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Abstract— In this paper non-group permutation modulated
sequences for the Gaussian channel are considered. Withoutthe
restriction to group codes rather than subsets of group codes,
arbitrary rates are achievable. The code construction utilizes
the known optimal group constellations to ensure at least the
same performance but exploit the Gray code ordering structure
of multiset permutations as a selection criterion at the decoder.
The decoder achieves near maximum likelihood performance at
low computational cost and low additional memory requirements
at the receiver.

I. I NTRODUCTION

The history of permutation modulation goes back more than
forty years where it was first introduced by Slepian in [1] and
more generally in the framework of group codes in [2]. The
appropriate definitions are

Definition I.1
Let x denote an unit vector inRn andG a finite group
(orderM = |G|) of orthogonaln-by-n matrices (or a finite
orthogonal representation of an abstract group).

1) The pair(G, x) determines the(M,n) group code with
initial vector x defined asGx = {gx | g ∈ G}

2) If G is a permutation group of degreen then the corre-
sponding group code is calledpermutation code

3) If G is the full symmetric groupSn of degreen then
the corresponding permutation code is calledpermutation
modulation

SinceG consists of orthogonal matrices,‖gx‖ = ‖x‖ = 1 for
all g ∈ G, each codeword can be identified with a point on
a (n − 1) dimensional sphere. Thus permutation modulation
generates spherical (or equal energy) codes. Usually thereare
two variants of permutation modulation in the literature, but
here we are concerned with variant I only as defined abovea).
It is explicitly specified as follows [1]:

x := (µ
(m1)
1 , . . . , µ

(mk)
k ) (1)

whereµ1 < · · · < µk, µ(i) denotesi repetitions of the value
µ, andn = m1+ · · ·+mk. The code is given by the set of all

a)Variant II defined in [1] can be obtained from variant I by applying all
possible sign changes in the components of eachgx, g ∈ G, whereas now
the components of the initial vectorx are assumed to be non-negative

distinct permutations of the components of the initial vector
x. Thus the size of the code is given as

M :=
n!

m1! · · ·mk!
=
|m|!
m!

(2)

where the notation on the right hand side has been borrowed
from the multi index notation applied to the vectorm =
(m1, . . . ,mk), whereas|m| := m1 + · · · + mk and m! :=
m1! . . .mk!. In this contextx can be interpreted as a multiset,
i.e. the set of its components with repetitions and the corre-
sponding permutations are called multiset permutations. The
repetitions represented by the vectorm have been introduced
to bound the cardinalityM of distinct permutations away from
n!, and therefore to support a variety of code rates

R =
1

n
log2(M) (3)

for a fixed sequence lengthn.
In this setting two prominent questions have been asked

Q1) Given a groupG, how to design the initial vectorx,
such that the resulting group code has maximum min-
imal distance? (Here it is assumed that each codeword
has equal probability, such that the distance distribution
characterizes the maximum likelihood detection)

Q2) How to decode efficiently? (Note that the sizeM in (2)
is still large in most cases, such that maximum likelihood
decoding is not practical)

The first question is known as theinitial vector problem
(IVP) and has been addressed in [1] through numerical search
only. The further history of the IVP covers in particular the
following items: In [3] it has been shown that for so-called
full homogeneous components of group representations the
IVP can be solved. In the more explicit setting ofG = Sn

and prescribedx of the form (1) with the vectorm given
in advance an optimal solution (i.e. determining the vector
µ = (µ1, . . . , µk)) has been obtained in [4]. An algorithm for
the general case (arbitrary groupG) based on mathematical
programming has been introduced in [5] and refined in [6] by
means of generalized geometric programmingb). An explicit
analytic solution of the IVP for permutation modulation (G =
Sn) has been presented in a hardly recognized paper [8]: Given
(n, k) the optimal initial vector (1) is determined such that

b)This method is described in detail in [7], where the authors also remarked,
that the algorithm does not guarantee to find the global optimum.
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the signal energy is minimized (in particular the vectorm
is not required to be given in advance as in [4]). Due to
the Lagrangian approach this method finds local minima, but
parametrizes all possible solutions.

For the second question there has been developed an optimal
solution in [1] for the case of permutation modulation: The
receiver replaces the firstm1 smallest components of the re-
ceived vector byµ1, them2 secondary smallest components by
µ2, and so on. For later reference let us denote this procedure
as the function SLEPIANDETECT, which takes a sequence of
lengthn as input and outputs the sequence just constructed.
For an arbitrary groupG a decoding algorithm has been
developed in [9], which refines the function SLEPIANDETECT

by performing an iterative search afterwards. Moreover, in[10]
ranking/unranking (resp. demapper/mapper) algorithms for
multiset permutations with respect to lexicographical order are
presented, which allow to convert information bit sequences
to codewords and vice versa.

Contribution: In this paper the following achievements
with respect to permutation modulation (variant I) correspond-
ing to the questions Q1 and Q2 are presented:
A1) The solutions [5], [8] to the initial vector problem provide

only quantized rates corresponding to the cardinalities of
subgroups of the permutation groupSn (or the choice of
the initial vector respectively), i.e.M is exclusively given
by (2). SinceM is usually still very large, only high rates
according to (3) can be achieved in this way. In this paper
a permutation modulation construction scheme allowing
arbitrary rates while maintaining large minimal distances
is presented. In particular codes with not too large rates
in possibly high dimensionsn will be constructed. These
new codes do not possess any group (orbit) structure any
longer, but can be easily constructed.

A2) A low complex suboptimal decoder for these codes is
presented. This decoder, though obtained in a completely
different manner, shares some properties of the algorithm
in [9] and also with [11]. One part of the algorithm is the
adaption of the mapping/demapping functions in [10].

As a further motivation for the particular code constructions
presented here serves a certain application of space-time code
design described in [12], where space-time block codes are
transformed into spherical codes. In this situation a target
(space-time code) rate has been specified together with a
(possibly large) space-time code block lengthT . This code is
then transformed into a spherical code with sequence length
n > T , thus the spherical code rate is scaled by a factor ofT/n
and one ends up with a quite small rate in a high dimensional
sphere which does not necessary fulfill the requirement (3).

II. RATE ADAPTED CODE CONSTRUCTION

The construction exploits the results obtained in [8] about
the structure of the optimal initial vector (1)c): For prescribed

c)Note that the solution is based on some Lagrangian optimization technique
with discretized constraints. Although not mentioned in [8], the proof given
exploits the convexity of the Lagrangian functionalf to adapt the method to
the discretized case

k and the minimal distance held fixed the optimal initial vector
is a minimizer of the energy functional

E(m,µ) =

k∑

i=1

miµ
2
i (4)

The solution is [8]

µi = −
k − 1

2
+ (i− 1)

mi = ⌊e−(µ2

i
+η)/λ⌉

, i = 1..k (5)

where ⌊·⌉ denotes rounding to the nearest integer andλ >
0, η < 0 are some kind of Lagrangian parameters which
parameterize the space of solutions unless(n,R) is fixed
according to (3). The corresponding permutation modulation
is Snx̂, wherex̂ := x/‖x‖.

Let us now fix some target rateR and a corresponding
code sizeN = ⌈2nR⌉ (⌈·⌉, ⌊·⌋ denote the common rounding
functions to the next greater resp. smaller integer number).
Then taking a solution (5) with rate greater thanR and
corresponding sizeM subject to (2) will be the starting
configuration for the next step. This step utilizes ranking
algorithms for multiset permutations. The idea is to find an
ordering of multiset permutations which reflects the Euclidean
distance relations between the corresponding code points.This
is roughly achieved by some Gray code ordering. An algorithm
which lists all M multiset permutations with respect to this
ordering can be obtained online from [13]. Having this list at
hand, selectN out of the total ofM elements of the list as
equidistant as possible. To this end defineN0 ∈ {0, 1, . . . , N}
to be the maximum number which satisfies⌈M/N⌉(N−N0−
1)+⌊M/N⌋N0 ≤M−1 and setn0 := ⌈M/N⌉(N−N0−1).
With this settings pick the firstN − N0 elements in the list
equidistantly spaced by⌈M/N⌉ and the remainingN0 ones
starting at positionn0 equidistantly spaced by⌊M/N⌋. The
result is an injective mapping

MPGRAYENCODE : {0, . . . , N − 1} −→ {0, . . . ,M − 1} (6)

which parameterizesN out of theM multiset permutations
with largest possible Gray ordering separation. Let us denote
the set ofN selected multiset permutations byMP and
the corresponding(N,n) code by C ⊂ Snx̂. Clearly the
minimum distance ofC is at least as large as the minimum
distance ofSnx̂ and due to the correspondence between
Gray ordering of permutations and Euclidean distances of
codewords, the simple parameterization (6) seems promising
in order to achieve a large minimal distance forC.

To allow for a low complex decoding at the receiver we
need a translation table, which translates lexicographic ranks
to Gray code ranks. The need arises because although we
have the algorithm [13] which lists all multiset permuta-
tions in Gray code order, there is no corresponding ranking
function available (at least to the knowledge of the author).
A rank function for (multiset) permutations is a function,
which assigns to each (multiset) permutation a unique number
in the range0, . . . n!(M) and establishes an ordering of



(multiset) permutations. The inverse mapping is called an
unrank function. For ordinary permutations there exist rank
and unrank functions with respect to different ordering criteria,
including lexicographic and Gray code ordering. For multiset
permutations lexicographic rank and unrank functions have
been presented in [10, function Demapping/Mapping]d) with
average complexity proportional tonk/2. Let us denote the
lexicographic rank function by LEXRANK . It establishes the
required translation table

LEX2GRAY : {0, . . . ,M − 1} −→ {0, . . . ,M − 1} (7)

as the inverse mapping ofi 7−→ LEXRANK(π(i)) whenπ(i) is
the multiset permutation corresponding toi ∈ {0, . . . ,M −1}
with respect to the given Gray ordered list and LEXRANK(i)
the lexicographic rank. This mapping can be stored efficiently
as a list ofM integer values at the receiver.

III. FAST NEAR ML DECODING

The transmission of data proceeds as follows.nR infor-
mation bits are mapped to one of theN codewords. Let us
assume messagei is assigned to codewordx(i) ∈ C given by
multiset permutation no.i inMP applied to the initial vector
x. x(i) will be transmitted through the Gaussian channel, thus
the receiver gets

y =
√
ρnx(i) + w (8)

wherew ∼ N (0,1) denotes a white Gaussian noise vector
and ρ the SNR at the receiver (sincex(i) has unit norm).
Algorithm 1 presents the decoding procedure in pseudo code.
The algorithm performs maximum likelihood (ML) decoding

Algorithm 1 DECODE(y)

1: MLcandidates← ∅
2: for j = 0; j < 2k−1; j++ do
3: y(j)← CREATEVARIANT (j)
4: z(j)← SLEPIANDETECT(y(j))
5: MLcandidates←

MLcandidates∪ {NEWCANDIDATE(z(j))}
6: end for
7: î← MLDecode{MLcandidates}
8: return Message no.̂i

with substantially reduced number of candidate codewords.
The careful selection of candidates is the main achievement
of the algorithm. It utilizes and refines the detection method
SLEPIANDETECT [1] described already in the introduction by
creating appropriate variantsy(i) of the received sequencey.

Let us go into some detail of Algorithm 1 now and ignore
the function CREATEVARIANT for the moment. Then the
loop in line 2 becomes trivial,i = 0, y(0) = y. Recall
that the function SLEPIANDETECT would be equivalent to
ML decoding if we had taken the full codebookSnx̂ for

d)Note that different from the presentation in [10] all loops and sum
boundaries have to be decreased by one for an implementationin C, except
for the upper sum boundaryl in function Mapping. Moreover, j has to be
chosen as the largestl with the propertysl ≥ 0

transmission. Since our code is a subset, SLEPIANDETECT

might fail, but the basic idea of Algorithm 1 is that due to the
Gray like ordering of the multiset permutations the obtained
candidate is some kind of neighbor (with respect to Euclidean
distance) of the transmitted sequence (compare the discussion
in section II). This fact is implicitly contained in the definition
of the function NEWCANDIDATE , see Algorithm 2: It takes the

Algorithm 2 NEWCANDIDATE (z)
1: lr← LEXRANK(z)
2: gr ← LEX2GRAY(lr)

3: return ⌊ ̂MPGRAYENCODE
−1

(gr)⌉

output of SLEPIANDETECT, calculates its lexicographic rank,
transforms it with the help of LEX2GRAY (7) and estimates
from that number the codeword number by taking the inverse
of (6), where its domain has been enlarged to the reals (which
is denoted bŷ· here in Algorithm 2e)).

Unfortunately the neighborhood assumption is not correct
in general since transmission errors may occur everywhere in
the sequence and this is where the function CREATEVARIANT

in step 3 of Algorithm 1 enters the stage. Nevertheless Al-
gorithm 2 provides codeword candidate numbers from scratch
without going through the list of all codewords inC, thus its
computational complexity is very low. The final detection step
7 denotes ML detection with respect to the codewords listed
in the set MLcandidates. Since the cardinality of this set isat
most2k−1 the final ML detection has low complexity also.

At last let us consider the function CREATEVARIANTs.
The idea is, that at least for not too low SNR values, errors
occur only in a few places. Recall that since each orderedmi

received values will be equated toµi in SLEPIANDETECT,
thus an error occurs only, if the smallest or largest of them
is perturbed so badly, that SLEPIANDETECT assigns a wrong
value µj , i 6= j to it. So this defect interchanges the com-
ponentsmi andmi + 1 in the sorted sequence. The function
CREATEVARIANT loops over allk− 1 such places and inter-
changes the corresponding components, compare Algorithm 3.
This strategy obviously approaches ML performance when the
SNR grows.

Algorithm 3 CREATEVARIANT (j)

1: create binary representationj =
∑k

l=1 bl2
l−1

2: ∀l | bl=1: interchange component no.ml andml+1 in the
sorted version ofy

IV. SIMULATIONS AND DISCUSSION

The following codes have been constructed:
1) A code with sequence lengthn = 25 with N = 323 code-

words (supporting a target rate of1/3) out of M = 600

e)In the spirit of [11] the rounding in the last step in Algorithm 2
corresponds to the decision regions provided by an appropriate lookup table.
However, the use of the Gray code ordering provides fast access to the location
of z in the lookup table



multiset permutations corresponding tom = (1, 23, 1)
andµ = (− 1√

2
, 0, 1√

2
).

2) This code has sequence lengthn = 50, N = 1024
(supporting the target rate1/5) out ofM = 2450 multiset
permutations corresponding tom = (1, 48, 1) and µ =
(− 1√

2
, 0, 1√

2
).

3) The last code has sequence lengthn = 100, N = 1024
(supporting the target rate1/10) out ofM = 9900 multiset
permutations corresponding tom = (1, 98, 1) and µ =
(− 1√

2
, 0, 1√

2
).

Their performance is shown in Fig. 1 for the low SNR
regime.

Fig. 1. Performance of codes 1-3 with ML detection and detection
corresponding to Algorithm 1

Fig. 2. Performance of codes 1 and 2 in the mid SNR regime with ML
detection and detection corresponding to Algorithm 1

The mid SNR regime for the codes 1 and 2 is shown
in Fig. 2. The last simulations approve the expectation that
the proposed decoding algorithm approaches ML performance
when the SNR grows. In fact the performance curves match
quite well.

Observe that ML decoding amounts for code 3 1024 com-
parisons of 100 dimensional vectors, while Algorithm 1 singles

out only 4 candidates for ML decoding which are obtained by
simple element operations. The complexity of Algorithm 2 is
approximatelynk/2 = 150, thus the complexity of the whole
decoding procedure (Algorithm 1) scales withn log(n) (due
to the sorting operations involved) and is independent ofN
in contrast to ML decoding which scales withNn, whereas
usually N ≫ n holds. As an illustration of computational
complexity, table I lists the CPU time for the whole simulation
process of codes 1-3 in the SNR range from -15dB to -2dB.
Each simulation has been performed on the same machine
applying Algorithm 1 and ML decoding respectively. The table
reveals 97.5 up to 99 percent saving.

code 1 code 2 code 3
Algorithm 1 .38 2.22 128.54

ML decoding 14.73 280.46 20346.7

ratio .0258 .0079 .0063

TABLE I

COMPARISON OFCPUSIMULATION TIMES WITH AND WITHOUT NEAR ML

DECODING

In summary, the encoding method described in this paper
have been shown to support arbitrary rates with minimum
distance lower bounded by the optimal IVP in the sense of [8]
with respect to the underlying permutation modulation. Com-
plementary the presented decoding algorithm achieves near
ML performance with substantial savings of computation load
at the receiver and only small additional memory requirements.
By the way a practical implementation for determining the
Gray code rank of multiset permutations has been achieved
with the help of a simple translation table, which provides
fast access. Note also, that encoding and decoding both are
simple in structure.
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