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Abstract—This paper describes a fundamental correspondence case (see Section IV). We note that prior work by Danielson
between Boolean functions and projection operators in Hillert  [11] interpreted Boolean functions as quantum states and

space. The correspondence is widely applicable, and it is @8 yoye|gped a correspondence between Boolean functions and
in this paper to provide a common mathematical framework h .
zero-dimensional quantum codes.

for the design of both additive and non-additive quantum erior A 7
correcting codes. The new framework leads to the construatin After introducing the fundamentals of quantum error cor-
of a variety of codes including an infinite class of codes that recting codes in Section V, we will derive in Section VI suffi-

extend the original ((5,6,2)) code found by Rains [21]. It also cjent conditions for existence of QECC in terms of existence
extends to operator quantum error correcting codes. of certain Boolean function. This paper goes beyond degivin
Index Terms—Quantum Error Correction, projection oper-  sufficient conditions, and constructs the quantum codeeieh
ators in Hilbert space, Boolean functions, additive and non properties are satisfied. Hence, we convert the problem of
additive quantum codes, operator quantum error correction finding a quantum code into a problem of finding Boolean
function satisfying certain properties. We also see howager
|. INTRODUCTION well-known codes fit _into_ this sch_eme._We focus on non-
- N ) degenerate codes which is defensible given that we know of
The additive or stabilizer construction @fuantum error parameters, M andd for which there exists a k{ M, d))
correcting code:{QECC) takes a class_ical binary .cc.>de that iﬁegenerate QECC but not &((\/, d)) non-degenerate QECC
self-orthogonal with respect to a certain symplectic ipred-  see [2]). Further, in Section VII, we describe how this
uct, and produces a quantum code, with minimum d_'Stangeheme fits into a general framework of operator quantunm erro
determined by the classical code (for more details §ée [Zbrrecting codes. More precisely, we give sufficient cdodit

[8] and [14]). The first non-additive quantum error-Corigt for the existence of(k, M, N, d)) stabilizer OQEC and also
code was constructed by Raires al. [2I]. This code was qqngiryct the code if these conditions are satisfied.
constructed numerically by building a projection operatith

a given weight distribution. Grassl and Beth [13] genesrliz

this construction by introducing union quantum codes, wher

the codes are formed by taking the sum of subspaces generatetl Boolean functioris defined as a mapping: {0,1}™ —

by two quantum codes. Roychowdhury and Vatan [23] ga T O : ;

some sufficient conditions for the existence of nonadditi@’ 1}120]. The mapping: = El vi2" associates an integer

codes, and Arvinét al.[5] developed a theory of non-additivev from the set{0,1,....,2™ — 1} with a binary m-tuple

codes based on the Weyl commutation relations. Most regentlvm,, -..,v1) With v; € {0,1}. (Throughout the paper)_

Kribs et al. [16] introducedoperator quantum error correction represents addition over integers.) This integer is cathel

(OQEC) which unifies the standard error correction model, tilecimal indexfor a givenm-tuple.

method of decoherence-free subspaces, and that of naiseleé\n m-variable Boolean functionf can be specified by

subsystems. listing the values at all decimal indices. The binary-vdlue
We will describe, what we believe to be the first mathematiector of function value§” = [yo, y1, ..., y2m 1] is called the

cal framework for code design that encompasses both additituth vectorfor f.

and non-additive quantum error correcting codes. It istbase ~ An m-variable Boolean functiotf(v,, ..., v,,) can be repre-

a correspondence between Boolean functions and project'gghted a52

Il. BOOLEAN FUNCTION

m—1 . . .
Sy @ im0 wherey; is the value

operators in Hilbert space that is described in Sectionsdl a i=0 _ _ e _
lll. We have used an initial version of this correspondend¥ the Boolean function at the decimal indgxand co (),
to construct Grassmannian packings [1] and space-timescode(j), --- »¢m—1(j) € {0,1} are the coordinates in the binary

for wireless communicatiof [3]. However, the corresporenrepresentation fof (with ¢, as the most significant bit and

in Section Il applies to a larger class of projection operst co as the least significant bit) with; = v; and v} = o;
and includes the correspondence describedlin [3] as a $petlaeorem 7.7,[[18]).

This work was supported in part by AFOSR under contract 08832 Example 1:The truth vector of the three-variable Boolean

The material in this paper was presented in part at the IEE&rational function f(vy,ve,v3) = v1v903 IS Y =[0,0,0,1,0,0,0, 0]
Symposium on Information Theory, Nice, France, June 2007.
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Definition 1: The Hamming weighf a Boolean function  LetB(H) be the set of bounded linear operators on a Hilbert
is defined as the number of nonzero element¥’in space H. An operatd? € B(H) is called a projection operator
(sometimes we will use the terms orthogonal projection -oper
ator and self-adjoint projection operator) on H if= PP?t,

We denote the set of projection operators on HPijy/) and
the set of all subspaces of H fiy( H).

Definition 2 ([20]): Let & denote modulo two addition.
The (periodic) autocorrelation functiof a Boolean function
f(v) at a is the inner product off with a shift of f by

2 1
a. More preciselyy(a) = Y (=1)/(W&Ff(va) wherea €

=0 Definition 4;: 1) If S C H, the span ofS is defined as

{0,1,...,2m—1},a = > a;2""!. An autocorrelation function VS = N{K|K is a subspace in H witlf C K}. It
] i=1 is easy to see thats is the smallest subspace in H
is represented as a vectir= [r(0),r(1),...r(2™ — 1)] containings.

Definition 3: The complementary setf a Boolean function ~ 2) If S & H, the orthogonal complement & is defined

. . 2m 1 asS+ = {z € H|zLs for all s € S}.
f(v) is defined byCset; = {a| ZO f)f(v®a)=0} 3) If Sis a collection of subsets of H, we writesesS =
- V(UsesS)-

This means that for any elemeatin the Csety, f(v)f(v ®

a) = 0 for any choice ofv e {0,1,..,2" — 1}. The  Definition 5: Let P € P(H) and letK = image(P) =
complementary set links distinguishability in the quanturbPz|z € H}. We call P the projection ofH onto K. Two
world (orthogonality of subspaces) with properties of Bl projectionsP and @ onto K and L are orthogonal (denoted
functions. The quantityf(v & a) is the counterpart in the PLQ) if PQ = 0. It is easy to verify thatPQ = 0 <
quantum world of the quantum subspace after the error hiasL L < QP = 0. (Theorem 5B.9,[[10])

occurred, which is to be orthogonal to the original subspace__ _ .. ) . .
corresponding tof (v) as will be described in later sections. Deﬁnmon 6: Let P,Q € P(H) with K = image(P) and
L = image(Q). Then

I__er?\/r[na 1:cljf]t\2e Saglgll?g V\;ﬁlghttﬁf the Bo?lean 1;unct|ont « P<Qiff KCL(K#L)
fis M, an = . then the complementary set | p, Q is the projection of H ontds v L

Csety = {alr(a) = 2™ — 4M} P A Q is the projection of H ontd< N L
Proof: If a € Cset; then f(v)f(v®a) =0 for all v = . P isctghe proj:ctié)n of H ontds - '
0,1,...,2™ — 1 and the supports of f(v) and(v & a) are '

disjoint. Hence The structure(P(H), <, L) is a logic with unit/y (identity

map onH) and zeroZy (zero map onH) (Theorem 5B.18,

2™m—1 . L . . .
ra) = Z (_l)f(v)@f(v@a) [1Q]). This logic is calledProjection Logic
v=0 Lemma 2 (Theorem 5B.18, [10])fhe map P —
= (-D)'M+(-D)'M + (-1)°@2™ - 2M) image(P) from P(H) to IL(H) is a bijection that preserves
oM _AM order, orthogonality, meet{ and join().
Conversely suppose Lemma 3 ([10]): If << P, >> are pairwise orthogonal
2m 1 projection operators, ii*(H), thenv, P, = > Pj.
r(a) = Y (~1)fSF0S0 —gm _4py, k=1
v=0 Lemma 4 ([10]): If P,Q € P(H), then

If the supports off (v), f(v®a) intersect inV decimal indices 1) PQ = QP iff PQ is a projection.
then 2) If PQ is a projectionimage(PQ) = image(P) N
r(a) N —2(M = N)+ (2™ —2(M — N) — N) image(Q).
2™ —4M + AN

Lemma 5:If P and(@ are commutative operators, then the
Hence,N =0 anda € Csety. B (distributive law holds (and this law fails to hold for non-
commutative operators). Also, in this case,

Example 2:Let f(vi,ve,v3) = wivevs. Then the vec-
tor B corresponding to the autocorrelation function is 1) PAQ=PQ 5
8,4,4,4,4,4,4,4], andCsets = {1,2,3,4,5,6,7}. 2) PeQ=(PAQ)V(PAQ)=P+Q—-2PQ
3) P=I-P
[1l. BOOLEAN FUNCTIONS AND A LOGIC OF PROJECTION 4 PVQ=P+Q-PQ
OPERATORS
Proof:

The authors of[[3] connected Boolean logic to projection
operators derived from the Heisenberg-Weyl group. Intaiss 1) From LemmaH#image(PQ) = image(P)Nimage(Q).
tion, we generalize these results to a larger class of piojec Hence,image(PQ) = image(P A Q) and by Lemma
operators. 2, PAQ=PQ.



2) We have

P+Q—-2PQ =PI-Q)+QU—-P)
“IP(I - Q) V[QU - P)]
QIPAUT-QIVIQA I - P)
Ypao.

where (a) follows from Lemmal3B,(b) follows from
Lemmal[4 and(c) follows directly from definition of

PoQ.
3) P =1 — P follows directly from Definition6.
4) We have
PeQVPAQ) Z(PeQ) +(PAQ)
@P+Q—H@+PQ
=P+Q-PQ
Also, (P®Q)V (P AQ)
= (PAQ)V(PAQV(PAQ)
LPAQV(PVP)IAQ)
=(PAQ)VQ
2PV AQVQ)
=(PVQ)

where (d) follows from LemmalB sinceP ¢ @ and
P A Q are orthogonal (P + Q — 2PQ)PQ = 0), (e)
follows from Lemm&#, andf), (g) follows from the
distributive laws. HenceP v Q = P + @ — PQ.

[ |
Next we define projection functions followingl[3].
Definition 7: Given an arbitrary Boolean function
fv1,...., v ), we define therojection functionf (P, ..., Py,)

in which v; in the Boolean function is replaced b¥;,

multiplication in the Boolean logic is replaced by the meet
operation in the projection logic, summation in the Boolean
logic (or theor function) is replaced by the join operation in
the projection logic and the not operation in Boolean logic |

replaced by the tildef) operation in the projection logic.

As is standard when writing Boolean functions, we uee
(modulo2 addition, represented bg) in place ofor, hence
by above definition, we will replace theor in the Boolean
logic by thexor operation in the projection logic.

Theorem 1:1f (P, ...
jection _operators. of dimensio2™~! such thatP,P;..P,,,
P,P,..P,
operators and H is of dimensi@T, then Py =

F(PL,....P)

, P,) are pairwise commutative pro-

. PP,..P,, are all one-dimensional projection

of projection operators in terms of meet, join and tilde will
be present in the projection logic. Hendg; is an orthogonal
projection operator and this proves the first part of the o
Now, we will find the dimension of this projection operator.

mf(vl, V2, ooy U can be represented as
2i1ylvf°v§1. vyt as described in Section Il.
Ifl:Owt(f) = M, then M terms of y; are 1 and
the remaining terms are0. Also, in this case,
Py = f(Pi,Py,..,Py) = &:%ﬁU?MPW*(Mmm
P! = P; and P! = P)). Hence, the image of is the

minimum subspace containing all; P{°Py"....Py" ", We
know by the statement of the theorem that the dimension of
Pyopst. Pyt is 1 for all g, eq, ...y em—1 € {0,1}, and all
these subspaces are orthogonal. Also, the minimum subspace
containing all these operators is the whole Hilbert space.
So, the dimension of’; will be the sum of dimensions of

yi PO Pst ... Pyt for all i (which is 1 wheny, = 1, and0
otherwise). Hence, the dimension Bf is M. [ |

Theorem[dl is a generalization of the Theorénof [3]
because we considany pairwise commutative projection op-
erators, while in[[3], a special case of commutative pragect
operators using Heisenberg-Weyl group was used. Thisapeci
case is described in Section IV. Hence, to prove Thedrem 1,
we use abstract properties of projection logicl [10] ratiant
the properties of a particular commutative subgroup.

Example 3: The Boolean functionf(v) = w172 + v203
corresponds to the operatdt; = f(Pi,P», P3) = (P1 A
P,) & (P, A P3). If Py, Py, P are pairwise commutative, then
Pf =P +P,—PP,— PP;.

IV. THE CONSTRUCTION OFCOMMUTATIVE PROJECTION
OPERATORS FROM THEHEISENBERGWEYL GROUP
Let X, Y, andZ be the Pauli matrices, given by

0 1 1 0 0 =4

B ES RSN
and consider linear operataksof the formE = ¢;®. . .Qen,
wheree; € {I,,X,Y,Z}. We form the Heisenberg-Weyl
group (sometimes in the literature this group is referred to
as an extraspecia-group or as the Pauli groupk,, of
order 4™*1, which is realized as the group of linear oper-
ators aF,a = =+1,+i. (For a detailed description of the
Heisenberg-Weyl group and its use to construct quantumscode
see [7], [8].)

Next we define the symplectic product of two vectors and
the symplectic weight of a vector.

Definition 8: The symplectic inner productof vectors

is an orthogonal projection on a subspace of dimensiém,b),(a/,') € F2™ is given by

Tr(Pr) = wt(f), wherewt(f) is the Hamming weight of
the Boolean functiory.

Proof: By definition of f (P, ....P,,), we have a represen-
tation of P; in terms of meet, join and tilde operations in the Definition 9: The symplectic weightf a vector(a, b) is the
corresponding projection logic. By Lemria 2, every functionumber of indices at which eithera; or b; is nonzero.

(a,0) ® (¢, V) =a -V ®a .

1)



The center of the grou,, is {£Ilam,+ilom} and the

Following [1Z2], we restrict attention to the errors in the

quotient groupE,,, is isomorphic to the binary vector spaceHeisenberg-Weyl group. Next, we define the minimum dis-
F%™. We associate with binary vectofs, b) € F3™ operators tance of the code.

E(,) defined by

E(%b) =18 ... en, (2)
127 ai:O,bi:O,
wheree; = { % @ =1Lbi=0,
e Z7 aizovb’i:lv
Y, a; = 1,b1 =1
Lemma 6:

b-a’ ;a-b'+a’-b
E(a,b)E(a’,b') = (—1) (2 + E(a@a/,beab/)'

Lemma 7:

E(a,b)E(a’,b’) = (_1)(a,b)®(a b )E(a’,b’)E(a,b)-

Thus E, ) and E, )y commute iff (a,b) and (a',b’) are

Definition 11: Theminimum distancef @ is the maximum
integerd such that any erraF, with symplectic weight at most
d — 1, is detectable.

The parameters of the quantum error correcting code are
written ((k, M, d)) where the third parametéris the minimum
distance of Q. We say that a { M,d)) quantum error
correcting code exists if there exists &,({/)) quantum error
correcting code with minimum distance d. We assume
d > 2 throughout the paper. We also focus on non-degenerate
((k, M, d)) codes, for whichPEP = 0 for all errors E of
symplectic weight< d — 1, which is a sufficient condition for
existence of the quantum code.

For any quantum cod€, we define thestabilizer Hy as

Ho={FE€E:Elx>=|z> forall |z > Q}

whereFE), is the Heisenberg-Weyl group defined in Section IV.

orthogonal with respect to the symplectic inner prodlitt (1) then H, is an abelian group and is isomorphic to @,

We will now describe how to construct commutativgyr somem. A quantum code is calleddditiveor astabilizer
projection operators. Taken linearly independent vectors.qge if it is defined by its stabilizeHy,, i.e.

Y1,Y2, - Ym Of length 2m bits with the property that the
symplectic product between any pair is equal to zero.

we take P, = i(I + E,,), then P, ... P, satisfy all
the properties of Theoreim 1 and hengép,,...P,,) is an
orthogonal projection operatdr|[3].

Example 4:Take f(v) = f(vs,va,v1) = v1 + v1v2 + vs3.
Take y1,y> and y3 as (1,0,0,0,1,0) , (0,1,1,1,1,0) and

(0,0,1,0,1,1) respectively which are linearly independent

If Q={lz>eC” :Elz>=|c> forall E € Hy}

A quantum code is non-additive if it is not equivalent to an
additive code[[22].

VI. QUANTUM ERRORCORRECTING CODES WITH
MINIMUM DISTANCE d

with all pairwise symplectic products equal to zero. Then We usex to denote the standard binary inner product.

P = Py@®P,Py® Py = P+ P3 — 2P, Py — P,Py+ 2P, P, Ps
whereP; = 3(I + E,,), that is

2 i -1 0 0 —i 1 0
i 2 0 1 i 0 0 -1

1 0 2 —i -1 0 0 —i

po_L] 0 1 2 0 1 i 0
=3l o - -1 2 i 1 0
i 0 0 1 —i 2 0 -1

1 0 0 —i 1 0 2 —i

0 -1 0 0 -1 i 2

V. FUNDAMENTALS OF QUANTUM ERRORCORRECTION

A ((k,M)) quantum error correcting code is am/-
dimensional subspace @2". The parametek is the code-

length and the paramete¥/ is the dimension or the size

of the code. Let@Q be the quantum code, an® be the
corresponding orthogonal projection operator @n (For a
detailed description, segl[4].)

Theorem 2:A Boolean functionf with the following prop-
erties determines &k, M, d))-QECC

1) f is a function ofk variables and has weighit/.

2) There are2k binary k-tuples x1, xs, ..., zo; Such that
Csety contains the se{[z1,z2,...x95] x wl| w is a
2k bit vector of symplectic weight d — 1}. The rows
of the matrix A; = [z122...... Tok) w9, NAvVE pairwise
symplectic product zero and are linearly independent.

The projection operator corresponding to the QECC is ob-
tained as follows:

(i) Construct the matrix4; as above.

(i) Define k projection operators each of the fo%ﬂI+Ey)
wherey is a row of the matrix4;, with P, correspond-
ing to the 1%t row, P,_; corresponding to the™? row
and so on, so thaP; corresponds to the last row.

(i) Transform the Boolean functiorf into the projection
operatorP, using Definition[¥ where the commutative
projection operators?; .... P, are determined by the
matrix Ay.

Proof: Consider a Boolean functiofi(v) satisfying con-

Definition 10: An error operatorF' is calleddetectableff ditions 1) and 2). It follows easily from Section Ill and IV
PEP = cgP , wherecg is a constant that depends only orthat Py constructed as above is dd-dimensional projection
E. operator. It remains to prove that the minimum distance is at



leastd, so we need to show th&t;nPyn = 0 for any errorn Proof: By Theoreni? there exists @k, M, d))-QECC.

in Ex with symplectic weight at most — 1. The construction method of Theore 2 gives the cor-
An errorn in Ej, transforms the projection operaté} to : — B k o
P} = nPysn, and the conditionPsnPrn = 0 means that; is responding projection operator afy = izl;lﬂ P=

orthogonal toP;. Denote byn; the error represented by the

binary 2k-tuple with entryl in positioni and zeros elsewhere.l_zln_l[Jrl
We emphasize that the subscript =;, n; and 4;; ((j,9)"" by |z >= Pf|u > for some|u >€ H. SinceE,, andE,, are
entry in the matrixAy) are read modul@k, so thatzsr41 IS commutative, we havé,, |z >= |z > for m < i < k. Hence,

%(I + E,,). Any vector in the code subspace is given

justz;. . Ey. By, _,,..,E,, . are the stabilizers of the quantum code
If Ay 1 = 0 thensn, commutes withP; andi Py = P, and the quantum code is additive. [
and if Aypp1 = 1 thennPep = P In general, if  Remark 2:1f the boolean function can be represented as a

Apt1—jk+s = 0 thenn; Pin; = P, and if Axpa—jevs =1 single monomial, it gives an additive code. The converse is
thenn; Pjn; = P;. Letni Py = Qi; whereQ;; = P or P not true in general; see for example,][22], where it is shown
and observe thaR; ; = P; if and only if entry (k + 1 —j)  that every((4,4, 2)) code is equivalent to an additive code.
of xxy; is zero. Them; Prn; = f(Qi1,Qi2; .., Qix) and
the entries ofr,; determinern; Pyn;. In fact, this correspon- xample 5:For m > 2, we construct a(2m, 4™~1,2))
dence can easily be understood in terms of the fundamentgllz.. b€ >. - ! ’

. additive QECC as an example of the above approach. Note that
correspondence between between Boolean functions and

(o)
A . 2 < gm—l

jection operators, since the operatpP;n; corresponds to theQ;Salns [22] hdas sthV\;]q thal/ < |4 for ﬂny ((2m,JbV[,2)& K
Boolean functionf (v & zx..). : qguantum code and this example meets the upper bound. Take

Whend = 2, we need to take care of all errors of symplectié(;r)n:1izr"mv:é?lB}@init_'lsai;utﬂzt'ggrgf zn%;i?‘ Vig;blleezsmvélr:t:ar
weight1 by showingPrn; Pyn; = 0 and Prnini,x Prmini+r = gweig P g P y

H m—1 gm—1
0. Applying the fundamental correspondence between Boole%\(?lt is {(010..0), (010...01),....(111...1)} (or {4™ 1, 4m~% 4

functions and projection operators, this is equivalenttovs ’4 — 1} in decimal notation). This complementary set
ing F(0)F(v @ rss) — 0 and f(0)f (v ® apps ® 2:) — O for contains the seffxy, x2, ...,:cgk,:clea:cktli...,zk@xzk} where
all decimal indicesv. This follows from the assumption thati1 -2 __1_0x1’“0_ (001 0. 0_) ((1”3 01 2) xkgl =20 1_“
Tryi andzy,; © z; are in the complementary sétset ;.. ])_’66’32 6(1 & - _)’Jik630_ (O Ry “t )XA F2k-1 =

In general we need to show th&yn Psn = 0 for all errors ( - 0 1) andray, = ( -+ 0). The matrix is given

n of symplectic weight at most — 1. We writep = [] i, by
icA
apply the fundamental correspondence, and find ByatP;n Ty ... Tk . Tok
corresponds to the Boolean functigifv & ( @A Titk)). By 0 0 1 1 1 1 1 1
1€
assumption,® z,44 is in the complementary sefsets, so 1 1000 0 00
i 0 0 1 10 00 0
f) flve( EBA xi+k)) = 0 for all v, and henceé’nPrn = 0. A |
ic _ .
[ ] ! :
, , ) 0 0 1 00 0 00
Note that forM/ > 1 this construction only give§(k, M, d)) 0O - 0 100 ... 100
guantum error correcting codes for which the minimum dis- 0O --- 0 100 ... 010

tanced is at most[ ££3]. This is because any+1 columns of
the matrixA; are linearly dependent, which means that there
is a2k bit vectorw of symplectic weight at mosttL] such

that [x1, 22, ....70x] * w? = 0, and the zero vector is never in

We see that the symplectic inner product of any two rows is
zero. Hence, we have constructed(@m,4™~1,2)) QECC.
Tracing through the construction of the projection opearato

Csety. Py we find thatP; = Py, Pop_1, where P, = (I + E,,)
Lemma 8:A ((k, M, d)) additive QECC exists when andv; is the (2m + 1 — i)*" row of the matrixA;. Hence,
1) M = 2™ for somem Poy = 5(I + Ego.oj11..1) @nd Papy—1 = 5(I + E11.1)00..0)-
2) There are2k binary k-tuples x1, o, ..., zo; such that

Example 6:For m > 3, we construct a((2m, 4™~ 1 2))
QECC that is not additive as an example of the above

plectic weight< d — 1}. The rows of the matrix4, approach. Consider the ) Boolean fun_ctiopf(v) =
= [21 @2 T2k ] 0, hAVE pairwise symplectic product?va?m*WQm*Q+U?mv2m*1”2m*2(v2m*3+v2m*3v2m*4+

zero and are linearly independent. Uzm—3Um—aVzm—5 + ..+ Dam—alam-3.0201) +
VamU2m—1V2am—2...01. 1t iS @ function ofk = 2m variables

Remark 1:The projection operator corresponding to thwith weight4™~!, and the corresponding complementary set
ok . , is {(011..1), (100...0), (100...1), ....(111...1)} (or {22m~1 —1
1 . __ 4th ) ) ) y
QECC |si:£[+1 a( + Ey,) wherey; is k +1 — i row of 22m=1"_. 4™ —1} in decimal notation). This complementary
Ay. The quantum code obtained in this way is that formed Bet contains the s€try, z2, ..., Tok, 1 B Tht1, ..o, Tk B Tok }
the stabilizer framework using,, , E,, .,...,E,, ., as the wherez; =25 = .=z, =(011.. 1) (0r2*™ ! — 1), 2p41

stabilizers of the code. =(101.1),242=(1010..0)2,3=(10010..0),

Csety for f(v) = vgvg—1...vmy1 coONtains the set
{[z1, 22, ....v0¢] * wT| w is a 2k bit vector of sym-



vy Xok—1 =(100..01) andeyr, = (1 0 0 .. 0). The matrix columns and the sum of columrsand: + k£ are in

Ay is given by C'sety. The symplectic product of any two rows is zero
- - - and all the rows are linearly independent, since this was
01 Ok L1 1 L1 f’“ true for Ay = (1, o,. .., Tax)
1 1 00 0 00 0 2) Given this choice off’(v), we haveCsety D Csety,
1 111 0 00 0 and this means that the same matdx = A, will

satisfy all the earlier properties.
Ap=1 o oo m

1 -1 100 ... 000 ) )
1 .- 1. 100 ... 100 Example 8:We will now use Lemmal9 to extend the Rains
1 .. 1. 100 ... 010 code to a (@m + 1,3 x 2273, 2))-QECC form > 2.

Consider the Boolean function f(v) & vovs @ vsvavs B

We can also see that the second property is satisfied, so {asv4v1v205 & 10405 Bvav340s. Itis a function of2m+1

have constructed §2m, 4™, 2)) QECC that is not additive. variables with weighg x 2273,
) Let (.”L'l, v L2m4-1 ) be (6, 12, 24, 17, 3,3,3) andg(r,1+2,
Example 7:The ((5,6,2))-QECC constructed by Rairst 4, .,) be (14, 31, 28, 26221 — 10,25 4 22, 26 + 22,
al. [21] is also a special case of the above procedure. Takea2™ 4 29). The matrix A is then
the Boolean functionf(v) = vivavs @ v3v4U5 D VovsVy B

v1U2U5 D V145 D vov3v4vs. It is a function of5 variables 00 0 0 0 0 0 0 0 0 0 1 0 1
with weight 6, and the corresponding complementary sgt 0 0 0 0 0 0 0 000 0 1 0 0
is {1,3,4,6,8,11,12,14,17,19, 21,22, 24,26, 28,31}. Take Co R :
(x1, ... , 210 ) to be (6, 12, 24, 17, 3, 14,31, 28,26, 22) o o 0 0 0 0 0000 1 0 0
and form the matrix 00 0 0 0 0 00 0 0 0 1 1 0
001 1 00 0 0 1 1 1 1 1 1
0011001111 1106000 01110101 .1
0110011110 1000 1 1 1 110 1 1 1 1
Af:1100011101 0O 0 0 1 1 1 1 01 0 0 0 O 0

1 0 001 11011

0 0011 010O0TO0

We see that symplectic product of any two rows is zero.
Hence, we have constructed &r(+ 1,3 x 22™~3,2)) non-

The symplectic inner product of any two rows is zero an@dditive QECC.
the corresppnding projection operatBy»_ coincides with the Example 9:The perfect ((5,2,3)) additive code of R.
one determined by th§(5, 6,2))-QECC in [21] Laflammeet al. [17] can be obtained by the above approach.

Lemma 9: 1) If there exists a(k, M,2)) QECC, then Takef(v) = vsvsvsva. The corresponding complementary set
there exists a((k + 2,4M,2)) QECC determined is {2,3,...31}. The matrixA is given by
by f'(v1,v2,...,0542) = f(v1,v2,...,v%) and Ay =

0110010010

(1,22, o, Th—1y Thy Thy Tk, Lhg 15 Thot 2, - - - L2U—1, 0011007100 1
26 2% oy, 28 4wy, 28 4 oy, _ Aj=l 0001110100 ]|,

2) If there exists g (k, M,2)) QECC, then there exists a 1000101010

((k,M—1,2)) QECC determined by sam#; andf’(v) 0010071000 1

having support a subset ¢fv). o ) )
Proof: it is easy to see that all rows are linearly independent, had t

1) Let f(v1,vs,.., o) be the weight Boolean function the symplectic inner product of any two rows is zero. Note

corresponding to thé(k, M, 2))-QECC. The Boolean that the stabilizers corresponding to the code A€ X 71,

function f'(vi,va,...,v542) = f(v1,v2,...,v5) has 12XX2,Z2IZXX, andXZIZX.

weight 41/, and the complementary se&fset; has

vectors of lengthk + 2 which are of the form VIl. OPERATORQUANTUM ERRORCORRECTION(OQEC)
{({0,1},{0,1},z) : = € Csets}. This means that The theory of operator quantum error correctibnl [16] uses
Csety has 4 times as many elements aSsety. the framework of noiseless subsystems to improve the perfor
Note that if z1, 2o, ..., 2ok, 21 ® Xpy1,...,7 @ T2, Mance of decoding algorithms which might help improve the
are inCsety, then (0,0, 1), (0,0, x2), ...(0,0,z25—1), threshold for fault-tolerant quantum computation. It rieesi a

(1,1, 291), (0,1,m2), (1,0,29%), (0,0,2; @ wx.y), fixed partition of the systems Hilbert spage= A BoC+.

ey (0,0, )1 @ wa—1), (1,1, ® war), (0,1, 7, & Information is encoded on the A subsystem; the logical
zak), (1,0,zr @ wox) are in Csety. Let Ay = quantum state, € B4 is encoded apa @ pp & 0¢" with
((0,0,2z1), (0,0,22), ... , (0,0,2x—1), (0,0,z%), an arbitrarypg € Bp (whereB, and Bp are the sets of
(0,0,zx), (0,0,2%), (0,0,2541), (0,0,2542), ... , all endomorphisms on subsystems A and B respectively). We
(0,0,225-1), (1,1, 221), (0,1, 22;), (1,0, 22;)). Allthe say that the erroZ is correctable on subsyster (called



the logical subsystem) when there exists a physical map VIIl. CONCLUSION

that reverses its action, up to a transformation on i€ e have described a fundamental correspondence between
subsystem (called the Gauge subsystem). In other words, fholean functions and projection operators in Hilbert spac
error correcting procedure may induce some nontriviabacti that provides a mathematical framework that unifies the con-
on the B subsystem in the process of restoring informatiogyction of additive and non-additive quantum codes. Weha
encoded in thed subsystem. This leads to recovery routinegiyen sufficient conditions for the existence of QECC in term
which explicitly make use of the subsystem structure [@}{24of existence of a Boolean function satisfying certain préipe
In the case of standard quantum error correcting codes, H}&y presented examples of Boolean functions satisfyinggthe
dimension ofB is 1. A ((k, M, N, d))-OQEC is defined as a properties. We have also given a method to construct the
OQEC inC*" with M and N as the dimension of the logical quantum code if these properties are satisfied. Our method
and gauge subsystems. leads to a construction @f2m,4™~1,2)) codes, the original
I._emma 10:.A Booletan futnctionf Wi.th the following prop- 5)(1‘5}&;32)3:0((:1(:1?0 ((:g:zt:lfcfg :gﬁﬁgiﬁl"C(IZES,eX;e]gs't%r;
erties determine®(k, 2°,2°", d)) stabilizer OQEC perfect((5,2,3)) code. Finally we have shown how the new
1) f(v) is of the formugvi_1..vs41 With weight 2° framework can be integrated with operator quantum error
2) There are2k binary k-tuples x1, o, ..., zo; such that correcting codes.
Csety contains the se{[zy, 22, ....705] * wl| w is a
2k bit vector of symplectic weight d — 1}. The rows IX. ACKNOWLEDGEMENTS

of the matrix Ay = [z12......221] ), o, have pairwise — thg 4ithors would like to thank the anonymous reviewers
symplectic product zero and are linearly independents, o suggestions that improved this paper and for biiggi
Proof: By Lemmal[®8, f(v) satisfies the conditions for the work of Danielson [11] to their attention.
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