphabets are denoted by calligraphic



letters, e.g., X . Similarly, random vectors are denoted by
capital letters superscripted by their lengths, e.g., Xn, their
alphabets are denoted by calligraphic letters superscripted by
their lengths, e.g., Xn, and their realizations are denoted by
boldface lower case letters, e.g., x , (x1, x2, ..., xn) ∈ Xn.
The cardinality of a finite set X is denoted by |X |. E(X)
denotes the expectation of X . For any RV X , PX(x) denotes
the probability that X = x. For jointly distributed RV’s X and
U , PX|U (x|u) denotes the conditional probability of X = x
given that U = u. The probability of an independent and
identically distributed (i.i.d.) sequence x ∈ Xn is given by
PXn(x) ,

∏n
j=1 PX(xj). All alphabets are finite, and all

logarithms are in natural base.
Let V , (X1, X2, ..., Xm) be a superletter (an ordered

collection of RV’s) taking values in a finite set V ,
X1 × X2 × · · · × Xm with joint distribution PV (x1, ..., xm),
which for simplicity we also denote by PV (v). Denote
by T

(n)
ε (V ) or T

(n)
ε the set of all strongly ε-typical se-

quences (x1, . . . , xm) [13] with respect to the joint distri-
bution PV (v). Let IV , {1, 2, ..., m}, and IG ⊆ IV .
We then let G = (Xg1 , Xg2 , ..., Xg|IG|

) ∈ G be a “sub-
superletter” corresponding to IG such that gi ∈ IG. Let G,
K, and L be sub-superletters of V such that IG, IK , IL

are disjoint, and let PG, PK and PG|K be the marginal and
conditional distributions induced by PV , respectively. Denote
by T

(n)
ε (G) the restriction of T

(n)
ε (V ) to the coordinates

of G [13]. Given k ∈ T
(n)
ε (K), denote T

(n)
ε (G|k) ,{

g ∈ Gn : (g, k) ∈ T
(n)
ε (G,K)

}
. T

(n)
ε (G|k) is sometimes re-

ferred to as T
(n)
ε (·|k) if G is clear from the context.

Lemma 1: [13, pp. 342-343] Let Gn, Kn and V n be
i.i.d. drawn according to PGn , PKn and PV n . The following
properties hold for sufficiently large n.

1) PV n

(
{V n ∈ T

(n)
ε }

)
≥ 1− ε, and

PKn

(
{Kn ∈ T

(n)
ε (K)}

)
≥ 1− ε.

2) For any k ∈ T
(n)
ε (K),

|(1/n) log PKn(k) + H(K)| ≤ ε.
3) (1− ε)en(H(K)−ε) ≤

∣∣∣T (n)
ε (K)

∣∣∣ ≤ en(H(K)+ε).

4) For any k ∈ T
(n)
ε (K),

PGn

(
{Gn ∈ T

(n)
ε (G|k)}

)
≥ 1− ε.

5) For any k ∈ T
(n)
ε (K),

(1− ε)en(H(G|K)−2ε) ≤
∣∣∣T (n)

ε (G|k)
∣∣∣ ≤ en(H(G|K)+2ε).

6) For (g, k) ∈ T
(n)
ε (G,K),∣∣(1/n) log PGn|Kn(g|k) + H(G|K)

∣∣ ≤ 2ε.
Lemma 2: (Markov Lemma [13, p. 579]) Let G → K →

L form a Markov chain in this order. For 0 < ε < 1 and
(g, k) ∈ T

(n)
ε (G,K), if Ln is i.i.d. drawn given k according to∏n

j=1 PL|K(lj |kj), then Pr
{

(g, k, Ln) ∈ T
(n)
ε (G,K, L)

}
>

1− ε for n sufficiently large.

III. PROBLEM FORMULATION AND MAIN RESULTS

Let the pair of memoryless correlated secret sources
{(S1j , S2j)}∞j=1 have marginal distribution PS1S2 and denote

the marginal distribution of the host source {Uj}∞j=1 by
PU . Assume (S1, S2) and U are independent. The attack
channel is modeled as a two-sender one-receiver discrete
memoryless MAC WY |X1X2 having input alphabets X1 and
X2, output alphabet Y , and a transition probability distribution
WY |X1X2(y|x1, x2). The probability of receiving y ∈ Yn

conditioned on sending x1 ∈ Xn
1 and x2 ∈ Xn

2 is hence given
by WY n|Xn

1 Xn
2
(y|x1, x2) =

∏n
j=1 WY |X1X2(yj |x1j , x2j). Let

di : U ×Xi → [0,∞) be single-letter distortion measures and
define dmax

i , max
u,xi

di(u, xi) for i = 1, 2. For u ∈ Un and

xi ∈ Xn
i , let di(u, xi) =

∑n
j=1 di(uj , xij).

A joint source coding and embedding (JSCE) code
(ϕ(n)

1 , ϕ
(n)
2 , ψ(n)) with block length n consists of two encoders

ϕ
(n)
1 : Sn

1 × Un → Xn
1 and ϕ

(n)
2 : Sn

2 × Un → Xn
2 and

a decoder ψ(n) : Yn × Un → Sn
1 × Sn

2 ; see Fig. 1. The
probability of error in reproducing the secret sources is given
by

P (n)
e =

∑

Sn
1 ×Sn

2 ×Un

PSn
1 Sn

2
(s1, s2)PUn(u)

∑

y:ψ(n)(y,u) 6=(s1,s2)

WY n|Xn
1 Xn

2
(y|x1, x2)

where xi , ϕ
(n)
i (si, u) (i = 1, 2).

Definition 1: Given PU and distortion levels D1 > 0 and
D2 > 0, we say that the secret sources {(S1j , S2j)} are
(D1, D2)-admissible with respect to the MAC WY |X1X2 , if
there exists a sequence of codes (ϕ(n)

1 , ϕ
(n)
2 , ψ(n)) such that

P
(n)
e → 0 as n → ∞ and for any δ > 0, 1

nE[di(Un, Xn
i )] ≤

Di + δ, i = 1, 2, for n sufficiently large.
Theorem 1: {(S1j , S2j)} are (D1, D2)-admissible with re-

spect to the MAC WY |X1X2 if there exist some RV Q and a
pair of conditional distributions (PX1|S1UQ, PX2|S2UQ) such
that

H(S1|S2) < I(X1;Y |X2, S2, U,Q), (1)
H(S2|S1) < I(X2;Y |X1, S1, U,Q), (2)
H(S1, S2) < I(X1, X2;Y |U,Q), (3)
E[di(U,Xi)] ≤ Di, i = 1, 2, (4)

where the above entropies, mutual informations, and expecta-
tions are taken with respect to the joint distribution

PQPS1S2PUPX1|S1UQPX2|S2UQWY |X1X2 . (5)

We remark that the RV Q serves as a time-sharing RV and
the cardinality of its alphabet can be bounded by |Q| ≤ 6.

The proof of the theorem, which employs a joint strong
typicality coding argument [9] under additional distortion
constraints, is deferred to Section V. Note that if U is re-
moved in (1)–(3), then the inequalities reduce to the sufficient
condition under which the sources {(S1j , S2j)} can be reliably
transmitted over the MAC WY |X1X2 obtained in [9], [10].

IV. SPECIAL CASES

1) Uniform and Independent Sources: Suppose that the
sources are independent and uniform, i.e., PS1(s1) = 1/|S1|,



PS2(s2) = 1/|S2| and PS1S2(s1, s2) = PS1(s1)PS2(s2) for
any (s1, s2) ∈ S1 × S2. Define R̃1 = H(S1) = log |S1| and
R̃2 = H(S2) = log |S2| to be the rates of the sources. By
Theorem 1, {(S1j , S2j)} are (D1, D2)-admissible with respect
to the MAC WY |X1X2 if there exists some RV Q with |Q| ≤ 6,
and a pair of distributions (PX1|UQ, PX2|UQ) such that

R̃1 < I(X1;Y |X2, U,Q), (6)

R̃2 < I(X2;Y |X1, U,Q), (7)

R̃1 + R̃2 < I(X1, X2;Y |U,Q), (8)
E[di(U,Xi)] ≤ Di, i = 1, 2, (9)

where the above mutual informations and expectations
are taken with respect to the joint distribution
PQPUPX1|UQPX2|UQWY |X1X2 . If we further set D1 ≥ dmax

1

and D2 ≥ dmax
2 and let U be deterministic, inequalities

(6)–(9) give the capacity region of the MAC [13].
2) Parallel Attack Channels: Assume that the attack MAC

is composed of two independent discrete memoryless channels
WY |X1X2(y|x1, x2) = WY1|X1(y1|x1)×WY2|X2(y2|x2) where
WYi|Xi

has input alphabet Xi and output alphabet Yi such that
Y1×Y2 = Y , i = 1, 2. This can be interpreted as two attackers
separately attacking the stegotexts. In this case, the condition
given by Theorem 1 for successful embedding is equivalent
to the following (see the proof in the appendix): {(S1j , S2j)}
are (D1, D2)-admissible with respect to the MAC WY |X1X2

if

H(S1|S2) < C(W (1), D1), (10)
H(S2|S1) < C(W (2), D2), (11)
H(S1, S2) < C(W (1), D1) + C(W (2), D2), (12)

where C(W (i), Di) = maxE[di(U,Xi)]≤Di
I(Xi;Yi|U), i =

1, 2 is the information-hiding capacity of the attack channel
WYi|Xi

with distortion threshold Di [4].
3) Attack-Free Channel: Let l : X1×X2 → Y be a bijection

and let Y = l(X1, X2). In this case, Theorem 1 implies that
{(S1j , S2j)} are (D1, D2)-admissible with respect to the MAC
WY |X1X2 if

H(S1|S2) < H(X1|X2, S2, U), (13)
H(S2|S1) < H(X2|X1, S1, U), (14)
H(S1, S2) < H(X1, X2|U), (15)
E[di(U,Xi)] ≤ Di, i = 1, 2, (16)

where the entropies are taken under the joint distribution
PS1S2PUPX1|S1UPX2|S2U . Note also that conditions (13)–(16)
give the Slepian-Wolf lossless data compression region [13],
[11] if we set D1 ≥ dmax

1 , D2 ≥ dmax
2 , and let U be

deterministic.

V. PROOF OF THEOREM 1

We first give an outline of the proof. We need to show that
for given PS1S2 , PU , and WY |X1X2 , there exists a sequence of
JSCE codes (ϕ(n)

1 , ϕ
(n)
2 , ψ(n)) such that P

(n)
e → 0 as n →∞

and for any δ > 0, 1
nE[di(Un, Xn

i )] ≤ Di + δ, i = 1, 2, for

n sufficiently large. Fix (PQ, PX1|S1UQ, PX2|S2UQ) such that
the following are satisfied for some ε > 0,

H(S1|S2) < I(X1;Y |X2, S2, U,Q)− 7ε, (17)
H(S2|S1) < I(X2;Y |X1, S1, U,Q)− 7ε, (18)
H(S1, S2) < I(X1, X2;Y |U,Q)− 7ε, (19)
E[di(U,Xi)] ≤ Di, i = 1, 2. (20)

Define P
(n)
i , Pr{di(Un, Xn

i ) > n(Di + ε)}, i = 1, 2. We
will prove that for any ε1 > 0, the following probabilities,
which are averaged over a family of random codes (C1, C2),
i = 1, 2, satisfy

EC1,C2 [P
(n)
e ] ≤ ε1, EC1,C2 [P

(n)
i ] ≤ ε1, EC1,C2 [P

(n)
i ] ≤ ε1

for n sufficiently large. Then EC1,C2{P (n)
e + P

(n)
1 + P

(n)
2 } ≤

3ε1, which guarantees that there exists at least one pair (C1, C2)
such that P

(n)
e + P

(n)
1 + P

(n)
2 ≤ 3ε1 and hence P

(n)
e ≤ 3ε1,

P
(n)
1 ≤ 3ε1, P

(n)
2 ≤ 3ε1 are simultaneously satisfied for n

sufficiently large. Finally, it can be easily shown that P
(n)
i ≤

3ε1 implies for n sufficiently large that

1
n
E[di(Un, Xn

i )] ≤ Di + ε + dmax
i P

(n)
i ≤ Di + δ.

A. Random Code Design

Random Code Generation. Let i ∈ {1, 2}. Choose a typical
sequence q = (q1, q2, ..., qn) arbitrarily in T

(n)
ε (Q). The

sequence serves as a time sharing sequence and it is known
at both the encoders and the decoder. For any sequences si, u
and the fixed q, generate one xi(si, u, q) sequence according

to
n∏

j=1

PXi|SiUQ(xij |sij , uj , qj). Define codebook Ci as Ci ,

{xi(si, u, q) : (si, u) ∈ Sn
i × Un}. Reveal the codebooks to

both the encoders and the decoder.
Encoding. Given (si, u) ∈ Sn

i × Un, Encoder i sends
xi(si, u, q).

Decoding. The decoder has full knowledge of u (and also
the time sharing sequence q). Upon receiving sequence y, the
decoder finds the only pair (̂s1, ŝ2) ∈ T

(n)
ε (S1, S2), such that

y ∈ T
(n)
ε (Y |̂s1, ŝ2, u, q, x̂1, x̂2), where x̂1 = x1(̂s1, u, q) and

x̂2 = x2(̂s2, u, q). If there is no or more than one such pair
of sequences (̂s1, ŝ2), an error is declared.

For the sake of convenience, define the events

A0 : (s1, s2, u) ∈ T (n)
ε (S1, S2, U |q)

A1 : (s1, s2, u, Xn
1 (s1, u, q), Xn

2 (s2, u, q)) ∈ T (n)
ε (·|q).

The following result is a consequence of the Markov lemma
(Lemma 2).

Lemma 3: For any ε, ε2 ∈ (0, 1), EC1,C2 [Pr(Ac
1|A0)] ≤ ε2

for n sufficiently large, where the expectation is taken with
respect to the random codes C1 and C2.



B. Bounding EC1,C2 [P
(n)
e ]

EC1,C2 [P
(n)
e ] ≤

∑

(T
(n)
ε (S1,S2,U |q))c

PSn
1 Sn

2
(s1, s2)PUn(u)

+
∑

T
(n)
ε (S1,S2,U |q)

PSn
1 Sn

2
(s1, s2)PUn(u)

× EC1,C2


 ∑

y:ψ(n)(y,u) 6=(s1,s2)

WY n|Xn
1 Xn

2
(y|x1, x2)


 .

The first term vanishes for n sufficiently large by Lemma 1.
It suffices to bound the expectation in the second term. Given
(s1, s2, u) ∈ T

(n)
ε (S1, S2, U |q), we have the following four

error events:

E0 : (s1, s2, u, Xn
1 (s1, u, q), Xn

2 (s2, u, q), Y n) /∈ T (n)
ε (·|q),

E1 : ∃ ŝ1 6= s1 such that
(̂s1, s2, u, Xn

1 (̂s1, u, q), Xn
2 (s2, u, q), Y n) ∈ T (n)

ε (·|q),
E2 : ∃ ŝ2 6= s2 such that

(s1, ŝ2, u, Xn
1 (s1, u, q), Xn

2 (̂s2, u, q), Y n) ∈ T (n)
ε (·|q),

E3 : ∃ s̃1 6= s1, s̃2 6= s2 such that
(̃s1, s̃2, u, Xn

1 (̃s1, u, q), u), Xn
2 (̃s2, u, q), Y n) ∈ T (n)

ε (·|q).

It then immediately follows from the union bound that

EC1,C2


 ∑

y:ψ(n)(y,u) 6=(s1,s2)

WY n|Xn
1 Xn

2
(y|x1, x2)




≤
3∑

j=0

EC1,C2
[
Pr {Ej |A0}

]
. (21)

To bound EC1,C2
[
Pr {E0|A0}

]
, it follows from Lemmas 2

and 3 that

EC1,C2
[
Pr {E0|A0}

]

≤ EC1,C2
[
Pr(Ac

1|A0)
]

+ EC1,C2
[
Pr {E0|A0, A1}

]

≤ ε0
2

+
ε0
2

= ε0 (22)

if n sufficiently large, where ε0 will be specified later.
To bound EC1,C2

[
Pr {E1|A0}

]
, write

EC1,C2
[
Pr{E1|A0}

]

≤
∑

bs1 6=s1:bs1∈T
(n)
ε (S1|s2)

EC1,C2
[
Pr

{
v1 ∈ T (n)

ε

∣∣∣ A0

}]
(23)

where v1 = (̂s1, s2, u, q, Xn
1 (̂s1, u, q), Xn

2 (s2, u, q), Y n) and
the expectation can be upper bounded by

EC1,C2
[
Pr

{
v1 ∈ T (n)

ε

∣∣∣ A0

}]

≤
∑

Xn
1 ×Xn

2

PXn
1 |Sn

1 UnQn(x̂1 |̂s1, u, q)PXn
2 |Sn

2 Un(x2|s2, u, q)

∑

y∈T
(n)
ε (Y |bs1,s2,u,q,bx1,x2)

PY n|Sn
2 UnQnXn

2
(y|s2, u, q, x2)

≤
∣∣∣T (n)

ε (Y |̂s1, s2, u, q, x̂1, x2)
∣∣∣ e−n(H(Y |S2,U,Q,X2)−2ε)(24)

≤ en(H(Y |X1,X2)+2ε)e−n(H(Y |S2,U,Q,X2)−2ε) (25)
= en(H(Y |X1,X2,S2,U,Q)+2ε)e−n(H(Y |S2,U,Q,X2)−2ε)

= e−n(I(X1;Y |X2,S2,U,Q)−4ε), (26)

where x̂1 = x1(̂s1, u, q), x2 = x2(s2, u, q), and (24) and (25)
follow from Lemma 1. It then follows from (23), Lemma 1
and (17) that

EC1,C2
[
Pr {E1|A0}

]

≤
∣∣∣T (n)

ε (S1|s2)
∣∣∣ e−n(I(X1;Y |X2,S2,U,Q)−4ε)

≤ en(H(S1|S2)+2ε)e−n(I(X1;Y |X2,S2,U,Q)−4ε)

= e−n(I(X1;Y |X2,S2,U,Q)−H(S1|S2)−6ε)

≤ e−nε ≤ ε0, (27)

for n sufficiently large. Similarly, we can bound using (18)

EC1,C2
[
Pr {E2|A0}

]
≤ ε0, (28)

for n sufficiently large.
It remains to bound EC1,C2

[
Pr {E3|A0}

]
. Write

EC1,C2
[
Pr{E3|A0}

]
≤

∑

es1 6=s1,es2 6=s2:(es1,es2)∈T
(n)
ε (S1,S2)

EC1,C2
[
Pr

{
v2 ∈ T (n)

ε

∣∣∣ A0

}]
, (29)

where v2 = (̃s1, s̃2, u, q, Xn
1 (̃s1, u, q), Xn

2 (̃s2, u, q), Y n) and

EC1,C2
[
Pr

{
v2 ∈ T (n)

ε

∣∣∣ A0

}]

≤
∑

Xn
1 ×Xn

2

PXn
1 |Sn

1 UnQn(x̃1 |̃s1, u, q)PXn
2 |Sn

2 UnQn(x̃2 |̃s2, u, q)

∑

y∈T
(n)
ε (Y |es1,es2,u,q,ex1,ex2)

PY n|UnQn(y|u, q)

≤
∣∣∣T (n)

ε (Y |̃s1, s̃2, u, q, x̃1, x̃2)
∣∣∣ e−n(H(Y |U,Q)−2ε) (30)

≤ en(H(Y |U,Q,X1,X2)+2ε)e−n(H(Y |U,Q)−2ε) (31)
= e−n(I(X1,X2;Y |U,Q)−4ε)

where x̃1 = x1(̃s1, u, q) and x̃2 = x2(̃s2, u, q), and (30) and
(31) follow Lemma 1. It then follows that,

EC1,C2
[
Pr{E3|A0}

]

≤
∑

es1 6=s1,es2 6=s2:(es1,es2)∈T
(n)
ε (S1,S2)

e−n(I(X1,X2;Y |U)−4ε)

≤
∣∣∣T (n)

ε (S1, S2)
∣∣∣ e−n(I(X1,X2;Y |U)−4ε)

≤ en(H(S1,S2)+2ε)e−n(I(X1;Y |X2,S2,U)−4ε)

= e−n(I(X1;Y |X2,S2,U)−H(S1,S2)−6ε)

≤ e−nε ≤ ε0 (32)

for n sufficiently large. Now plugging (22), (27), (28), and (32)
back into (21), and setting ε0 = ε1

4 , we see that EC1,C2 [P
(n)
e ] ≤

ε1 for n sufficiently large.



C. Bounding EC1,C2 [P
(n)
i ]

Since the encoding is separately performed, Encoder 1 is
independent of C2. Thus it suffices to show that EC1 [P

(n)
1 ] ≤

ε1 for n sufficiently large.
Clearly, if (s1, u, x1) ∈ T

(n)
ε (S1, U,X1|q), then

1
n

d1(u, x1(s1, u, q)) ≤ E[d1(U,X1)] + ε ≤ D1 + ε

for n sufficiently large, where the first inequality follows from
the definition of strong typicality and the second inequality
follows from (20). According to Lemma 1,

EC1 [P
(n)
1 ] ≤

∑

(T
(n)
ε (S1,U |q))c

PSn
1 Un(s1, u)

+
∑

T
(n)
ε (S1,U |q)

PSn
1 Un(s1, u)EC1Φ

{
v3 /∈ T (n)

ε

}

≤ ε1
2

+
ε1
2

= ε1 (33)

for n sufficiently large, where v3 = (s1, u, q, Xn
1 (s1, u, q))

and Φ(A) is the indicator function of the event A.

D. Completing the Proof

As we mentioned in the beginning of the section,

EC1,C2{P (n)
e + P

(n)
1 + P

(n)
2 } ≤ 3ε1,

implies that there exists a pair of codes (C1, C2) such that
P

(n)
e ≤ 3ε1, P

(n)
1 ≤ 3ε1, P

(n)
2 ≤ 3ε1 are simultaneously

satisfied for n sufficiently large. Furthermore, if P
(n)
i ≤ 3ε1,

we have
1
n
E[di(Un, Xn

i )] ≤ (Di + ε) + dmax
i P

(n)
i ≤ Di + δi,

as n → ∞, by setting δi = ε + 3ε1d
max
i . Thus the distortion

constraint is satisfied. This completes the proof of Theorem 1.

VI. CONCLUDING REMARKS

In this work we derive a sufficient condition with single-
letter characterizations for hiding correlated sources against
MAC attacks. An uncomputable (and somewhat trivial) outer
bound (converse condition) can be easily formulated by apply-
ing Fano’s inequality in terms of a sequence of n-dimensional
joint distributions. We are currently studying the embedding
of correlated sources with joint embedding-compression rate
constraints. Our next step is to answer the question: when
(S1, S2) are (D1, D2)-admissible with respect to WY |X1X2 ,
what is the compression limit for the sources (S1, S2) and U?

APPENDIX

Proof of the Case of Parallel Attack Channels: When
WY |X1X2 = WY1|X1 ×WY2|X2 , we see that (10)–(12) imply
(1)–(4). In fact, if the maximums in (10)–(12) are achieved by
P ∗X1|U (x1|u) and P ∗X2|U (x2|u), then simply letting |Q| = 1,
PX1|S1U (x1|s1, u) = P ∗X1|U (x1|u) and PX2|S2U (x2|s2, u) =
P ∗X2|U (x2|u), we see that with this choice,

I(X1;Y |X2, S2, U,Q) = I(X1;Y1|S2, U,Q) = I(X1;Y1|U)

= max
E[d1(U,X1)]≤D1

I(X1;Y1|U).

Similarly,

I(X2;Y |X1, S1, U,Q) = max
E[d2(U,X2)]≤D2

I(X2;Y2|U),

and

I(X1, X2;Y1, Y2|U,Q)
= max

E[d1(U,X1)]≤D1

I(X1;Y1|U) + max
E[d2(U,X2)]≤D2

I(X2;Y2|U).

We next show that (1)–(4) imply (10)–(12). We only need to
show that for any PX1|S1UQ satisfying E[d1(U,X1)] < D1,
the right hand side of (1) is upper bounded by (10). Since
(Q,S1, U) → X1 → Y1 form a Markov chain in this order,

I(X1;Y1|U) = H(Y1|U)−H(Y1|X1, U)
≥ H(Y1|S2, U,Q)−H(Y1|X1, S2, U,Q)
= I(X1;Y1|S2, U,Q).

For any PX1|S1UQ satisfying E[d1(U,X1)] < D1, set

P̂X1|U (x1|u) =
∑

S1×Q
PS1(s1)PQ(q)PX1|S1UQ(x1|s1, u, q).

Under the corresponding P̂X1|U (x1|u), we have

I(X1;Y1|U, S2, Q) ≤ I(X1;Y1|U)
≤ max

E[d1(U,X1)]≤D1

I(X1;Y1|U).

We can similarly show that (2)–(3) imply (11)–(12). 2
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