arXiv:cs/0701124v1 [cs.IT] 19 Jan 2007

Group Secret Key Generation Algorithms

Chunxuan Ye and Alex Reznik
InterDigital Communications Corporation
King of Prussia, PA 19406
Email: {Chunxuan.Ye, Alex.Rezn§@interdigital.com

Abstract— We consider a pair-wise independent network where one-time pad. Specifically, we propose protocols for three
every pair of terminals in the network observes a common pak  cases of the pair-wise independent model and prove that the
wise source that is independent of all the sources accesshbio secret key rates achieved by our protocols are optimal in

the other pairs. We propose a method for secret key agreement . - .
in such a network that is based on well-established point-to the first two cases. Therefore, the capacity problem in such

point techniques and repeated app”cation of the one-time m SituatiOI’IS iS now SOlVed. Furthermore, the efﬁciency Of our
Three specific problems are investigated. 1) Each terminad’ protocol for the last case is shown through examples. The
observations are correlated only with the observations of aentral  jhnnate connections between the pair-wise independenonketw

terminal. All thesg tgrmiqals wish to generate a common seet 5.4 graphs can be observed through these protocols.
key. 2) In a pair-wise independent network, two designated

terminals wish to generate a secret key with the help of other

terminals. 3) All the terminals in a pair-wise independent retwork Il. PRELIMINARIES

wish to generate a common secret key. A separate protocol for . ) )
each of these problems is proposed. Furthermore, we show tha ~ Supposem > 2 terminals respectively observe inde-
the protocols for the first two problems are optimal and the pendent and identically distributed repetitions of thed@mn

protocol for the third problem is efficient, in terms of the resulting  yariables (X1, X2, ..., X)), denoted by(XP, X2, .- XP)
secret key rates. with X = (X1, ,X;n). Agroup A C {1,---,m}
. INTRODUCTION of terminals wish to generate a common secret key, with

The problem of secret key generation by two terminalf}® help of the remaining terminals. To do so, these
based on their respective observations of a common soufgEMinals can communicate with each other through a naisele
followed by public transmissions between them, was fir8Plic channel. The generated group secret keghould be
studied by Maurer [4], and Ahlswede and Csiszar [1]. vasionearly statistically independent of the public transnaissi

extensions of this problem have been investigated sinae thehe entropy rate of the secret key, Vi#(K)/n, is called a
(see, e.g., [2], [5], [8], [9], [10]). secret key rate. The largest achievable secret key ratdiéslca

Csiszar and Narayan [3] generalize the secret key genarafil® Secret key capacity, denoted by x (A). It is shown in

problem to multiple terminals. They consider a model with a3 that
arbitrary number of terminals, each with distinct obsaorat m
of a common source. A group of terminals wish to generate a Csx(A) = H(X1,..., X;m) — min ZRi’
secret key with the help of other terminals. In generatinghsu (1o B ) ER(A) 5
a key, these terminals are allowed to communicate with eaclp1
: ; Where
other through a noiseless public channel.

In this paper, we consider a pair-wise independent network R(A) = {(Ri, - ,Rn): ZRz‘ > H(Xp|Xpe)
where every pair of terminals in the network observes a com- T A ’
mon source that is independent of all the sources accessible Bc{l,---,m},A¢ B}

to the other pairs. This model, as a special case of the model

in [3], is motivated by wireless communications [10], [1I]. with X = {X;: jeB}andB® = {1,--- ,m}\B.

a wireless communication environment, each pair of wieles | et (B, ... , B;) be ak-partition of {1,--- ,m}, such that
terminals typically possesses some means of estimating theych element3;, 1 < | < k, intersects with the sefl C
mutual channel. The resulting estimates are highly sizdi8f (1 ... 1}, Denote byB;,(A) the set of all suclk-partitions.

similar, provided that the terminals communicate on theesanthen an upper bound on the secret key capacity is [3]
carrier frequency. Moreover, any third terminal’'s obsénores
are essentially uncorrelated with the observations of ttst fi Csw(A) < min 1 W(A) 1)
two terminals, provided that the third terminal is located a T 2<k<|Al K — 1 ’
least half a wavelength away from those two. h

The main contribution of this paper is the following. weVhere
propose a method for secret key agreement in the pair-wise
independent network that is based on well-establishedt-poin/x(A) =

= min
to-point techniques [9], [10] and repeated application fef t (Bu,,Br)eBy(4

k
)Z H(Xp)—H(Xy, -, Xp).
=1
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Il. A PAIR-WISE INDEPENDENT NETWORK IV. THE BROADCAST CASE

In this paper, we focus on a pair-wise independent network, In this section, we consider the broadcast case of a pag-wis
which is a special case of the network described in Section ||ndependent network in which the observations of each termi

Suppose that the observatiah by terminali hasm — 1 com- n{2,---,mj} are correlated only with the observations
ponents(Y, -, Yii_1,Yiis1,- -, Yim). Each component of term|naI 1 (called the central terminal). In other worttse
1,19 2, i—1, 2,2 I

Y;; denotes the observation of the source that is accessiBfservationX; by terminali # 1 is equal toY; 1, andY; ; is

only to terminalsi andj. Furthermore, it is assumed that a constant forj # 1. .
By restrictingB;(A) to the set of 2-partitions

I(Y: 5, Yi0{Yka : (k,1) # (i,4), (4,9)}) = 0. (2) ({1,3,--,m}, {2)), -, ({1,2,-- ,m — 1}, {m})
This implies that each source accessible to a pair of teisingn (3), we obtain an upper bound on the secret key capacity

is independent of all other sources—hence, the networklesdca for the broadcast case
pair-wise independent.

If a group of terminals in the pair-wise independent network Csg({1---,m}) < i I(Y1,4;Yi0). 4)
generate a common secret key, then an upper bound on the
secret key capacity is given in the following lemma. Next, we propose a protocol for the secret key establishment
Lemma 1:In the pair-wise independent network, among _aIIm terminals. ) o
Terminals2, - - - ,m begin by separately establishing secret
1, keys with the central terminal using the standard techrsique
Csk(A) < 2525114‘ T — 1Ik(A) (3) [4], [1]. This results inm — 1 pair-wise secret keysy ;,
2 < i < m, where K ; denotes the secret key shared by
where terminals 1 and. Without loss of generality, these keys are
stored using a binary alphabet. Lgt; ;| denote the length
I.(A) = min Z I(Y; ;Y 4). of the secret key; ;. According to [4], [1], for anye > 0,
(Buy,Br)eBi(4) jaeny each secret key, ;, as a function of Y7";,Y",), satisfies the
Proof. Let (By,---, By) be an arbitraryk-partition be- S€crecy condition
longing to B, (A). It follows from the independence condition I(Kvs; Via) < e )
@) that N
and the uniformity condition
H(Xy, - Xm) = > H(Yi; Y,
1<i<j<m H(K1;) > |K14| — €, (6)
and for1 <[ <k, whereV; ; denotes the public transmissions between terminal
1 and the central terminal to generate the pair-wise secket ke
H(Xp,) = Z H(Yi;,Y;.:) + Z H(Y;;). K lt follows from the independence conditidd (2) that
1,7:1<7;1,JE€ B i,j:1€B;j€ By I(Kl,i; {Kl,j j 7& Z}) S . (7)
Then L
The entropy rate ofs; ; is given by [4], [1]
k
1
> H(Xp)-H(X1, -, Xp) ~H(Ky3) > I(Y153Yi1) — €. (8)
=1
_ Z H(Y;;) — H(Yi;,Yis)] Let K1 4+, 2 < i* < m, be the shortest key among the-1
i, B P generated keys, i.eK7 ;+| = ming<;<, |K1,:|. This implies
jeBr;z<lr that T
= Y 1YY I(Y14;Yie 1) = min I(Y1Yi1). )
ijHeBy: 2<i<m
JEBp;l<T

The central terminal sendEfLi @ K, ;~ to terminalé, where
Therefore, the upper bourld (3) follows frol (1) and the above, ; denotes the firstk; ;- | bits of K, ;. At this point, allm
equality. B terminals havek, ;., which is set as the group secret key. The
The decomposition observed in the proof suggests thain@lependence betwedk, ;- and all the public transmissions
graph based approach can be used to study the pair-wisghown in the following proposition.
independent network. It is our conjecture that the uppendou  Proposition 1: For anyd > 0, the secret keyK; ;» gener-
(@) is always tight for the pair-wise independent networle; wated above satisfies

demonstrate that this conjecture holds in at least two apeci _ _
cases. I(Klyi*; {Vl,i7 Kl,i* D Kl,i :2<1 < m}) < 6. (10)




Proof: In the interest of simple notation, we denoteodes to the destination node The labeling algorithm [7]
Ky ® I_(Lz- by VM. Then the left side of[{10) is written is known to solve the maximal — ¢ flow problem.
as By the max-flow min-cut theorem [6], the maximal— ¢
_ _ flow is equal to the weight of the minimal— ¢ cut.
I(Kl,i*;‘fl,z,--- ,‘ﬁ,m,Vl,z,--- s Vim) We now return to the sub-group secret key generation
< I(KyeVigs s Vim) problem. It follows from Lemma 1 that the secret key capacity
+I(Ky i, Vigy - Vimi Vi, Vim). (11) which can be achieved by terminals 1 andwith the help of
other terminals, is upper bounded by
The former term in[(11) is upper bounded by

_ _ Csk({1,m}) < min I(Yij; Y5,
(K13 Vig, -, Vim) (B1,B2)€B2({1, m})1_’3.11.6321;3@32
m B B B B (12)
< Z [H(K1,; ® K1) — H(K1i|K1,+, K12, ,K1,-1)] where By({1,m}) is the set of all 2-partitions of the set
2 {1,---,m} such that either atom of a 2-partition intersects
< 2(m - 2)e, with {1, m}.

The upper bound[{12) can be represented via graphs.
where the latter inequality follows froril(6) arid (7). Thetdat Consider a weighted directed graph with m nodes, each

term in [11) is upper bounded by node corresponding to a terminal. The edge from notte;
B has weight/(Y; ;;Y; ;). Let node 1 be the source node and
I(KyiVig, s Vi Vig, s Vim) nodem be the destination node. Then the upper bolnd (12)
= I(Kiz, -, Kim;Vig, -,V m) is equivalent to the minimat — ¢ cut of G;.
m Next, we propose a protocol for the secret key establishment
= > I(Kyi;Vig) < (m—1)e, between terminals 1 anah.
=2

All the terminals begin by establishing pair-wise secrgtke

where the inequality follows from[]5). This completes th&ising the standard techniques [4], [1]. This results(if)
proof. m pair-wise secret keys. LeK;; (= K,;) denote the secret

It follows from (@) and [9) that the generated secret ke§ey shared by terminals and ;. Each secret key<i;, as a
K1, has a rate close to the upper boufdl (4). Hence, t ction of (Y, Y",), satisfies certain secrecy condition and
protocol is optimal. Furthermore, it is not difficult to showtniformity condition as in[{5).[{6). Further, for any> 0,
that the protocol is also optimal for the broadcast case with

K; 5 Ky, : kal ’ ) <e, 13

rate constraints (cf., [2]) on the public transmissions. IR gi{ K+ (kD) # G 3), (750)1) < € (13)

and the entropy rate ok ; is given by [4], [1]
V. THE SUB-GROUPKEY CASE

We now consider a sub-group key generation problem. EH(K ) = 1(Yij5Yj.0) — e (14)
Suppose that, in a pair-wise independent network, tersin
1 andm wish to generate a secret key with the help of oth

m — 2 terminals. In other words, the sub-group= {1, m} transmitting these random bits to termina{and vice versa).

of termlnal_s Wls.h o ge_neratg a secret key. . This implies the existence of a secure channel between nodes
We begin this section with a short overview of some

i andj with capacityL|K; j|.
definitions and algorithms related to graphs. Then we pr@pos Consider a Welghted directed gragh with m nodes, each
a protocol for the sub-group key generation problem. Thj ’

protocol is based on existing graph algorithms. Further, Hode corresponding to a terminal. The weight of an edgf)

how that th " ¢ kev h te cl ; the graph is equal to the capacity of the secure channel
iag\;vcitya € resulling secret key has a rate close 1o necting terminals and j, i.e.,%|Kl-_,j|. Using the labeling

. . algorithm [7], one can find the maximal— ¢ flow F' in this
Let G = (W, &) be a weighted directed graph. Lete A/ h. Accordinalv. terminal 1 | d random bit
be a source node ande N be a destination node . An grapn. ACCOTCingly, termina. - Lan Securely Senc randos: bl

; o . through the network to terminab at rateF'. Let these random
s — t cut of the graphg is a partition of the noded/ into g

bits be the secret key of terminals 1 and By arguments
two S.Ets‘/\ffl EDSNQ j\l;Ch tha_té € J\Q andt edf\/zlrﬁ\ny e_d%e similar to those used in the proof of Proposition 1, it is easy
crossing frormuvy to N2 Is said to € aut edge 1heweig ' to show that this secret key is nearly statistically indejsar
of ans —t cut is the sum of the weights of its edges. An t

is minimalif th ioht of th : | h of the public transmissions.
cut 'Sminimat the weight of thes —¢ cut Is not larger than Proposition 2: Let V' denote all the public transmissions
the weight of any othes — ¢ cut.

needed in the protocol above. For afiy> 0, the secret ke
A network flowis an assignment of flow to the edges of P » y

¥ ted ab tisfidgi; V) < 6.
weighted directed graph such that the amount of flow along generated above satisfiéei: V) <

the edge does not exceed its weight. The maximalt flow According to the max-flow min-cut theorem [6], the rate
problem is to find a maximal feasible flow from the sourcé' of the generated secret key is equal to the minimal ¢

gased on the pair-wise secret k& ;, terminali can cipher
?K-_ﬂ random bits with/; ; through the one-time pad before



cut of Gs. It follows from (I4) that the minimak — ¢ cut Consider a weighted undirected gragh with m nodes,
of G4 is close to the minimak — ¢ cut of G;. Hence, the each corresponding to a terminal. The weight of an €dgg
achieved secret key rate is close to the upper bdundd (12), amdhe graph is equal to the IenEtbf the corresponding pair-
the protocol is optimal. wise secret keyy; ;, i.e., |K; ;|.

Our group key generation algorithm is related to Lemma 2
elow. This lemma discusses the generation of a singletsecre
t amongm nodes, based on a single bit from each ofithe
?rbair-wise secret keys whose corresponding edges comestitut

panning tree.
emma 2:Consider an arbitrary tree connecting nodes.
very pair of neighbor nodes on the tree shares a single
a6air—wise secret bit, then a single secret bit can be gesdrat
%mong allm nodes.
Proof: A simple algorithm on generating a single secret

bit among allm nodes is illustrated below.
Single Bit Algorithm:

Step 1 Randomly pick up an edgé:*,j*) from the
spanning tree. Node andj* share a secret biB;- ;-.

Step 2 If node i knows B;- -, but its neighbor nodg
does not, then nodé sendsB;- ;« @ B; ; to nodej, where
B, ; is the secret bit shared by nodeandj. Upon receiving

is the weight of the multi-cut divided b¥ — 1, whereL is the this message, nodgis able to decodd;. ;.. Repeat this step

number of sets in the partition ¢f generating the multi-cut. until f[he abqve condition does not hold. N
Given a connected undirected gragh= (\, €), let & be This algorithm stops when all the nodes are able to decode

a subset off such that7 = (V&) is a tree. Such a tree B« j-. Itis tr_|V|aI to sr_lovy the mdependence betweB[%_,j*

is called aspanning tree A maximum spanning trekom a and the public transmissions. H(_andﬂm* ISa s_ecrfet bit.m
weighted graph is defined as a spanning tree such that th@Ur 9roup secret key generation algorithm is given below.
weight sum of its edges is as large as possible. The problGPUP Key Generation Algorithm _

of finding a maximum spanning tree can be solved by several-6t G be the weighted undirected gragh defined above.
greedy algorithms. Two examples are Kruskal’s algorithm an Stép 1 Determine a maximum spanning tree frémusing

VI. THE GROUPKEY CASE

In this section, we examine the problem of all the termina
in a pair-wise independent network generating a comm
secret key. We start by a short overview of more definitio
and algorithms related to graphs. Then we propose a protoco
for the group secret key generation problem. This protagol Iif e
based on existing graph algorithms. Finally, we demorestr
the efficiency of this protocol through several examples.

Let G = (N, &) be a weighted undirected graph. The grap
G is said to beconnectedf for every two distinct nodes, j €
N, there exists a path from nodeto nodej. Otherwise, the
graph is said to beinconnectedDefine amulti-cut of G to
be a partition of the node&” into several sets\y,--- , Nz,

2 < L < m, with m being the number of nodes . Any
edge(i, j) € £ with end-nodes, j belonging to different sets
is said to be anulti-cut edge Theweightof a multi-cut is the
weight sum of its edges. Theormalized weighof a multi-cut

Prim’s algorithm (cf., e.g., [6]). any known algorithm (e.g., Kruskal's or Prim’s). If there is
The upper bound3) on the secret key capacity for the grol}Pre than one maximum sp_anning_ tree, randomly sele_ct one.
secret key case, i.eAd = {1,---,m}, can be represented Step 2 Apply the single bit algorithm to generate a single

via graphs. Consider a weighted undirected grahwith .~ Secret bit among all nodes, based on a single bit from every
nodes, each node corresponding to a terminal. The weightRsfir-wise secret key on the determined maximum spanning
an edge(i, j) in the graph is equal td(Y; ;; Y;,). Note that tree. Note that these used bits will be of no use in the
each multi-cut of the graplds; is equivalent to a partition remaining group key generation process. _

in @), and the set of all multi-cuts of the grapfi; is  Step 3 Update the graph by reducing the edge weight by

precisely equivalent to the set of partitiofB;,--- ,B;) € 1 for the edges on the determined spanning tree. Remove an

Bi({1,---,m}):2 <k <m} in @). Moreover, the normal- edge when its weight becomes zero.

ized weight of a multi-cut is preCiSG'zi—lI{C({L oo, m}). Step 4 If the remaining graplG is unconnected, then set

Consequently, we have the following corollary. the group secret key as the collection of all generated secre
Corollary 1: The secret key capacity for the group secrdiits. Otherwise, return to Step 1. [

key case is upper bounded by the minimal normalized weightSince each iteration of the group key generation algorithm
of the multi-cuts ofG'5. In particular, this upper bound impliesleads to a single secret bit, the length of the resultingetecr

the following two upper bounds: key is equal to the number of iterations of the algorithm that
i). the minimal weight of the cuts of/3, where a cut is a can be run until the graph becomes unconnected. The purpose
multi-cut generated by a partition into 2 sets; of searching a maximum spanning tree (rather than picking up

i). the weight sum of all edges i3 divided bym — 1. an arbitrary spanning tree) in Step 1 is to maximize the numbe

of iterations of the algorithm by means of “balancing” edge
Next, we propose a protocol for the group secret k%eights in the weight reduction procedure.

ge_nergtion problem. Al .the terminals begin by_establighin By arguments similar to those used in the proof of Propo-
pair-wise secret keys using the standard techniques HL] [%ition 1, it is easy to show that the secret key resulting from
Let K, ; (= K; ;) denote the secret key shared by terminals

an_dj' T_hese se_c_ret keys SaUSfy the certain secrecy COndm(m"For the purpose of simple notations, we shall use the lemgther than the
uniformity condition, and[(113)[(14). rate, of a secret key as an edge weight. This should not leadytaonfusion.



Example 2:Consider a network withn nodes and al(gl)
edges having the same even weight= 2u, for a certain
positive integeru. A secret key of lengthnu bits can be
generated by using the group key generation algorithm. On
the other hand, by restrictinfgto |A| = m and settingY; ; =
Y;; = K, ; in (@), we find that the length of any group secret

key in this example cannot be larger thé”:wr%j—l) = mu bits.
Hence, the algorithm is optimal.

Although the group key generation algorithm is shown to
be optimal in the examples above, its potential non-opfignal
is demonstrated by the following example.

Example 3:Consider a network with 4 nodes. Each node is
the above algorithm is nearly statistically independenthef connected with every other node by an edge of weight 1. It is
public transmissions. clear that((1, 2), (1, 3), (1,4)) is a maximum spanning tree of

Proposition 3: Let V denote all the public transmissionghe graph, which means that 1 secret bit can be generated from
needed in the protocol above. For afy> 0, the secret key it. However, the updated graph then becomes unconnected,
K generated above satisfié6K; V) < 4. resulting in a secret key of 1 bit.

) . ~ Nevertheless, the upper bound [d (3) can be achieved by

We illustrate the operations of the group key generatiafimply making abetter selection from the possible maximal
algorithm through the following example. spanning treesOne such tree i$(1,2), (2,3), (3,4)). After

Example 1:Consider a network with 3 nodes. Nodes 1 angt?e weight reduction, the new graph is still connected, tgvi
2 share a secret key of 5 bits; nodes 1 and 3 share a sefgtspanning treé(1,3), (1,4), (2,4)). Hence, 2 secret bits,
key of 4 bits; and nodes 2 and 3 share a secret key of 3 bifich is optimal, can be established in this manner.

This network is drawn in the left part of Fig. 1. This example suggests the importance of deliberately se-

Let the pair-wise secret keys W€ > = (K{,,--- . K75), lecting a maximum spanning tree in Step 1 of the algorithm.
K13 = (Kis-,Kis), and K23 = (K33,---,K33), What a good selection scheme might look like, and whether

where K}, denotes thek*" bit of the secret key shared byt would guarantee the optimality of this algorithm, rensin
nodesi andj. open.

The spanning tre¢(1,2), (1,3)) is the maximum spanning ACKNOWLEDGMENT
tre(_e from the graph in the left part of Fig. 1, as it has a Ia_rger.l_he authors would like to thank Yogendra Shah and Inhyok
vv_elght (T 9) than other spanmngl trees. lHence, by thel Sm%%a for introducing the sub-group key generation probleth an
bit algorithm, node 1 transmit&i , © K3 and setsKj , for helpful discussions on this topic
(or K11,3) as the secret bit. Update the graph by reducing the '
weights of the edge$l,2), (1,3) by 1. This results in the REFERENCES
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