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Abstract— We consider a pair-wise independent network where
every pair of terminals in the network observes a common pair-
wise source that is independent of all the sources accessible to
the other pairs. We propose a method for secret key agreement
in such a network that is based on well-established point-to-
point techniques and repeated application of the one-time pad.
Three specific problems are investigated. 1) Each terminal’s
observations are correlated only with the observations of acentral
terminal. All these terminals wish to generate a common secret
key. 2) In a pair-wise independent network, two designated
terminals wish to generate a secret key with the help of other
terminals. 3) All the terminals in a pair-wise independent network
wish to generate a common secret key. A separate protocol for
each of these problems is proposed. Furthermore, we show that
the protocols for the first two problems are optimal and the
protocol for the third problem is efficient, in terms of the resulting
secret key rates.

I. I NTRODUCTION

The problem of secret key generation by two terminals,
based on their respective observations of a common source
followed by public transmissions between them, was first
studied by Maurer [4], and Ahlswede and Csiszár [1]. Various
extensions of this problem have been investigated since then
(see, e.g., [2], [5], [8], [9], [10]).

Csiszár and Narayan [3] generalize the secret key generation
problem to multiple terminals. They consider a model with an
arbitrary number of terminals, each with distinct observations
of a common source. A group of terminals wish to generate a
secret key with the help of other terminals. In generating such
a key, these terminals are allowed to communicate with each
other through a noiseless public channel.

In this paper, we consider a pair-wise independent network
where every pair of terminals in the network observes a com-
mon source that is independent of all the sources accessible
to the other pairs. This model, as a special case of the model
in [3], is motivated by wireless communications [10], [11].In
a wireless communication environment, each pair of wireless
terminals typically possesses some means of estimating their
mutual channel. The resulting estimates are highly statistically
similar, provided that the terminals communicate on the same
carrier frequency. Moreover, any third terminal’s observations
are essentially uncorrelated with the observations of the first
two terminals, provided that the third terminal is located at
least half a wavelength away from those two.

The main contribution of this paper is the following. We
propose a method for secret key agreement in the pair-wise
independent network that is based on well-established point-
to-point techniques [9], [10] and repeated application of the

one-time pad. Specifically, we propose protocols for three
cases of the pair-wise independent model and prove that the
secret key rates achieved by our protocols are optimal in
the first two cases. Therefore, the capacity problem in such
situations is now solved. Furthermore, the efficiency of our
protocol for the last case is shown through examples. The
innate connections between the pair-wise independent network
and graphs can be observed through these protocols.

II. PRELIMINARIES

Supposem ≥ 2 terminals respectively observen inde-
pendent and identically distributed repetitions of the random
variables(X1, X2, ..., Xm), denoted by(Xn

1 , X
n
2 , · · · , X

n
m)

with Xn
i = (Xi,1, · · · , Xi,n). A group A ⊆ {1, · · · ,m}

of terminals wish to generate a common secret key, with
the help of the remaining terminals. To do so, thesem
terminals can communicate with each other through a noiseless
public channel. The generated group secret keyK should be
nearly statistically independent of the public transmissions.
The entropy rate of the secret key, viz.,H(K)/n, is called a
secret key rate. The largest achievable secret key rate is called
the secret key capacity, denoted byCSK(A). It is shown in
[3] that

CSK(A) = H(X1, ..., Xm)− min
(R1,...,Rm)∈R(A)

m
∑

i=1

Ri,

where

R(A) = {(R1, · · · , Rm) :
∑

i∈B

Ri ≥ H(XB|XBc),

B ⊂ {1, · · · ,m}, A 6⊂ B},

with XB = {Xj : j ∈ B} andBc = {1, · · · ,m}\B.
Let (B1, · · · , Bk) be ak-partition of{1, · · · ,m}, such that

each elementBl, 1 ≤ l ≤ k, intersects with the setA ⊆
{1, · · · ,m}. Denote byBk(A) the set of all suchk-partitions.
Then an upper bound on the secret key capacity is [3]

CSK(A) ≤ min
2≤k≤|A|

1

k − 1
Ik(A), (1)

where

Ik(A) = min
(B1,··· ,Bk)∈Bk(A)

k
∑

l=1

H(XBl
)−H(X1, · · · , Xm).
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III. A PAIR-WISE INDEPENDENT NETWORK

In this paper, we focus on a pair-wise independent network,
which is a special case of the network described in Section II.
Suppose that the observationXi by terminali hasm−1 com-
ponents(Yi,1, · · · , Yi,i−1, Yi,i+1, · · · , Yi,m). Each component
Yi,j denotes the observation of the source that is accessible
only to terminalsi andj. Furthermore, it is assumed that

I(Yi,j , Yj,i; {Yk,l : (k, l) 6= (i, j), (j, i)}) = 0. (2)

This implies that each source accessible to a pair of terminals
is independent of all other sources–hence, the network is called
pair-wise independent.

If a group of terminals in the pair-wise independent network
generate a common secret key, then an upper bound on the
secret key capacity is given in the following lemma.

Lemma 1: In the pair-wise independent network,

CSK(A) ≤ min
2≤k≤|A|

1

k − 1
I ′k(A), (3)

where

I ′k(A) = min
(B1,··· ,Bk)∈Bk(A)

∑

i,j:i∈Bl ;

j∈Br ;l<r

I(Yi,j ;Yj,i).

Proof: Let (B1, · · · , Bk) be an arbitraryk-partition be-
longing toBk(A). It follows from the independence condition
(2) that

H(X1, · · · , Xm) =
∑

1≤i<j≤m

H(Yi,j , Yj,i),

and for1 ≤ l ≤ k,

H(XBl
) =

∑

i,j:i<j;i,j∈Bl

H(Yi,j , Yj,i) +
∑

i,j:i∈Bl;j 6∈Bl

H(Yi,j).

Then

k
∑

l=1

H(XBl
)−H(X1, · · · , Xm)

=
∑

i,j:i∈Bl ;

j∈Br ;l<r

[H(Yi,j) +H(Yj,i)−H(Yi,j , Yj,i)]

=
∑

i,j:i∈Bl ;

j∈Br ;l<r

I(Yi,j ;Yj,i).

Therefore, the upper bound (3) follows from (1) and the above
equality.

The decomposition observed in the proof suggests that a
graph based approach can be used to study the pair-wise
independent network. It is our conjecture that the upper bound
(3) is always tight for the pair-wise independent network; we
demonstrate that this conjecture holds in at least two special
cases.

IV. T HE BROADCAST CASE

In this section, we consider the broadcast case of a pair-wise
independent network in which the observations of each termi-
nal in {2, · · · ,m} are correlated only with the observations
of terminal 1 (called the central terminal). In other words,the
observationXi by terminali 6= 1 is equal toYi,1, andYi,j is
a constant forj 6= 1.

By restrictingBk(A) to the set of 2-partitions

({1, 3, · · · ,m}, {2}), · · · , ({1, 2, · · · ,m− 1}, {m})

in (3), we obtain an upper bound on the secret key capacity
for the broadcast case

CSK({1 · · · ,m}) ≤ min
2≤i≤m

I(Y1,i;Yi,1). (4)

Next, we propose a protocol for the secret key establishment
among allm terminals.

Terminals2, · · · ,m begin by separately establishing secret
keys with the central terminal using the standard techniques
[4], [1]. This results inm − 1 pair-wise secret keysK1,i,
2 ≤ i ≤ m, whereK1,i denotes the secret key shared by
terminals 1 andi. Without loss of generality, these keys are
stored using a binary alphabet. Let|K1,i| denote the length
of the secret keyK1,i. According to [4], [1], for anyǫ > 0,
each secret keyK1,i, as a function of(Y n

1,i, Y
n
i,1), satisfies the

secrecy condition

I(K1,i;V1,i) ≤ ǫ, (5)

and the uniformity condition

H(K1,i) ≥ |K1,i| − ǫ, (6)

whereV1,i denotes the public transmissions between terminal
i and the central terminal to generate the pair-wise secret key
K1,i. It follows from the independence condition (2) that

I(K1,i; {K1,j : j 6= i}) ≤ ǫ. (7)

The entropy rate ofK1,i is given by [4], [1]

1

n
H(K1,i) ≥ I(Y1,i;Yi,1)− ǫ. (8)

Let K1,i∗ , 2 ≤ i∗ ≤ m, be the shortest key among them−1
generated keys, i.e.,|K1,i∗ | = min2≤i≤m |K1,i|. This implies
that

I(Y1,i∗ ;Yi∗,1) = min
2≤i≤m

I(Y1,i;Yi,1). (9)

The central terminal sends̄K1,i ⊕K1,i∗ to terminali, where
K̄1,i denotes the first|K1,i∗ | bits ofK1,i. At this point, allm
terminals haveK1,i∗ , which is set as the group secret key. The
independence betweenK1,i∗ and all the public transmissions
is shown in the following proposition.

Proposition 1: For anyδ > 0, the secret keyK1,i∗ gener-
ated above satisfies

I(K1,i∗ ; {V1,i,K1,i∗ ⊕ K̄1,i : 2 ≤ i ≤ m}) ≤ δ. (10)



Proof: In the interest of simple notation, we denote
K1,i∗ ⊕ K̄1,i by V̄1,i. Then the left side of (10) is written
as

I(K1,i∗ ;V1,2, · · · , V1,m, V̄1,2, · · · , V̄1,m)

≤ I(K1,i∗ ; V̄1,2, · · · , V̄1,m)

+I(K1,i∗ , V̄1,2, · · · , V̄1,m;V1,2, · · · , V1,m). (11)

The former term in (11) is upper bounded by

I(K1,i∗ ; V̄1,2, · · · , V̄1,m)

≤
m
∑

i=2

i6=i∗

[

H(K̄1,i ⊕K1,i∗)−H(K̄1,i|K1,i∗ , K̄1,2, · · · , K̄1,i−1)
]

≤ 2(m− 2)ǫ,

where the latter inequality follows from (6) and (7). The latter
term in (11) is upper bounded by

I(K1,i∗ , V̄1,2, · · · , V̄1,m;V1,2, · · · , V1,m)

= I(K1,2, · · · ,K1,m;V1,2, · · · , V1,m)

=

m
∑

i=2

I(K1,i;V1,i) ≤ (m− 1)ǫ,

where the inequality follows from (5). This completes the
proof.

It follows from (8) and (9) that the generated secret key
K1,i∗ has a rate close to the upper bound (4). Hence, the
protocol is optimal. Furthermore, it is not difficult to show
that the protocol is also optimal for the broadcast case with
rate constraints (cf., [2]) on the public transmissions.

V. THE SUB-GROUPKEY CASE

We now consider a sub-group key generation problem.
Suppose that, in a pair-wise independent network, terminals
1 andm wish to generate a secret key with the help of other
m − 2 terminals. In other words, the sub-groupA = {1,m}
of terminals wish to generate a secret key.

We begin this section with a short overview of some
definitions and algorithms related to graphs. Then we propose
a protocol for the sub-group key generation problem. This
protocol is based on existing graph algorithms. Further, we
show that the resulting secret key has a rate close to the
capacity.

Let G = (N , E) be a weighted directed graph. Lets ∈ N
be a source node andt ∈ N be a destination node inG. An
s − t cut of the graphG is a partition of the nodesN into
two setsN1 andN2 such thats ∈ N1 and t ∈ N2. Any edge
crossing fromN1 to N2 is said to be acut edge. The weight
of ans− t cut is the sum of the weights of its edges. Ans− t
cut is minimal if the weight of thes− t cut is not larger than
the weight of any others− t cut.

A network flowis an assignment of flow to the edges of a
weighted directed graph such that the amount of flow along
the edge does not exceed its weight. The maximals− t flow
problem is to find a maximal feasible flow from the source

nodes to the destination nodet. The labeling algorithm [7]
is known to solve the maximals− t flow problem.

By the max-flow min-cut theorem [6], the maximals − t
flow is equal to the weight of the minimals− t cut.

We now return to the sub-group secret key generation
problem. It follows from Lemma 1 that the secret key capacity,
which can be achieved by terminals 1 andm with the help of
other terminals, is upper bounded by

CSK({1,m}) ≤ min
(B1,B2)∈B2({1,m})

∑

i,j:i∈B1 ;j∈B2

I(Yi,j ;Yj,i),

(12)
where B2({1,m}) is the set of all 2-partitions of the set
{1, · · · ,m} such that either atom of a 2-partition intersects
with {1,m}.

The upper bound (12) can be represented via graphs.
Consider a weighted directed graphG1 with m nodes, each
node corresponding to a terminal. The edge from nodei to j
has weightI(Yi,j ;Yj,i). Let node 1 be the source node and
nodem be the destination node. Then the upper bound (12)
is equivalent to the minimals− t cut of G1.

Next, we propose a protocol for the secret key establishment
between terminals 1 andm.

All the terminals begin by establishing pair-wise secret keys
using the standard techniques [4], [1]. This results in

(

m
2

)

pair-wise secret keys. LetKi,j (= Kj,i) denote the secret
key shared by terminalsi and j. Each secret keyKi,j , as a
function of (Y n

i,j , Y
n
j,i), satisfies certain secrecy condition and

uniformity condition as in (5), (6). Further, for anyǫ > 0,

I(Ki,j ; {Kk,l : (k, l) 6= (i, j), (j, i)}) ≤ ǫ, (13)

and the entropy rate ofKi,j is given by [4], [1]

1

n
H(Ki,j) ≥ I(Yi,j ;Yj,i)− ǫ. (14)

Based on the pair-wise secret keyKi,j , terminali can cipher
|Ki,j | random bits withKi,j through the one-time pad before
transmitting these random bits to terminalj (and vice versa).
This implies the existence of a secure channel between nodes
i andj with capacity 1

n
|Ki,j|.

Consider a weighted directed graphG2 with m nodes, each
node corresponding to a terminal. The weight of an edge(i, j)
in the graph is equal to the capacity of the secure channel
connecting terminalsi andj, i.e., 1

n
|Ki,j|. Using the labeling

algorithm [7], one can find the maximals− t flow F in this
graph. Accordingly, terminal 1 can securely send random bits
through the network to terminalm at rateF . Let these random
bits be the secret key of terminals 1 andm. By arguments
similar to those used in the proof of Proposition 1, it is easy
to show that this secret key is nearly statistically independent
of the public transmissions.

Proposition 2: Let V denote all the public transmissions
needed in the protocol above. For anyδ > 0, the secret key
K generated above satisfiesI(K;V ) ≤ δ.

According to the max-flow min-cut theorem [6], the rate
F of the generated secret key is equal to the minimals − t



cut of G2. It follows from (14) that the minimals − t cut
of G2 is close to the minimals − t cut of G1. Hence, the
achieved secret key rate is close to the upper bound (12), and
the protocol is optimal.

VI. T HE GROUP KEY CASE

In this section, we examine the problem of all the terminals
in a pair-wise independent network generating a common
secret key. We start by a short overview of more definitions
and algorithms related to graphs. Then we propose a protocol
for the group secret key generation problem. This protocol is
based on existing graph algorithms. Finally, we demonstrate
the efficiency of this protocol through several examples.

Let G = (N , E) be a weighted undirected graph. The graph
G is said to beconnectedif for every two distinct nodesi, j ∈
N , there exists a path from nodei to nodej. Otherwise, the
graph is said to beunconnected. Define amulti-cut of G to
be a partition of the nodesN into several setsN1, · · · ,NL,
2 ≤ L ≤ m, with m being the number of nodes inG. Any
edge(i, j) ∈ E with end-nodesi, j belonging to different sets
is said to be amulti-cut edge. Theweightof a multi-cut is the
weight sum of its edges. Thenormalized weightof a multi-cut
is the weight of the multi-cut divided byL−1, whereL is the
number of sets in the partition ofG generating the multi-cut.

Given a connected undirected graphG = (N , E), let E1 be
a subset ofE such thatT = (N , E1) is a tree. Such a tree
is called aspanning tree. A maximum spanning treefrom a
weighted graph is defined as a spanning tree such that the
weight sum of its edges is as large as possible. The problem
of finding a maximum spanning tree can be solved by several
greedy algorithms. Two examples are Kruskal’s algorithm and
Prim’s algorithm (cf., e.g., [6]).

The upper bound (3) on the secret key capacity for the group
secret key case, i.e.,A = {1, · · · ,m}, can be represented
via graphs. Consider a weighted undirected graphG3 with m
nodes, each node corresponding to a terminal. The weight of
an edge(i, j) in the graph is equal toI(Yi,j ;Yj,i). Note that
each multi-cut of the graphG3 is equivalent to a partition
in (3), and the set of all multi-cuts of the graphG3 is
precisely equivalent to the set of partitions{(B1, · · · , Bk) ∈
Bk({1, · · · ,m}) : 2 ≤ k ≤ m} in (3). Moreover, the normal-
ized weight of a multi-cut is precisely 1

k−1I
′
k({1, · · · ,m}).

Consequently, we have the following corollary.
Corollary 1: The secret key capacity for the group secret

key case is upper bounded by the minimal normalized weight
of the multi-cuts ofG3. In particular, this upper bound implies
the following two upper bounds:

i). the minimal weight of the cuts ofG3, where a cut is a
multi-cut generated by a partition into 2 sets;

ii). the weight sum of all edges inG3 divided bym− 1.

Next, we propose a protocol for the group secret key
generation problem. All the terminals begin by establishing
pair-wise secret keys using the standard techniques [4], [1].
Let Ki,j (= Kj,i) denote the secret key shared by terminalsi
andj. These secret keys satisfy the certain secrecy condition,
uniformity condition, and (13), (14).

Consider a weighted undirected graphG4 with m nodes,
each corresponding to a terminal. The weight of an edge(i, j)
in the graph is equal to the length1 of the corresponding pair-
wise secret keyKi,j, i.e., |Ki,j |.

Our group key generation algorithm is related to Lemma 2
below. This lemma discusses the generation of a single secret
bit amongm nodes, based on a single bit from each of them−
1 pair-wise secret keys whose corresponding edges constitute
a spanning tree.

Lemma 2:Consider an arbitrary tree connectingm nodes.
If every pair of neighbor nodes on the tree shares a single
pair-wise secret bit, then a single secret bit can be generated
among allm nodes.

Proof: A simple algorithm on generating a single secret
bit among allm nodes is illustrated below.
Single Bit Algorithm :

Step 1. Randomly pick up an edge(i∗, j∗) from the
spanning tree. Nodesi∗ andj∗ share a secret bitBi∗,j∗ .

Step 2. If node i knows Bi∗,j∗ , but its neighbor nodej
does not, then nodei sendsBi∗,j∗ ⊕ Bi,j to nodej, where
Bi,j is the secret bit shared by nodesi andj. Upon receiving
this message, nodej is able to decodeBi∗,j∗ . Repeat this step
until the above condition does not hold. �

This algorithm stops when all the nodes are able to decode
Bi∗,j∗ . It is trivial to show the independence betweenBi∗,j∗

and the public transmissions. Hence,Bi∗,j∗ is a secret bit.
Our group secret key generation algorithm is given below.

Group Key Generation Algorithm :
Let G be the weighted undirected graphG4 defined above.
Step 1: Determine a maximum spanning tree fromG, using

any known algorithm (e.g., Kruskal’s or Prim’s). If there is
more than one maximum spanning tree, randomly select one.

Step 2: Apply the single bit algorithm to generate a single
secret bit among all nodes, based on a single bit from every
pair-wise secret key on the determined maximum spanning
tree. Note that these used bits will be of no use in the
remaining group key generation process.

Step 3: Update the graph by reducing the edge weight by
1 for the edges on the determined spanning tree. Remove an
edge when its weight becomes zero.

Step 4: If the remaining graphG is unconnected, then set
the group secret key as the collection of all generated secret
bits. Otherwise, return to Step 1. �

Since each iteration of the group key generation algorithm
leads to a single secret bit, the length of the resulting secret
key is equal to the number of iterations of the algorithm that
can be run until the graph becomes unconnected. The purpose
of searching a maximum spanning tree (rather than picking up
an arbitrary spanning tree) in Step 1 is to maximize the number
of iterations of the algorithm by means of “balancing” edge
weights in the weight reduction procedure.

By arguments similar to those used in the proof of Propo-
sition 1, it is easy to show that the secret key resulting from

1For the purpose of simple notations, we shall use the length,rather than the
rate, of a secret key as an edge weight. This should not lead toany confusion.



Fig. 1. Example network with 3 nodes

the above algorithm is nearly statistically independent ofthe
public transmissions.

Proposition 3: Let V denote all the public transmissions
needed in the protocol above. For anyδ > 0, the secret key
K generated above satisfiesI(K;V ) ≤ δ.

We illustrate the operations of the group key generation
algorithm through the following example.

Example 1:Consider a network with 3 nodes. Nodes 1 and
2 share a secret key of 5 bits; nodes 1 and 3 share a secret
key of 4 bits; and nodes 2 and 3 share a secret key of 3 bits.
This network is drawn in the left part of Fig. 1.

Let the pair-wise secret keys beK1,2 = (K1
1,2, · · · ,K

5
1,2),

K1,3 = (K1
1,3, · · · ,K

4
1,3), and K2,3 = (K1

2,3, · · · ,K
3
2,3),

whereKk
i,j denotes thekth bit of the secret key shared by

nodesi andj.
The spanning tree((1, 2), (1, 3)) is the maximum spanning

tree from the graph in the left part of Fig. 1, as it has a larger
weight (= 9) than other spanning trees. Hence, by the single
bit algorithm, node 1 transmitsK1

1,2 ⊕ K1
1,3 and setsK1

1,2

(or K1
1,3) as the secret bit. Update the graph by reducing the

weights of the edges(1, 2), (1, 3) by 1. This results in the
graph given in the right part of Fig. 1.

By repeating the above process, the determined maximum
spanning trees and the corresponding public transmissionsin
the next five iterations are

((1, 2), (1, 3)), ((1, 2), (2, 3)), ((1, 2), (2, 3)),

((1, 3), (2, 3)), ((1, 2), (1, 3)),

and

K2
1,2 ⊕K2

1,3, K3
1,2 ⊕K1

2,3, K4
1,2 ⊕K2

2,3,

K3
1,3 ⊕K3

2,3, K5
1,2 ⊕K4

1,3,

respectively. The algorithm stops after these iterations,as the
remaining graph is unconnected. The group secret key is set as
(K1

1,2,K
2
1,2,K

3
1,2,K

4
1,2,K

3
1,3,K

5
1,2). By restrictingk to |A| =

3 and settingYi,j = Yj,i = Ki,j in (3), we find that the length
of any group secret key in this example cannot be larger than
6 bits. Hence, the algorithm is optimal.

For a network with 3 nodes, determining a maximum span-
ning tree in the group key generation algorithm is equivalent
to determining a node such that the weight sum of two edges
connecting with this node is the largest.

Example 2:Consider a network withm nodes and all
(

m
2

)

edges having the same even weightw = 2u, for a certain
positive integeru. A secret key of lengthmu bits can be
generated by using the group key generation algorithm. On
the other hand, by restrictingk to |A| = m and settingYi,j =
Yj,i = Ki,j in (3), we find that the length of any group secret

key in this example cannot be larger than
w(m

2 )
m−1 = mu bits.

Hence, the algorithm is optimal.
Although the group key generation algorithm is shown to

be optimal in the examples above, its potential non-optimality
is demonstrated by the following example.

Example 3:Consider a network with 4 nodes. Each node is
connected with every other node by an edge of weight 1. It is
clear that((1, 2), (1, 3), (1, 4)) is a maximum spanning tree of
the graph, which means that 1 secret bit can be generated from
it. However, the updated graph then becomes unconnected,
resulting in a secret key of 1 bit.

Nevertheless, the upper bound in (3) can be achieved by
simply making abetter selection from the possible maximal
spanning trees. One such tree is((1, 2), (2, 3), (3, 4)). After
the weight reduction, the new graph is still connected, having
the spanning tree((1, 3), (1, 4), (2, 4)). Hence, 2 secret bits,
which is optimal, can be established in this manner.

This example suggests the importance of deliberately se-
lecting a maximum spanning tree in Step 1 of the algorithm.
What a good selection scheme might look like, and whether
it would guarantee the optimality of this algorithm, remains
open.
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