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Abstract—In this paper non-group permutation modulated distinct permutations of the components of the initial eect
sequences for the Gaussian channel are considered. Withotite 5. Thus the size of the code is given as
restriction to group codes rather than subsets of group codg
arbitrary rates are achievable. The code construction utiizes M= n! _ M @)
the known optimal group constellations to ensure at least ta Tomgleeemg! T oml
same performance but exploit the Gray code ordering structue . . .
of multiset permutations as a selection criterion at the deader. Where the notation on the right hand side has been borrowed

The decoder achieves near maximum likelihood performanceta from the multi index notation applied to the vector =

low computational cost and low additional memory requiremeats ~ (my, ..., my), whereas|m/| := my + --- + my andm! =
at the receiver. ma!...my!. In this context: can be interpreted as a multiset,
i.e. the set of its components with repetitions and the eorre
|. INTRODUCTION sponding permutations are called multiset permutatiohg T

The history of permutation modulation goes back more th4fpetitions represented by the vectorhave been introduced

forty years where it was first introduced by Slepian in [1] antf bound the cardinalitj/ of distinct permutations away from

more generally in the framework of group codes in [2]. Th@!’ and therefore to support a variety of code rates

; _ 1
appropriate definitions are R = logy(M) (3)
Definition 1.1 for a fixed sequence length
Let  denote an unit vector ilR” and G a finite group N this setting two prominent questions have been asked
(orderM = |G|) of orthogonalk-by-n matrices (or a finite Q1) Given a groupG, how to design the initial vector,
orthogonal representation of an abstract group). such that the resulting group code has maximum min-
imal distance? (Here it is assumed that each codeword
has equal probability, such that the distance distribution
characterizes the maximum likelihood detection)
Q2) How to decode efficiently? (Note that the si£in (@)
is still large in most cases, such that maximum likelihood
decoding is not practical)
The first question is known as thiaitial vector problem
(IVP) and has been addressed in [1] through numerical search
SinceG consists of orthogonal matricelgz|| = ||z|| = 1 for only. '_I'he_further histor_y of the IVP covers in particular the
all g € G, each codeword can be identified with a point ofpllowing items: In [3] it has been shown that for so-_called
a (n — 1) dimensional sphere. Thus permutation modulatidi!l Nomogeneous components of group representations the
generates spherical (or equal energy) codes. Usually tirere VP can be solved. In the more explicit setting 6f = S,
two variants of permutation modulation in the literaturet b @nd prescribeds of the form (1) with the vectorn given
here we are concerned with variant | only as defined dovdn advance an optimal solution (i.e. determining the vector

1) The pair(G, z) determines thé M, n) group code with
initial vector = defined asGz = {gz|g € G}

2) If G is a permutation group of degreethen the corre-
sponding group code is callg@rmutation code

3) If G is the full symmetric groupS,, of degreen then
the corresponding permutation code is calpedmutation
modulation

It is explicitly specified as follows [1]: w=(p1,...,ux)) has t_)een obtained in [4]. An algorithm_ for
the general case (arbitrary grodp) based on mathematical
wi= (™ ) (1) programming has been introduced in [5] and refined in [6] by

means of generalized geometric programBingn explicit
wherep; < --- < g, p'? denotesi repetitions of the value analytic solution of the IVP for permutation modulatiaf &
u, andn = mq + - - - +my. The code is given by the set of all.S,,) has been presented in a hardly recognized paper [8]: Given
(n,k) the optimal initial vector[{ll) is determined such that
@Variant Il defined in [1] can be obtained from variant | by appg all

possible sign changes in the components of eachg € G, whereas now b)This method is described in detail in [7], where the authtse eemarked,
the components of the initial vectar are assumed to be non-negative that the algorithm does not guarantee to find the global aptim
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the signal energy is minimized (in particular the vectar k& and the minimal distance held fixed the optimal initial vecto

is not required to be given in advance as in [4]). Due tig3 a minimizer of the energy functional

the Lagrangian approach this method finds local minima, but i

parametrizes all possmlle solutions. _ E(m, ) = me? (4)
For the second question there has been developed an optimal =

solution in [1] for the case of permutation modulation: The o

receiver replaces the first; smallest components of the re-The solution is [8]

ceived vector by:;, themy secondary smallest components by k-1 .

12, and so on. For later reference let us denote this procedure Hi= =75~ (i-1) L i=1.k (5)

as the function 8ePIANDETECT, which takes a sequence of m; = Le‘(“?*")“}

lengthn as input and outputs the sequence just constructed. ) _

For an arbitrary groupG a decoding algorithm has beenwhere |-] denotes rounding to the nearest integer and-

developed in [9], which refines the function@ianDeTECT 05 77 < 0 are some kind of Lagrangian parameters which

by performing an iterative search afterwards. Moreovel@) Parameterize the space of solutions unlessk) is fixed

ranking/unranking (resp. demapper/mapper) algorithms @ccordlng to[(B). The corresponding permutation modutatio

multiset permutations with respect to lexicographicakorare 1S S»2, whered := z/||z||. .

presented, which allow to convert information bit sequence Let us now fix some target rat& and a corresponding

to codewords and vice versa. code sizeN = [2"#] ([.], || denote the common rounding
Contribution: In this paper the following achievementdunctions to the next greater resp. smaller integer number)

with respect to permutation modulation (variant ) coresp Then taking a solution[{5) with rate greater thadh and

ing to the questions Q1 and Q2 are presented: corresponding sizeM subject to [(R) will be the starting

A1) The solutions [5], [8] to the initial vector problem pride configuration for the next step. This step utilizes ranking

only quantized rates corresponding to the cardinalities Blfgorl_thms for m“"'set permutations. The idea is to fm_d an
subgroups of the permutation grosp (or the choice of ordering of multiset permutations which reflects the Eedid

the initial vector respectively), i.6( is exclusively given _distance relati_ons between the corresponding code pd’lhis_.
by (@). Since) is usually still very large, only high rates'S roughly achieved by some Gray code ordering. An algorithm

according to[(B) can be achieved in this way. In this papglhiCh. lists all A7 muIFiset permutations with re;pect_to_this
a permutation modulation construction scheme aIIowirﬁIderlng can be obtained online from [13]. Having th|_5 list a
arbitrary rates while maintaining large minimal distances and, selectV out of the total ofAM elements of the list as

is presented. In particular codes with not too large ratgggidiitant as possible. :;O thiﬁ_eﬂd d_ef,?_viee {0.1,..., N}
in possibly high dimensions will be constructed. These to be the maximum number which satisfiee/ /N (N —No -

new codes do not possess any group (orbit) structure " UV[,/NJ No< M—1 and setn = [M/N](N —No— 1)._

longer, but can be easily constructed. th t_hls settings pick the firstv — Ny eIeme_nt; in the list
A2) A low complex suboptimal decoder for these codes quw@stantly spgced bj/M_/N] and the remainingVy ones

presented. This decoder, though obtained in a completé rtmg at p_o_smo_mo equm_llstantly spaced byM/N|. The

different manner, shares some properties of the aIgoritH ult is an injective mapping

in [9] gnd also with [1}]. One part .Of the algorithm is the \pGRAYENCODE: {0,...,N —1} — {0,..., M —1} (6)

adaption of the mapping/demapping functions in [10]. _ _ _
As a further motivation for the particular code construesio Which parameterizedV’ out of the M multiset permutations
presented here serves a certain application of space-tioe cwith largest possible Gray o_rderlng separation. Let us teno
design described in [12], where space-time block codes 4 Seét of V. selected multiset permutations by(P and
transformed into spherical codes. In this situation a targd® correspondingN,n) code byC C S,z. Clearly the
(space-time code) rate has been specified together witHn§limum distance oC is at least as large as the minimum
(possibly large) space-time code block lengthThis code is distance of S, and due to the correspondence between
then transformed into a spherical code with sequence len§@fy ordering of permutations and Euclidean distances of
n > T, thus the spherical code rate is scaled by a facta/ef codewords, the simple parameterizatibh (6) seems prognisin
and one ends up with a quite small rate in a high dimensiorl@|order to achieve a large minimal distance or

sphere which does not necessary fulfill the requirenignt (3). 10 allow for a low complex decoding at the receiver we
need a translation table, which translates lexicograpdniks

Il. RATE ADAPTED CODE CONSTRUCTION to Gray code ranks. The need arises because although we
The construction exploits the results obtained in [8] abotiave the algorithm [13] which lists all multiset permuta-
the structure of the optimal initial vectdrl)For prescribed tions in Gray code order, there is no corresponding ranking
function available (at least to the knowledge of the author)

®Note that the solution is based on some Lagrangian optifizétchnique A rank function for (muItiset) permutations is a function
with discretized constraints. Although not mentioned ih [8e proof given '

exploits the convexity of the Lagrangian functionfato adapt the method to Wh'Ch assigns to each (muItlset) perm.utatlon a un'que. numbe
the discretized case in the range0,...n!(M) and establishes an ordering of



(multiset) permutations. The inverse mapping is called d@ransmission. Since our code is a subsatEESANDETECT
unrank function. For ordinary permutations there existkrarmight fail, but the basic idea of Algorithid 1 is that due to the
and unrank functions with respect to different orderingecid, Gray like ordering of the multiset permutations the obtdine
including lexicographic and Gray code ordering. For mattis candidate is some kind of neighbor (with respect to Euclidea
permutations lexicographic rank and unrank functions hadéstance) of the transmitted sequence (compare the disauss
been presented in [10, function Demapping/Map[ﬂhgﬂith in sectior1]). This fact is implicitly contained in the defion
average complexity proportional tet/2. Let us denote the of the function NN WCANDIDATE, see AlgorithniR: It takes the
lexicographic rank function by EXRANK. It establishes the
required translation table Algorithm 2 NEWCANDIDATE ()

) B _ 1: Ir + LEXRANK(2)
LEX2GRAY : {0,...,.M —1} — {0,...,M -1} (7) 2 gr < LEX2GRAY(ir)

. . A — —1
as the inverse mapping 6fF— LEXRANK (7 (7)) Whenw( )is 3 return |MPGRAYENCODE (gr)]
the multiset permutation correspondingite {0,..., M — 1}

with respect to the given Gray ordered list aneXRANK (i) output of SEPIANDETECT, calculates its lexicographic rank,
the lexicographic rank. This mapping can be stored ef“flt;tentt P grap
ransforms it with the help of EX2GRAY (7)) and estimates
as a list of M integer values at the receiver. ) .
from that number the codeword number by taking the inverse
[1l. FAST NEAR ML DECODING of (@), where its domain has been enlarged to the reals (which

The transmission of data proceeds as follows® infor- IS denoted by here in AlgorithnBl). o
mation bits are mapped to one of thé codewords. Let us Unfortunately the neighborhood assumption is not correct
assume messagés assigned to codewore(i) € C given by in general since transmission errors may occur everywirere i

multiset permutation na.in M7 applied to the initial vector the séquence and this is where the functicTEGTEVARIANT

2. (i) will be transmitted through the Gaussian channel, thifg Step 3 of Algorithml]L enters the stage. Nevertheless Al-
the receiver gets gorithm[2 provides codeword candidate numbers from scratch

y = /pna(i) +w 8 without gping through t_he_list of all codeW(_)rdsdh thu_s its
computational complexity is very low. The final detectioapst
wherew ~ N(0,1) denotes a white Gaussian noise vector denotes ML detection with respect to the codewords listed
and p the SNR at the receiver (since(i) has unit norm). in the set MLcandidates. Since the cardinality of this settis
Algorithm[I presents the decoding procedure in pseudo cog@ost2*~! the final ML detection has low complexity also.
The algorithm performs maximum likelihood (ML) decoding At last let us consider the function REATEVARIANTS.
The idea is, that at least for not too low SNR values, errors

Algorithm 1 DECODHy) occur only in a few places. Recall that since each ordergd
1: MLcandidates— 0 received values will be equated g in SLEPIANDETECT,
2: for j =0; j <21 j++ do thus an error occurs only, if the smallest or largest of them
3:  y(j) + CREATEVARIANT (j) is perturbed so badly, thatt 8PIANDETECT assigns a wrong
4. z(j) < SLEPIANDETECT(y(j)) value u;, ¢ # j to it. So this defect interchanges the com-
5. MLcandidates— ponentsm; andm; + 1 in the sorted sequence. The function

MLcandidates) {NEWCANDIDATE (z(j))} CREATEVARIANT loops over allk — 1 such places and inter-

6: end for changes the corresponding components, compare Algdrithm 3
7: i + MLDecode MLcandidate} This strategy obviously approaches ML performance when the
8: return Message no: SNR grows.

with substantially reduced number of candidate codewords: fdgorithm 3 CREATEVARIANT ()

The careful selection of candidates is the main achievement Create binary representatign= Zz b2t

of the algorithm. It utilizes and refines the detection mdtho 2: V;|s,—1: interchange component noy; andm; + 1 in the

SLEPIANDETECT [1] described already in the introduction by ~ sorted version of

creating appropriate variantgi) of the received sequenge
Let us go into some detail of Algorithid 1 now and ignore

the function REATEVARIANT for the moment. Then the

IV. SIMULATIONS AND DISCUSSION

loop in line 2 becomes triviali = 0, y(0) = y. Recall The following codes have been constructed:
that the function SEPIANDETECT would be equivalent to 1) A code with sequence length= 25 with V = 323 code-
ML decoding if we had taken the full codebodk,z for words (supporting a target rate df) out of M = 600

dNote that different from the presentation in [10] all loopedasum ®In the spirit of [11] the rounding in the last step in AlgorithZ
boundaries have to be decreased by one for an implemeniatiGn except corresponds to the decision regions provided by an appmteplookup table.
for the upper sum boundaryin function Mapping. Moreover, j has to be However, the use of the Gray code ordering provides fastsadoethe location
chosen as the largesiwith the propertys; > 0 of z in the lookup table



multiset permutations corresponding o = (1,23,1)
— 1 1
an(_j:u‘ - (7F507 ﬁ)

2) This code has sequence length= 50, N = 1024
(supporting the target rates) out of M = 2450 multiset
permutations corresponding to = (1,48,1) and p =

1 1
(_757 0) E)

3) The last code has sequence lengtk- 100, N = 1024
(supporting the target rat¢i0) out of M = 9900 multiset
permutations corresponding t& = (1,98,1) and u =

1 1
(775705 ﬁ)

out only 4 candidates for ML decoding which are obtained by
simple element operations. The complexity of Algorithin 2 is
approximatelynk/2 = 150, thus the complexity of the whole
decoding procedure (Algorithi 1) scales witHog(n) (due

to the sorting operations involved) and is independeniVof

in contrast to ML decoding which scales wifkin, whereas
usually N > n holds. As an illustration of computational
complexity, tabléll lists the CPU time for the whole simutati
process of codes 1-3 in the SNR range from -15dB to -2dB.
Each simulation has been performed on the same machine

Their performance is shown in Fig] 1 for the low SNRapplying Algorithnil and ML decoding respectively. The bl

reveals 97.5 up to 99 percent saving.

regime.
code 1 code 2 code 3
] Algorithm [ .38 2.22 128.54
T e e e SO ML decoding 14.73 280.46 20346.7
ratio .0258 .0079 .0063
TABLE |
@ 107 COMPARISON OFCPUSIMULATION TIMES WITH AND WITHOUT NEAR ML
& DECODING
g
w
S
B 42|~ "5 mel125.1] N3z, ML detection In summary, the encoding method described in this paper
= ——=—— n=25m=[1,23,1], N=323, Lex2Gray d i . . ..
£ DI el E e have been shown to support arbitrary rates with minimum
]~ n=50, m={148.1], N=1024, Lex2Gray datection distance lower bounded by the optimal IVP in the sense of [8]
n=100, m=[1,98,1], N=1024, ML detection . . . .
=100, m=[1,98.1], N=1024, Lex2Gray datestiol with respect to the underlying permutation modulation. €om
B T R e T 2 plementary the presented decoding algorithm achieves near
SNR[dB] per symbol ML performance with substantial savings of computatiordloa
at the receiver and only small additional memory requiresien
_ _ ‘ _ By the way a practical implementation for determining the
Fig. 1. Performance of codes 1-3 with ML detection and demct Gray code rank of multiset permutations has been achieved

corresponding to Algorithri]1

102

Block Error Rate

10°%

=25, m=[123,1], N=323, ML detection
n=25, m={1,23,1], N=323, Lex2Gray defection
=50, m=[148.1], N=1024, ML detection

n=50, m=[148.1], N=1024, Lex2Gray detection

I T S T B L
-2 1} 2 4
SNRI[dB] per symbol

Fig. 2.
detection and detection corresponding to Algorifiim 1

Performance of codes 1 and 2 in the mid SNR regime with M

with the help of a simple translation table, which provides
fast access. Note also, that encoding and decoding both are
simple in structure.
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