
ISIT2007, Nice, France, June 24 - June 29, 2007

Minimum Cost Integral Network Coding

Tao Cui and Tracey Ho
Department of Electrical Engineering
California Institute of Technology

Pasadena, CA, USA 91125
Email: {taocui, tho} @caltech.edu

Abstract- In this paper, we consider finding a minimum
cost multicast subgraph with network coding, where the rate
to inject packets on each link is constrained to be integral.
In the usual minimum cost network coding formulation, the
optimal solution cannot always be integral. Fractional rates can
be well approximated by choosing the time unit large enough, but
this increases the encoding and decoding complexity as well as
delay at the terminals. We formulate this problem as an integer
program, which is NP-hard. A greedy algorithm and an algorithm
based on linear programming rounding are proposed, which
have approximation ratios k and 2k respectively, where k is the
number of sinks. Moreover, both algorithms can be decentralized.
We show by simulation that our algorithms' average performance
substantially exceeds their bounds on random graphs.

I. INTRODUCTION

A fundamental problem in network design is how to increase
the amount of information transferred by the network. In
today's packet networks, each node's functions are limited to
the forwarding or replication of received packets. However, by
using network coding, where each node is allowed to perform
algebraic operations on received packets, it has been shown
that the ability of the network to transfer information can be
significantly improved [1], [2].
The concept of network coding was introduced in a seminal

paper by Ahlswede et. al. [1] and has attracted significant
interest from various research communities. It was shown in
[1] that the capacity of a network is equal to the size of the
minimum cut that separates the source and any terminal. In a
subsequent work, Li et. al. [2] proved that linear network codes
are sufficient to achieve the capacity of a network. An alge-
braic framework for linear network codes on directed graphs
is developed by Koetter and Medard [3]. This framework was
used by Ho et. al. [4] to construct random distributed network
coding, which achieves the network capacity with error prob-
ability exponentially approaching 0 with the code length. All
these papers assume that network resources have already been
dedicated. The goal is to achieve the maximum rate that the
information can be transferred through the network.
On the other hand, decentralized methods for determining

the allocation of network resources to a particular network
coded connection on directed graphs were proposed by Lun
et. al. [5]. The decentralized methods in [5] generate the
subgraph, which assigns the rate to inject packets on each

This work has been supported in part by DARPA grant N66001-06-C-2020,
Caltech's Lee Center for Advanced Networking and a gift from Microsoft
Research.

link. The network codes designed in [2]-[4] are then applied
to code over the subgraph. In the network coding literature
[1]-[4], the capacity of any link is assumed to be unity or
more generally, an integer. It might seem that the decentralized
minimum-cost multicast problem is completely solved by
using the decentralized subgraph generation methods in [5]
and the random distributed network coding in [4]. However,
the optimal solution given by [5] cannot always be integral. As
remarked in [3], fractional capacities can be well approximated
by choosing the time unit large enough. But, such capacity
scaling will increase the encoding and decoding complexity,
and introduce a large delay at the receiver. All these factors
will limit the application of network coding in delay sensitive
or computational resources limited network applications.

In this paper, we consider finding a minimum cost multicast
subgraph with network coding on directed graphs, where the
packet transmission rate on each link is constrained to be
integral. Our problem is a generalization of the Steiner tree
problem (STP) [6]. The STP is known to be NP-hard [6].
Various approximation algorithms for the STP are available
in the literature. For the undirected Steiner tree problem, a
heuristic algorithm is given in [7] based on Prim's minimum
spanning tree algorithm. A factor 2 approximation algorithm
is given in [8] by using linear programming (LP) rounding
techniques. On the other hand, the directed Steiner tree prob-
lem is usually much harder to solve. A heuristic algorithm
is given in [9] by extending the results in [7]. Wong [10]
gave a primal-dual algorithm for directed Steiner tree problem.
Jain's LP rounding algorithm can also be applied to give a 2-
approximation algorithm for the generalized Steiner network
problem on an undirected graph where, given requirements
,rij for each pair of vertices i,j, we seek to find a minimum
cost subgraph with rij edge-disjoint paths between i and j.
In our problem we have a directed graph with requirements
rs,t=h where h is an integer, s is a given source node and t
is one of k sink nodes. We show that the IP with convex and
separable cost can be transformed into an equivalent integer
linear program with linear cost. As our problem subsumes STP,
the solution by [5] cannot be always integral. By generalizing
Prim's algorithm for find minimum spanning tree, a greedy
algorithm is proposed, which has an approximation factor
k. We give an instance where the approximation ratio k is
achieved. A new LP rounding scheme is also proposed. When
used together with capacity scaling, it gives a tradeoff between
encoding and decoding complexity, delay and approximation

1-4244-1429-6/07/$25.00 ©2007 IEEE 2736

ISIT2007, Nice, France, June 24 - June 29, 2007

ratio. Moreover, the proposed approximation algorithms can
be readily decentralized. Simulation results show that our
algorithms offer good approximation ratios on random graphs.

II. MODEL, BACKGROUND AND MOTIVATION

A. Network Coding
The communication network is represented by a directed

graph 9=(JV,A), where AV is the set of nodes and A is the
set of arcs in G. Each arc (i,j) represents a lossless point-to-
point link from node i to node j. The capacity cij of arc (i,j)
is defined to be the number of packets that can be sent over
(i,j) in one time unit. We assume that arc capacities are non-
negative integer numbers. We consider single session multicast
in this paper, where a source node seJVF must transmit h
packets per unit time to every terminal in a set of k terminals
TciV. We assume that h is an integer in this paper, which
arises naturally in practice.

In network coding, each node is allowed to perform alge-
braic operations on received packets. Theorem 1 of [1] shows
that the maximum multicast rate h is equal to the size of the
minimum cut that separates the source and any terminal.

B. Minimum Cost Subgraph Generation

Let zij denote the rate at which coded packets are injected
on arc (i,j). The rate vector z, consisting of zij, (i,j) A, is
called a subgraph [5]. Each arc (i,j)CA is associated with a
cost function fij that maps zij to a real number. We assume
that fij is convex and monotonically increasing, which is
the case when the cost is, e.g., latency or congestion. By
Theorem 1 of [1], the minimum cost subgraph for a rate h
asymptotically-achievable multicast with network coding is
given by the following optimization problem [5]:

minimize E fi,i (Zi,j)
(i,j)eA

subject to zi,j >xj,(i,j)eA,teT,

S xjj 5 Xjij =j7i(t)jieg,te,
{l(i,j)CA}{4i (j,i)CA}

ci,j>zi,j>O,V(i,tj)eA,teT,

where

5(t) {
h, if i=s,
-h, if i=t,
0, otherwise.

Decentralized algorithms for solving (1) have been proposed
in [5]. The network codes designed in [2]-[4] can then be
applied to code over the resulting subgraph.

In [1]-[4], the capacity of any arc is assumed to be unity
or more generally, an integer. However, as shown in the next
subsection, the minimum cost subgraph generated by solving
(1) cannot always be integral. As remarked in [3], fractional
capacities can be well approximated by choosing the time
unit large enough. For example, if we choose the time unit
n times the current value, the rate of coded packets on arc
(i,j) becomes nzij and the multicast rate becomes nh. For

sufficiently large n we can assume that all nzij, (i,j)>A are
integral.

However, this standard interpretation of fractional network
coding, which essentially scales the capacity of each link, is
not ideal in practice. With random network coding in [4], the
encoding complexity at each node is n2 times (or n times
per input packet) that without scaling. At the terminals, to
decode the nh packets, a terminal needs to invert a nhxnh
dense matrix, which requires O(nr3h3) operations (or O(nr2h2)
operations per input packet) by using Gaussian elimination.
Once the matrix inverse is obtained, applying the inverse to the
received coded packets to recover the input packets requires
O(nr2h2) operations (or O(nh) operations per input packet).
When the packet length is very long, the latter cost dominates
the total decoding complexity. The decoding complexity at
each terminal is n2 times (or n times per input packet)
that before scaling. The increase in encoding and decoding
complexity can make the computational resources required
for random network coding prohibitive. Besides, decoding is
possible only after receiving at least nh coded packets, which
combined with decoding delay may introduce a large latency
at the terminals.

C. Integer Programming Formulation

As an alternative to scaling the solution of the LP in (1),
we formulate the subgraph optimization problem as an integer
program given by

minimize _ aij zij
(i,j)eA

subject to zi,i>xzij,(i,j)eA,teT,
S Si,j-E j(t),jig,t7

{ilK(i,j)CA} {il (j,i)CA}
Ci,j >Zi,j >O,~(i,)A,T
Zi,j c , (i j') c ,

(3)

where a(t) is defined in (2), aij denotes the cost per unit rate
for each arc (i,j)eA, and Z denotes the integer set.
We note that the IP with convex cost can be transformed

into an equivalent IP with linear cost in an expanded graph
9' =(IV'4A'). In this transformation, for each arc (i ,j) eA, we
introduce cij arcs in 9', each of which has unit capacity. The
costs of these arcs are: fij(l), fij(2)-fi,j(lI), , fi,j (ci,j -

fij(cij-1). Since fij is convex and monotonically increas-
ing, similar to [11], it can be readily shown that solving the IP
with convex cost is equivalent to solving (3) in 9'. Note that
the number of arcs in 9' increases to Z(ij)cACi,j. Despite
the increase in 1A4, it is possible to approximately solve the
relaxation of (3) in 9' in time polynomial in IJAVI and AA1 [1].
We can use the algorithm in [11] to solve the minimum cost
flow problem in Section III-A so that the algorithm in Section
III-A runs in time polynomial in IJVn and 1Av.

In the rest of this paper, we focus on solving (3). Since
problem (3) contains the directed Steiner-tree problem as a

2737

ISIT2007, Nice, France, June 24 - June 29, 2007

special case (which in turn contains the set cover problem
as a special case), it is NP-hard and no polynomial time
algorithm can achieve an approximation better than O(logk)
unless P=NP. Thus we have the following lemma:
Lemma 1: Optimization problem (1) cannot always have

an integral solution.
Proof: We show this by contradiction. It can be readily

verified that (1) is a convex optimization problem, which has
a polynomial-time solution. If (1) always returns an integral
solution, (3) is equivalent to (1), which contradicts the NP-
hardness of STP and set cover. D
From Lemma 1, (3) can only be solved approximately. On

the other hand, achieving the optimal solution of (1) may incur
high complexity and delay. It seems that there exists a tradeoff
between network cost and complexity and delay in network
coding.

III. APPROXIMATION ALGORITHMS

A. Greedy Algorithm

Let z denote the solution given by the greedy algorithm
GRD. Initially, z is an all zero vector. We first solve a
minimum cost flow problem with rate h from the source s
to each terminal ti, i=1,... ,k, where the corresponding flow
solution for each terminal ti is denoted as x(ti). Let t(l) denote
the terminal with the minimum flow cost among all the k
terminals. We update z by z=max {z,x(tV) }, where the max

is performed componentwise, i.e. zi,j=max {zi,j, }

We then transform 9(JV,A) into 9'= (JV,A'). In this trans-
formation, for each arc (i.j)cA, we introduce arcs in 9
according to the following rules:

. If zij=0, we introduce an arc (i,j) in 9' with the same
capacity and cost as that in 9.

. If zij= cij, we introduce an arc (i,j) in 9' with capacity
cij and zero cost.

. If c j>zjj>0, we introduce two arcs (i(l),j(l)) and
(i(2),j(2)) in 9'. (i(l),j(l)) has capacity zij and zero
cost. (i(2),j(2)) has capacity ci,j-zi,j and cost aij.

Next, we solve a minimum cost flow problem with rate h on
9' from the source s to each remaining terminal tjeT,tj
t(l), where the corresponding flow solution for each terminal
ti is denoted as x4(ti). Let t(2) denote the terminal with the
minimum flow cost among all the k 1 terminals. We construct
the flow solution on 9 for terminal t(2). For each arc (i,j)e

A, if there exist (i(l),j(l))A> and (i(2) j(2)AC>, (t2)

!i(P,2j)1) +ij!2,()2)) z is updated by z=max z,x(t(2) }, and
9' is updated correspondingly. This process continues until
all the terminals are included. In the nth step, for each arc
(i'j)eA, an amount zij of the capacity cij has already been
used by t(1, ,t(n). This used portion of the capacity can be
used by the remaining terminals for free. This is the intuition
behind the transformation from 9 to 9'. By induction, it can
be readily verified that the greedy solution returned by this

algorithm is integral, and that it also satisfies all the constraints
in (3). Therefore, it is feasible.
A disadvantage of the greedy algorithm GRD is that it

needs to compute a minimum cost flow k(k+l) times. An-
other observation from experimental study is that picking
the minimum cost terminal at each step may not lead to
a good solution. The greedy algorithm can be modified by
randomly picking a terminal at each step instead of choosing
the minimum cost one. This modified algorithm GRD-R
requires computing only one minimum cost flow at each
step. It can be easily obtained that the modification runs
in 0(21174A log AV (2A + JVf log IVA)) time. In Section IV,
experimental results show that this modification outperforms
the original one. The approximation ratios of the two greedy
algorithms are given in Theorem 2.
Theorem 2: Greedy algorithms GRD and GRD-R both have

an approximation ratio k.
Proof: We only prove the approximation ratio for GRD. The

proof of GRD R can be obtained similarly. Let Cgrd denote the
cost of solution given by the greedy algorithm GRD and Copt
denote the minimum cost of (3). Since the solution returned
by greedy algorithm is feasible, we have Cgrd>Copt At the
n-th step, let Cl(t() denote the flow cost from s to terminaln-thstep letgrd
t(') on 9' obtained by GRD. The optimal solution of (3) also
contains a feasible solution to the minimum cost flow problem
from s to t(') on 9'. We denote its cost on 9' as i(tn) and

its cost on 9 as C(t . As CI(t) is the minimum cost from
opt grd

s to t(') in GRD, we have /(tn >c/(t(n) n the otherCOpt grd nte te
hand, we have C(t /(t) as the cost on each arc in '
is less than or equal to the that in 9. Therefore, we obtain the
relationship C0p >C(pt)>Cf(t) because the cost from s to
t(') in the optimal solution is less than or equal to the total
cost from s to all the terminals. By the GRD procedure, we
have Cgrd

ngZrd)<
n

1 COpt)<kC0p. Therefore,
we have kCopt > Cgrd > Copt, and the theorem follows. D

Note that we can construct an instance that attains this
approximation ratio. Consider a three-layer graph, where the
first layer contains the source node s, the second layer contains
k+1 nodes MO,Ml,...,Mk, and the third layer contains k
terminal nodes tl ,... ,tk. There is an arc from s to every
mi, 0=O,... ,k. The cost of arc (s,mo) is C+E (e is a small
number), and the cost of arc (s,mr), i=1,... ,k, is C. There is
an arc from mo to every ti, i =...,k, each of zero cost. There
also exist arcs (mi,ti), i=1,... ,k, each of zero cost. All the
arcs have unit capacity. We want to find a minimum cost rate
h=1 subgraph. Clearly, the optimal solution passes through
mo and has a cost C+E. Both GRD and GRD-R do not use
the path through mo, and result in a cost kC. The greedy
algorithm has an approximation ratio k in this example. Thus,
Theorem 2 is tight.

This algorithm and its modification can also be executed
in several rounds. The above described algorithm is applied
in the first round. In the n-th round, the same algorithm is
applied except that it is based on the solution in the (n- 1)-th

2738

ISIT2007, Nice, France, June 24 - June 29, 2007

round. Let x(t) [n-1] denote the solution for terminal t in the
(n-1)-th round. When the algorithm comes to the terminal
ti, we define z=maxtcT,t ttx(t)[n-1]. The same process is
performed to solve x(ti). We update x(t)[n-1] to the new
x(ti). At the end of the n-th round, we set x(t) [n]=x(t) [n -1].
We can repeat the process K times and choose the solution
with the minimum cost in all rounds.
When h= 1, it is not difficult to show that the greedy

algorithm GRD reduces to the algorithm in [9] with = T + 1,
where i is a parameter defined in [9]. It also generalizes
[7] for solving Steiner tree problem on undirected graphs,
and Prim's algorithm for finding minimum spanning tree. An
approximation ratio depending on the asymmetry of the graph
is also given in [9] but the proof does not extend to the case
with h>1.

B. LP Rounding

Intuitively, we can round the solution of (1) or the relaxation
of (3) to an integral solution. For example, given the solution
zikj to the LP relaxation of (3), we can always round ZLP

to Fz j1, where Fxl denotes the smallest integer greater than
or equal to x. However, this does not always give a good
approximation.

In our LP rounding algorithm, we first solve the LP relax-
ation of (3) and obtain the solution ziL,P. We then transform
9(JV,AA) to 9'=(JVF,4A'). In this transformation, for each arc
(i,j) A, we apply the following rules:

* If ziLP0, we introduce an arc (i,j) in 9' with the same
capacity and cost as that in 9;

* If Zi=LPc we introduce an arc (i,j) in g' with capacity
cij and zero cost;

* If cij>zijP>0, we introduce three arcs
(i(2),j(2)), and (i(3),j(3)) in 9/. (i(l),j(l)) has capacity
Lzi,j] and zero cost, (J(2),j(2)) has unit capacity and
cost ai,j (FZ j-zj), and ((3),j(3)) has capacity ci,j-
Fzij]I and cost aij,

where Lxi denotes the largest integer smaller than or equal to
x. The greedy algorithms in Section III-A are then applied on

Let CLP denote the optimal value of the LP relaxation ofopt
(3), Copt the optimal value of (3) on 9, and C LPR the optimal
value of (3) on 9', where its value on 9 is CLPR. It is clear
that C0>c andCopt >- LptR On the other hand, by the
construction of 9', we get CLPR<CLP /+CLPR . Therefore,ot opt opt
we have CLPR<2C pt. Since the greedy algorithms in Section
III-A have approximation ratio k on q9', we have the following
theorem.
Theorem 3: The LP rounding with a k approximation

algorithm for (3) has an approximation ratio 2k.
A modification of the LP rounding is to change the third rule

above to "if ci,j >zLP >0, we introduce two arcs (i(l) ,j(l)) and
(i(2),j(2)) in 9'; arc ((l),j(l)) has capacity Lzjl and zero
cost and (i(2),j(2)) has unit capacity and cost ai,j(FziL1
zi)," which gives a graph !9' with fewer arcs. Any solution
to this modification at most increases the cost of CoLp by

Z (ij)4Aai,j as the flow at each arc in the solution of this
modification is greater than that in the LP relaxation solution
at most by one.
The advantage of applying the greedy algorithm in Section

III-A on 9' over applying them on 9 directly is that the
LP solution may guide these algorithms and remove their
"myopia". The LP rounding can also be easily decentralized.
To reduce the complexity of the LP rounding, the greedy
algorithms in Section III-A can start from the LP solution.
Note that our LP rounding is different from that in [8]. First,
we do not round the solution in steps instead we round all zij
simultaneously. Second, the algorithm in [8] is applicable for
undirected graph only. Third, it is not clear how the algorithm
in [8] can be decentralized.

Another feature of our LP rounding is that it can be easily
combined with capacity scaling. As remarked in [3], fractional
capacities can be well approximated by choosing the time
unit large enough. For example, if we choose the time unit
n times the current value, the rate of coded packets on arc
(i,j) becomes nziLj and the multicast rate becomes nh. nzLPi,3 ~~~~~~~~~~~~~~~~i,j
is still the optimal solution of the LP relaxation of (3) with
rate nh. By using the modified LP rounding, the cost per input
packet is increased by at most Z(ij)CAai,j/nh compared to
the optimal value of the LP relaxation of (3). When n->+oo,
the increased cost per input packet by using LP rounding is
negligible. It is clear that the LP rounding with capacity scaling
gives a tradeoff between encoding and decoding complexity,
delay and approximation ratio.

IV. EXPERIMENTAL RESULTS

In our tests, we choose h=5. The capacity of each arc is
chosen uniformly from 0 and 1. We only consider linear cost,
where aij on each arc is generated according to a uniform
distribution on the interval [0,1]. The source node and the
terminals are chosen randomly and uniformly from the node
set. The performance is evaluated by the ratio between the cost
of our approximation algorithms and the optimal value of the
LP relaxation of (3), which is a lower bound on the optimal
value of (3). We denote the LP rounding algorithm as LR. In
LR, we use GRD R when the LP solution is not integral.
We first test our algorithms on both random directed graphs

of Erdos and Renyi's type [12] and random geometric graphs
[13] with AVN =10, IT =4. In random directed graphs, we
assume that there is an arc from node i to node j with prob-
ability 0.5. Random geometric graphs are always modeled as
undirected graphs [13]. However, in wireless ad-hoc networks,
different nodes have different transmit powers. It may not
be appropriate to model a wireless ad-hoc networks as an
undirected graph. We propose a class of random geometric
directed graphs. We first generate IJVr nodes scattered uni-
formly over a unit square. There is an arc from node i to
node j if their Euclidean distance is less than pi, where pi is
generated according to a uniform distribution on the interval
[0,1], and it represents the random coverage of node i due to
its random power.

2739

ISIT2007, Nice, France, June 24 - June 29, 2007

TABLE I

RATIO OF APPROXIMATION ALGORITHM SOLUTION COST TO LP

RELAXATION COST WHEN THE LP RELAXATION OF (3) RETURNS AN

INTEGRAL SOLUTION.

Random Directed Graphs Random Geometric Graphs
GRD GRDR LR GRD GRDR LR

Mean 1.0927 1.0770 1.0000 1.0361 1.0313 1.0000
std 0.0877 0.0762 0.0000 0.0344 0.0309 0.0000
Max 1.8655 1.6435 1.0000 1.3751 1.2359 1.0000

TABLE II
RATIO OF APPROXIMATION ALGORITHM SOLUTION COST TO LP

RELAXATION COST WHEN THE LP RELAXATION OF (3) DOES NOT RETURN

AN INTEGRAL SOLUTION.

Random Directed Graphs Random Geometric Graphs
GRD GRDR LR GRD GRDR LR

Mean 1.1072 1.1032 1.0180 1.0398 1.0358 1.0080
std 0.0846 0.0699 0.0181 0.0324 0.0308 0.0078
Max 1.3024 1.2767 1.0753 1.1837 1.1395 1.0428

The computational results are summarized in Tables I II,
where 4000 feasible instances are generated and averaged.
Table I compares the performance of different algorithms when
the LP relaxation of (3) returns an integral solution, while
Table II compares the performance of different algorithms
when the LP relaxation of (3) does not return an integral
solution.
The average running time of different approximation algo-

rithms for random directed graphs with IJV =10,IT =4 and
IJV =20,IT =8 is given in Table III. The running time is in
seconds. Our tests are performed on a PC with a Pentium-4
CPU at 3.4 GHz.

TABLE III

AVERAGE RUNNING TIME OF DIFFERENT APPROXIMATION ALGORITHMS

FOR RANDOM DIRECTED GRAPHS.

|GRD GRDR LR
1X1 =10, I =4 0.2653 0.1085 0.2061
JA 1=20, IT =8 3.1318 0.7121 2.5560

The lowest cost solution is generally obtained by finding the
LP relaxation solution of (3), and if it is not integral, using it
to run the LR algorithm. We find that the LP relaxation of (3)
returns the integral solution in 0.945 of the random directed
graph instances and 0.9585 of the random geometric graph
instances. This is not unexpected since, as stated in [12], the
giant connected component of the Erdos and Renyi's random
graphs is a tree with high probability. The LP relaxation of
(3) always has an integer solution on a tree since there is a
unique path from the source to each terminal.
The least complex algorithm is GRD_R, which somewhat

surprisingly performs better than the more complex GRD. The
worst case performance of our algorithms is within twice the
optimal cost of the LP relaxation. This shows that both GRD
and LR perform much better than the performance guarantee in
Theorems 2 and 3, which in this case are 4 and 8 respectively.

From Table III, for IJV =10,IT =4, LR has a running time
twice as long as GRDR, while for IJV =20,IT =8, it has
a running time four times as long. Our experimental results
suggest that GRDR is a favorable candidate for practical
application due to its simplicity and good performance.

V. CONCLUSION

We considered the problem of minimum cost network
coding with integer flows in this paper. We showed that in
the LP min-cost network coding formulation, the solution is
not always integral. The standard approach of choosing the
time unit large enough so that fractional rates can be well
approximated comes at the expense of increasing the encoding
and decoding complexity, and latency at the terminals. We
formulated the problem of integer network coding as an IP.
Two approximation algorithms are proposed, both of which
are easily decentralized. Simulation results showed that our
algorithms offer good approximation ratios on random graphs.
We expect that our proposed algorithms can also be useful
for subgraph generation when source rates are not fixed in
advance, such as in the case of rate control for elastic sources.

REFERENCES

[1] R. Ahlswede, N. Cai, S. Y R. Li, and R. W. Yeung, "Network
information flow," IEEE Trans. Inform. Theory, vol. 46, no. 4, pp. 1204-
1216, Jul. 2000.

[2] S. Y R. Li, R. W. Yeung, and N. Cai, "Linear network coding," IEEE
Trans. Inform. Theory, vol. 49, no. 2, pp. 371 - 381, Feb. 2003.

[3] R. Koetter and M. Medard, "An algebraic approach to network coding,"
IEEE/ACM Trans. Networking, vol. 11, no. 5, pp. 782-795, Oct. 2003.

[4] T. Ho, R. Koetter, M. Medard, M. Effros, J. Shi, and D. Karger, "A
random linear network coding approach to multicast," IEEE Trans.
Inform. Theory, vol. 52, no. 10, pp. 4413-4430, Oct. 2006.

[5] D. S. Lun, N. Ratnakar, M. Medard, R. Koetter, D. Karger, T. Ho,
E. Ahmed, and F. Zhao, "Minimum-cost multicast over coded packet
networks," IEEE Trans. Inform. Theory, vol. 52, no. 6, pp. 2608-2623,
June 2006.

[6] F. Hwang, D. Richards, and P. Winter, The Steiner Tree Problem. North-
Holland, 1992.

[7] H. Takahashi and A. Matsuyama, "An approximate solution for the
Steiner problem in graphs," Math. Japonica, vol. 24, no. 6, pp. 573-
577, 1980.

[8] K. Jain, "Factor 2 approximation algorithm for the generalized Steiner
network problem," in Proc. of IEEE Symposium on Foundations of
Computer Science, Nov. 1998, pp. 448-457.

[9] S. Ramanathan, "Multicast tree generation in networks with asymmetric
links," IEEE/ACM Trans. Networking, vol. 4, no. 4, pp. 558 - 568, Aug.
1996.

[10] R. Wong, "A dual ascent approach for Steiner tree problems on a directed
graph," Math. Program., vol. 28, pp. 271-287, 1984.

[11] R. K. Ahuja, D. S. Hochbaum, and J. Orlin, "Solving the convex cost
integer dual network flow problem," Management Science, vol. 49, no. 7,
pp. 950-964, July 2003.

[12] B. Bollobas, Random Graphs, 2nd ed. Cambridge University Press,
2001.

[13] M. Penrose, Random Geometric Graphs. Oxford University Press,
2003.

2740

