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Abstract

In this paper we devise a rational curve fitting algorithm and apply it to the list decoding

of Reed-Solomon and BCH codes. The resulting list decoding algorithms exhibit the following

significant properties.

• The algorithm achieves the limit of list error correction capability (LECC) n(1 −
√

1−D)

for a (generalized) (n, k, d = n − k + 1) Reed-Solomon code, which matches the Johnson

bound, where D
△
= d

n
denotes the normalized minimum distance. The algorithmic complexity

is O
(

n6(1−
√

1−D)8
)

. In comparison with the Guruswami-Sudan algorithm, which exhibits

the same LECC, the proposed requires a multiplicity (which dictates the algorithmic complex-

ity) significantly smaller than that of the Guruswami-Sudan algorithm in achieving a given

LECC, except for codes with code-rate below 0.15. In particular, for medium-to-high rate

codes, the proposed algorithm reduces the multiplicity by orders of magnitude. Moreover, for

any ǫ > 0, the intermediate LECC t = ⌊ǫ · d2 +(1−ǫ) ·(n−
√

n(n− d))⌋ can be achieved by the

proposed algorithm with multiplicity m = ⌊ 1
ǫ
⌋. Its list size is shown to be upper bounded by

a constant with respect to a fixed normalized minimum distance D, rendering the algorithmic

complexity quadratic in nature, O(n2).

• By utilizing the unique properties of the Berlekamp algorithm, the algorithm achieves the

LECC limit n

2 (1 −
√

1− 2D) for a narrow-sense (n, k, d) binary BCH code, which matches

the Johnson bound for binary codes. The algorithmic complexity is O
(

n6(1−
√

1− 2D)8
)

.

Moreover, for any ǫ > 0, the intermediate LECC t = ⌊ǫ · d

2 + (1 − ǫ) · n−

√
n(n−2d)

2 ⌋ can be

achieved by the proposed algorithm with multiplicity m = ⌊ 1
2ǫ
⌋. Its list size is shown to

be upper bounded by a constant, rendering the algorithmic complexity quadratic in nature,

O(n2).

Index Terms—List decoding, Berlekamp-Massey algorithm, Berlekamp algorithm, Reed-Solomon

codes, BCH codes, Johnson bound, Rational curve-fitting algorithm.
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I. Introduction

Reed-Solomon codes are the most commonly used error correction codes in practice. Their widespead

applications include magnetic and optical data storage, wireline and wireless communications, and

satellite communications. A Reed-Solomon code (n, k) over a finite field GF(q) satisfies n < q and

achieves the maximally separable distance, i.e., d = n − k + 1. Its algebraic decoding has been

extensively explored but remains a challenging research topic.

It is well-known that efficient algorithms exist to decode up to half the minimum distance with

complexity O(dn), namely, the Berlekamp-Massey algorithm [2,19] and the Euclidean algorithm [26],

which utilize the frequency spectrum property, and the Berlekamp-Welch algorithm, which utilizes the

polynomial characteristics [27]. Koetter [15] devised a one-pass algorithm, building on the Berlekamp-

Massey algorithm, to implement the generalized minimum distance (GMD) decoding, which otherwise

requires ⌊d+1
2 ⌋ rounds. Berlekamp [3] devised a one-pass algorithm, building on the Berlekamp-Welch

algorithm, to implement d + 1 GMD decoding. Kamiya [14] presented one-pass GMD decoding al-

gorithms and a one-pass Chase decoding algorithm for BCH codes utilizing the Berlekamp-Welch

algorithm.

Sudan [25] discovered a polynomial-time algorithm, building on the Berlekamp-Welch algorithm,

for (list) decoding Reed-Solomon codes beyond the classical correction capability ⌊d−1
2 ⌋, however, the

algorithm is effective only when the code rate k
n < 1

3 . Schmidt, Sidorenko, and Bossert [23] virtually

extend one codeword to a sequence of interleaved codewords which yields a multiple-sequence linear

shift register synthesis, and exploit the generalized Berlekamp-Massey algorithm, whose complexity

is quadratic in nature, to correct errors beyond half the minimum distance. The algorithm succeeds

if there is a unique solution within a certain capability, which is larger than the conventional error

correction capability when the code rate is below 1
3 . Its error correction capability and rate threshold

largely coincide with those of the Sudan algorithm in [25], whereas its algorithmic complexity is much

lower than the Sudan algorithm. Guruswami and Sudan [9] devised an improved version of [25],

which is capable of decoding beyond half the minimum distance over all rates. More specifically, the

algorithm lists all codewords up to distance n(1−
√

1−D) (where D denotes the normalized minimum

distance D
△
= d

n) from the received word, while the algorithmic complexity is polynomial in nature.

Its performance matches the Johnson bound [12], which gives a general lower bound on the number

of errors one can correct using small lists in any code, as a function of the normalized minimum

distance D. McEliece [20] characterized the average list size of the Guruswami-Sudan algorithm and

showed that the list most likely contains only one codeword. Guruswami and Rudra [11] showed the

optimality of the list error correction capability (LECC) n(1−
√

1−D) in the sense that the number

of codewords lying slightly beyond the boundary can be superpolynomially large in code length n.

Koetter and Vardy [16] showed a natural way to translate the soft-decision reliability information
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Figure 1: Normalized (list) error correction capability as a function of the normalized designed mini-

mum distance for binary BCH codes.

provided by the channel into the multiplicity matrix which is directly involved in the Guruswami-

Sudan algorithm. The resulting algorithm outperforms the Guruswami-Sudan algorithm.

In essence, the Guruswami-Sudan algorithm is a polynomial curve-fitting algorithm that determines

all polynomials which passes through at least
√

n(n− d) points out of n distinct points. Specifically,

when given n distinct points {(xi, yi)}n−1
i=0 , where [y0, y1, . . . , yn−1] denotes a received word, a (1, n−d)-

weighted degree bivariate polynomial Q(x, y) is constructed to pass through all n points, each with

appropriate multiplicity, then Q(x, y) contains all desired polynomials p(x) as its factors in the form of

y − p(x). Finally all desired polynomials p(x) are factorized iteratively [9]. The interpolation process

can be expedited by utilizing the updating algorithm in [15] with quadratic complexity, whereas

straightforward implementation using Gaussian elimination requires cubic complexity.

In this paper, we formulate the list decoding of Reed-Solomon codes as a rational curve-fitting

problem utilizing the polynomials constructed by the Berlekamp-Massey algorithm. Specifically, let

Λ(x) and B(x) be the error locator and correction polynomials, respectively, as obtained from the

3



Berlekamp-Massey algorithm. List decoding then finds pairs of polynomials b(x) and λ(x), such that

each pair leads to a valid candidate error locator polynomial Λ′(x)
△
= λ(x) · Λ(x) + b(x) · xB(x), i.e.,

all the roots of Λ′(x) are distinct and belong to the pre-defined space. We reduce this problem to

a rational curve-fitting problem and subsequently present a novel polynomial algorithm comprised of

rational interpolation and rational factorization. Using the up-to-date most efficient implementation

algorithms [15,18], the proposed algorithm exhibits the complexity O
(

n2(
√

n−
√

k)8
)

. The proposed

list decoding algorithm exhibits the same LECC n−
√

n(n− d) as the Guruswami-Sudan algorithm.

However, the proposed algorithm requires much lower multiplicity, which dictates the algorithmic

complexity, for almost the entire range of code rates. In particular, the proposed algorithm reduces

the multiplicity by orders of magnitude for medium-to-high rate codes. Finally, the proposed algorithm

utilizes the end results of the Berlekamp-Massey algorithm, in contrast to the decoding algorithms

in [21, 23], which directly incorporate syndromes and achieve performance gains over conventional

hard-decision decoding only when the code rate k
n < 1

3 . By observing that even iterations in the

Berlekamp algorithm are automatically satisfied in decoding binary BCH codes, we present a modified

version of the proposed algorithm that exhibits the LECC n
2 (1−

√
1− 2D), which matches the Johnson

bound for binary codes [12]. A comparison to existing state-of-the-art LECCs is depicted in Figure 1.

We also reveal a fundamental property of Reed-Solomon and binary BCH codes, namely, that

there exist at most a constant number of codewords, regardless of code length n, with respect to

an LECC under arbitrary small fraction away from the Johnson bound. Furthermore, we show that

the corresponding Johnson bound can be arbitrarily approximated by the derivative algorithms with

quadratic complexity, for both Reed-Solomon and binary BCH codes.

The remainder of the paper is organized as follows. Section II.A briefly introduces the Berlekamp-

Massey algorithm for decoding Reed-Solomon codes, and then extends one iteration to correct up

to ⌊d2⌋ errors with negligible additional complexity. Section II.B presents a re-formulated Berlekamp

algorithm for decoding binary BCH codes, and then extends one iteration to correct up to ⌊d+1
2 ⌋ errors

with negligible additional complexity. The proposed list decoding algorithm for Reed-Solomon codes

is detailed in Section III. The list decoding problem is formulated in Part A, the rational interpolation

process is then described in Part B, followed by the rational factorization in Part C. The algorithmic

description and performance assertion are presented in Part D and the computational complexity is

characterized in Part E. Finally Part F shows that the LECC limit can arbitrarily approximated with

derivative algorithms with constant multiplicities which exhibit only quadratic complexity. Section

IV presents an improved algorithm for decoding binary BCH codes. The paper is concluded with

pertinent remarks in Section V.
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II. Algebraic Hard-Decision Decoding of Reed-Solomon and BCH

Codes

A. Berlekamp-Massey Algorithm and its One-Step Extension for Decoding Reed-

Solomon Codes

For a (possibly shortened) Reed-Solomon C(n, k) code over GF(q), a k-symbol D
△
= [Dk−1, Dk−2, . . . ,

D1, D0] is encoded to an n-symbol codeword C
△
= [Cn−1, Cn−2, . . . , C1, C0], or more conveniently,

a dataword polynomial D(x) = Dk−1x
k−1 + Dk−2x

k−2 + . . . + D1x
1 + D0 is encoded to a codeword

polynomial C(x) = Cn−1x
n−1 + Cn−2x

n−2 + . . . + C1x + C0, by means of a generator polynomial

G(x)
△
=

n−k−1
∏

i=0

(x− αm0+i)

where α is a primitive element of GF(q) and m0 is an arbitrary integer (in this presentation we do

not distinguish between a vector A = [A0, A1, A2, . . . , Al] and its polynomial representation A(x) =

A0 + A1x+ A2x
2 + . . . Alx

l). A polynomial of degree less than n is a codeword polynomial if and only

if it is a multiple of the generator polynomial G(x). As can be readily seen, a codeword polynomial

C(x) satisfies

C(αi) = 0, i = m0,m0 + 1,m0 + 2, . . . ,m0 + n− k − 1.

The minimum Hamming distance of the code is d = n − k + 1, an attribute known as maximally-

distance-separable (cf. [4]).

Let C(x) denote the transmitted codeword polynomial and R(x) the received word polynomial.

The decoding objective is to determine the error polynomial E(x) such that C(x) = R(x)− E(x).

In the following we introduce the Berlekamp-Massey algorithm, which provides a foundation for

our list decoding algorithms. It begins with the task of error correction by computing syndrome values

Si = R(αi+m0) = C(αi+m0) + E(αi+m0) = E(αi+m0), i = 0, 1, 2, . . . , n− k − 1.

If all n− k syndrome values are zero, then R(x) is a codeword polynomial and thus is presumed that

C(x) = R(x), i.e., no errors have occurred. Otherwise, let e denote the (unknown) number of errors,

Xi ∈ {α−i}n−1
i=0 , i = 1, 2, . . . , e, denote the error locations, and Yi ∈ GF(q), i = 1, 2, . . . , e, denote the

corresponding error magnitudes.

Define the syndrome polynomial

S(x)
△
= S0 + S1x + S2x

2 + . . . + Sn−k−1x
n−k−1, (1)

the error locator polynomial

Λ(x)
△
=

e
∏

i=1

(1−Xix) = 1 + Λ1x + Λ2x
2 + . . . + Λex

e, (2)
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and the error evaluator polynomial

Ω(x)
△
=

e
∑

i=1

YiX
m0

i

e
∏

j=1,j 6=i

(1−Xjx) = Ω0 + Ω1x + Ω2x
2 + . . . + Ωe−1x

e−1. (3)

The three polynomials satisfy the following key equation (cf. [4])

Ω(x) = Λ(x)S(x) (mod xn−k). (4)

The Berlekamp-Massey algorithm can be used to solve the above key equation, given that the

number of errors e does not exceed the error-correction capability ⌊n−k
2 ⌋ (cf. [2,4]). Below we slightly

re-formulate the Berlekamp-Massey algorithm given in [4], so as to facilitate the characterizations

afterwards:

Berlekamp-Massey Algorithm

• Input: S = [S0, S1, S2, . . . , Sn−k−1]

• Initialization: Λ(0)(x) = 1, B(0)(x) = 1, and L
(0)
Λ = 0, L

(0)
B

= 0

• For r = 0, 1, 2, . . . , n− k − 1, do:

– Compute ∆(r+1) =
∑L

(r)
Λ

i=0 Λ
(r)
i
· Sr−i

– Compute Λ(r+1)(x) = Λ(r)(x) −∆(r+1) · xB(r)(x)

– If ∆(r+1) 6= 0 and 2L
(r)
Λ ≤ r, then

∗ Set B(r+1)(x)← (∆(r+1))−1 · Λ(r)(x)

∗ Set L
(r+1)
Λ ← L

(r)
B

+ 1, L
(r+1)
B

← L
(r)
Λ

– Else

∗ Set B(r+1)(x)← xB(r)(x)

∗ Set L
(r+1)
B

← L
(r)
B

+ 1, L
(r+1)
Λ ← L

(r)
Λ

endif

endfor

• Output: Λ(x), B(x), LΛ, LB

Note that in the above description, we used superscript “(r)” to stand for the r-th iteration and

subscript “i” the i-th coefficient. LΛ and LB denote the length of linear feedback shift register (LFSR)

described by Λ(x) and B(x), respectively. An LFSR of length L, a0 = 1, a1, a2, . . . , aL, is called to

generate the sequence s0, s1, s2, . . . , sr if

L
∑

j=0

si−jaj = 0, i = L,L + 1, . . . , r. (5)
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The essence of the Berlekamp-Massey algorithm is to determine a minimum-length LFSR that

generates the syndrome sequence S0, S1, S2, . . . , Sn−k−1 [2, 19], It is worth mentioning that there

may exist multiple minimum-length LFSRs that generate the sequence S0, S1, . . . , Sn−k−1, and Λ(x)

obtained from the Berlekamp-Massey algorithm is one of them when non-unique. The error locator

polynomial Λ(x) and the correction polynomial B(x) are characterized by the following lemma.

Lemma 1 Let Λ(x) be the error locator polynomial and B(x) be the correction polynomial, computed

by the Berlekamp-Massey algorithm.

(i). LΛ and LB, the length of LFSR described by Λ(x) and B(x) respectively, satisfy

LΛ + LB = d− 1. (6)

(ii). The degrees of Λ(x) and B(x) satisfy

deg(Λ(x)) ≤ LΛ, deg(B(x)) ≤ LB. (7)

When Λ(x) is the true error locator polynomial as defined in (2), deg(Λ(x)) = LΛ.

(iii). The polynomials Λ(x) and B(x) are coprime, i.e., the two do not share a common factor.

Proof: (i). We show the following more general result

L
(r)
B + L

(r)
Λ = r. (8)

It follows that in each iteration either L
(r+1)
Λ ← L

(r)
B + 1, L

(r+1)
B ← L

(r)
Λ , or L

(r+1)
Λ ← L

(r)
Λ , L

(r+1)
B ←

L
(r)
B + 1, thus their sum increases by 1 in either case.

(ii). We show the first part by induction. When i = 0, we have L
(0)
Λ = deg(Λ(0)(x)) = 0 and

L
(0)
B = deg(B(0)(x)) = 0. Assume that deg(Λ(r)(x)) ≤ L

(r)
Λ and deg(B(r)(x)) ≤ L

(r)
B hold for i = r. In

the case of ∆(r+1) 6= 0 and 2L
(r)
Λ ≤ r, we have the following iteration

• Λ(r+1)(x) = Λ(r)(x)−∆(r+1) · xB(r)(x)

• B(r+1)(x)← (∆(r+1))−1 · Λ(r)(x)

• L
(r+1)
Λ ← L

(r)
B + 1, L

(r+1)
B ← L

(r)
Λ .

(8), in conjunction with the condition 2L
(r)
Λ ≤ r, results in

L
(r)
B = r − L

(r)
Λ ≥ L

(r)
Λ .

Therefore, we obtain

deg(Λ(r+1)(x)) = max{deg(Λ(r)(x)), deg(B(r)(x)) + 1} ≤ max{L(r)
Λ , L

(r)
B + 1} = L

(r)
B + 1 = L

(r+1)
Λ .

deg(B(r+1)(x)) = deg(Λ(r)(x)) ≤ L
(r)
Λ = L

(r+1)
B .

When ∆(r+1) = 0, we have the following update

7



• B(r+1)(x)← xB(r)(x), L
(r+1)
B ← L

(r)
B + 1.

The conclusion naturally holds. Finally, when ∆(r+1) 6= 0 and 2L
(r)
Λ > r, the algorithmic updates

follow

• Λ(r+1)(x) = Λ(r)(x)−∆(r+1) · xB(r)(x)

• B(r+1)(x)← xB(r)(x), L
(r+1)
B ← L

(r)
B + 1.

(8), in conjunction with the condition 2L
(r)
Λ > r, results in

L
(r)
B = r − L

(r)
Λ < L

(r)
Λ .

Therefore, we obtain

deg(Λ(r+1)(x)) = max{deg(Λ(r)(x)), deg(B(r)(x)) + 1} ≤ max{L(r)
Λ , L

(r)
B + 1} ≤ L

(r)
Λ = L

(r+1)
Λ

deg(B(r+1)(x)) = deg(B(r)(x)) + 1 ≤ L
(r)
B + 1 = L

(r+1)
B .

We thus have justified the first part of (ii). The second part naturally follows (3), (4) and the definition

of generating a sequence in (5).

Part (iii) can be shown through contradiction (cf. [15]). Herein we give an inductive proof.

Evidently, when i = 0, Λ(0)(x) = 1 and B(0)(x) = 1 are coprime. Assume that Λ(r)(x) and

B(r)(x) are coprime for i = r. For i = r + 1, if ∆(r+1) 6= 0 and 2L
(r)
Λ ≤ r, then the iteration,

Λ(r+1)(x) = Λ(r)(x) − ∆(r+1) · xB(r)(x) and B(r+1)(x) ← (∆(r+1))−1 · Λ(r)(x), clearly indicates that

Λ(r+1)(x) and B(r+1)(x) are coprime, conditioned on that Λ(r)(x) and B(r)(x) are coprime; so is the

alternative iteration, Λ(r+1)(x) = Λ(r)(x)−∆(r+1) · xB(r)(x) and B(r+1)(x)← xB(r)(x). We conclude

that Λ(x) and B(x) are coprime. 22

Note the initial cause of deg(Λ(x)) < LΛ is due to the special condition [2]

L
(r)
Λ = L

(r)
B + 1 and Λ

(r)
l = ∆(r+1)B

(r)
l−1, where l = L

(r)
Λ .

Let n− k be an odd number. Then, the number of errors up to

t0
△
=

n− k + 1

2
=

d

2
(9)

can be corrected by the following simple list decoding algorithm

One-Step-Ahead Berlekamp-Massey Algorithm

1. If LΛ > t0, then declare a decoding failure.

2. If LΛ < t0, then determine all distinct roots in {α−i}n−1
i=0 . If the number of (distinct) roots is

equal to LΛ, then apply Forney’s formula and return the unique codeword, otherwise declare a

decoding failure (which is identical to the normal Berlekamp-Massey algorithm).

8



3. Evaluate ∆i = Λ(α−i)
α−iB(α−i)

, i = 0, 1, 2, . . . , n − 1.

4. Group the index sets {i1, i2, . . . , it0} such that ∆i’s are identical (each set corresponds to the

roots of a valid error locator polynomial).

5. Apply Forney’s formula to compute error magnitudes with respect to each index set, each re-

sulting in a candidate codeword.

Proof of correctness: We note that Λ(x) and B(x) are obtained at the (n − k)-th iteration

of the Berlekamp-Massey algorithm. Following the nature of the Berlekamp-Massey algorithm, the

additional syndrome Sn−k determines all valid error locator polynomial Λ∗(x) of degree up to t0. More

specifically, a valid error locator polynomial Λ∗(x) of degree up to t0 satisfies the form

Λ∗(x) = Λ(x)−∆(Sn−k) · xB(x) (10)

where the discrepancy ∆(Sn−k) is a linear function of Sn−k,

∆(Sn−k) =

LΛ
∑

i=0

Sn−k−iΛi.

We observe that LΛ + LxB = n− k + 1. We easily see that Λ∗(x) has degree up to t0 if and only

if LΛ∗ = LΛ, in particular, Λ∗(x) = Λ(x) if LΛ < t0. This justifies Steps 1 and 2.

Now assume LΛ = t0 and ∆i1 = ∆i2 = . . . = ∆it0
. By letting ∆ = ∆i1 , Λ∗(x) has degree t0,

and at same time, contains t0 valid roots, α−i1 , α−i2 , . . . , α−it0 , i.e., Λ∗(x) is a valid error locator

polynomial. On the other hand, if an error locator polynomial Λ̄(x) is of degree t0 and contains t0

valid roots, α−i1 , α−i2 , . . . , α−it0 . Then, following (10), we have

0 = Λ(α−il)−∆(Sn−k) · α−ilB(α−il), l = 1, 2, . . . , t0,

indicating ∆i1 = ∆i2 = . . . = ∆it0
= ∆(Sn−k). We thus justify Steps 3, 4, and 5. 22

Remarks: Compared to the approach in [4], where the syndrome Sn−k is exhaustively searched

throughout the field GF(q), each time Λ∗(x) is produced and examined, the proposed algorithm

reduces the computational complexity by a factor of q. Essentially, the proposed algorithm extends

one iteration beyond the conventional Berlekamp-Massey algorithm while maintaining the original

computational complexity. Further, note that an index (location) can only be classified to one group,

thus any two sets of error locator roots are disjoint. As a result, there exist at most ⌊ n
t0
⌋ distinct

codewords at distance t0 from a received word. An extension of the above method is the ⌊d+1
2 ⌋ decoding

algorithm which utilizes the Chien Search to determine the subsequent two unknown discrepancies [6].

Remark: The foregoing one-step-ahead algorithm is essentially a degeneration of the list decoding

algorithm to be presented in next section.
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B. Berlekamp Algorithm and its One-Step Extension for Decoding BCH Codes

The underlying generator polynomial of a BCH code contains consecutive roots α, α2, . . . , α2t. Note

for an underlying binary BCH code, the designed minimum distance d is always odd, which is actually

a lower bound of the true minimum distance.

The Berlekamp algorithm is a simplified version of the Berlekamp-Massey algorithm for decoding

binary BCH codes by incorporating the special syndrome property

S2i+1 = S2
i , i = 0, 1, 2, . . .

which yields zero discrepancies at even iterations of the Berlekamp-Massey algorithm (cf. [2]). Below we

re-formulate slightly the Berlekamp algorithm described in [2], so as to facilitate the characterizations

thereafter.

Berlekamp Algorithm

• Input: S = [S0, S1, S2, . . . , Sd−2]

• Initialization: Λ(0)(x) = 1, B(−1)(x) = x−1, L
(0)
Λ = 0, L

(−1)
B

= −1

• For r = 0, 2, . . . , d− 3, do:

– Compute ∆(r+2) =
∑L

(r)
Λ

i=0 Λ
(r)
i
· Sr−i

– Compute Λ(r+2)(x) = Λ(r)(x) −∆(r+2) · x2B(r−1)(x)

– If ∆(r+2) 6= 0 and 2L
(r)
Λ ≤ r, then

∗ Set B(r+1)(x)← (∆(r+2))−1 · Λ(r)(x)

∗ Set L
(r+2)
Λ ← L

(r−1)
B

+ 2, L
(r+1)
B

← L
(r)
Λ

– Else

∗ Set B(r+1)(x)← x2B(r−1)(x)

∗ Set L
(r+1)
B

← L
(r−1)
B

+ 2, L
(r+2)
Λ ← L

(r)
Λ

endif

endfor

• Output: Λ(x), B(x), LΛ, LB

The following lemma characterizes the error locator polynomial Λ(x) and the correction polynomial

B(x) produced by the Berlekamp algorithm.

Lemma 2 Let Λ(x) and B(x) be the error locator and correction polynomials, respectively, computed

by the Berlekamp algorithm.

(i). LΛ and LB, the length of AFSR described by Λ(x) and B(x) respectively, satisfy

LΛ + LB = d− 2. (11)

10



(ii). The degrees of Λ(x) and B(x) satisfy

deg(Λ(x)) ≤ LΛ, deg(B(x)) ≤ LB. (12)

When Λ(x) is the true error locator polynomial as defined in (2), deg(Λ(x)) = LΛ.

(iii). The polynomials Λ(x) and B(x) are coprime, i.e., the two do not share a common factor.

Similarly, we have the following one-step-ahead algorithm that corrects (in the list decoding sense)

up to d+1
2 errors at essentially same complexity as the original Berlekamp algorithm. The proof is

straightforward.

One-Step-Ahead Berlekamp Algorithm

1. If LΛ > d+1
2 , then declare a decoding failure.

2. If LΛ < d+1
2 , then determine all distinct roots in {α−i}n−1

i=0 . If the number of (distinct) roots

is equal to LΛ, then return the corresponding unique codeword, otherwise declare a decoding

failure (which is identical to the normal Berlekamp algorithm)

3. Evaluate ∆i = Λ(α−i)
α−2iB(α−i)

, i = 0, 1, 2, . . . , n− 1.

4. Group the index sets {i1, i2, . . . , iLΛ
} such that ∆i’s are identical (each set corresponds to the

roots of a valid error locator polynomial).

5. Flip bits on all indices (locations) of each set obtained in Step 4, each resulting in a candidate

codeword.

Remark: The proposed algorithm is superior to the “trick” presented in [5] in which d+1
2 error

correction capability is achieved only for even-weight subcode by exploiting the parity syndrome of a

received word.

III. List Decoding Algorithm for Reed-Solomon Codes

In this section we present a list decoding algorithm for Reed-Solomon codes that corrects up to

⌈n − 1 −
√

n(n− d)⌉ errors, which is identical to that of the Guruswami-Sudan algorithm in [9]. We

shall extend the notation t0 = d
2 to allow d to take any integer value, instead of even value as initially

defined in (9). We use the terminology “valid” root to indicate a root is in the pre-defined space

which, in this context, means {1, α−1, . . . , α−(n−1)}. We also define a companion polynomial Q̄(x, y)

of a bivariate polynomial Q(x, y) to be Q̄(x, y)
△
= Q(x, 1/y)yPy (herein Py denotes the power of y in

Q(x, y)), and [yl]Q(x, y) the polynomial of x associated with the term yl. Specifically,

Q̄(x, y)
△
= fPy(x) + fPy−1(x)y + fPy−2(x)y2 + . . . + f1(x)yPy−1 + f0(x)yPy (13)

[

yl
]

Q(x, y)
△
= fl(x) (14)
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if Q(x, y) is in form of Q(x, y) = f0(x) + f1(x)y + f2(x)y2 + . . . + fPy(x)yPy .

A. Problem Formulation

Lemma 3 Let Λ∗(x) be the true error locator polynomial as defined in (2). Let Λ(x) and B(x) be the

error locator and correction polynomials, respectively, obtained from the Berlekamp-Massey algorithm.

Then, Λ∗(x) exhibits the form of

Λ∗(x) = Λ(x) · λ∗(x) + xB(x) · b∗(x), (15)

where the polynomials λ∗(x) and b∗(x) exhibit the following properties

(i). λ∗
0 = 1;

(ii). if b∗(x) = 0, then λ∗(x) = 1;

(iii). λ∗(x) and b∗(x) are coprime;

(iv). deg(λ∗(x)) = deg(Λ∗(x))− LΛ & deg(b∗(x)) ≤ deg(Λ∗(x)) − LxB, or

deg(λ∗(x)) ≤ deg(Λ∗(x))− LΛ & deg(b∗(x)) = deg(Λ∗(x)) − LxB;

(v). if deg(Λ∗(x)) < n− k, then λ∗(x) and b∗(x) are unique.

Proof: When the number of errors e ≤ ⌊n−k
2 ⌋, the above conclusions trivially hold, following the nature

of the Berlekamp-Massey algorithm. In the following we consider for the case e > ⌊n−k
2 ⌋. Suppose a

genie tells additional syndromes Sn−k, Sn−k+1 . . . , S2e−1, (alternative interpretation is to assume the

all-zero codeword is transmitted and thus the additional syndromes are available), the true error locator

polynomial Λ∗(x) can be obtained by further applying the Berlekamp-Massey algorithm in conjunction

with syndromes Sn−k, Sn−k+1, . . . , S2e−1. Thus, (15) holds by the nature of the Berlekamp-Massey

algorithm.

(i). Note that Λ∗
0(x) = 1 by definition (2) and Λ0(x) = 1 by the nature of the Berlekamp-Massey

iteration, Λ(r+1)(x) = Λ(r)(x)−∆(r+1)xB(r)(x), and by the initial condition Λ(0)(x) = 1. On the other

hand, the constant term of xB(x) · b∗(x) is always zero. Therefore, λ∗
0(x) = 1.

(ii). If b∗(x) = 0, then the corresponding (additional) discrepancies ∆(n−k), ∆(n−k+1), . . . , ∆(2e),

are all zeros. We thus obtain

Λ∗(x) = Λ(2e)(x) = Λ(2e−1)(x) = . . . = Λ(n−k)(x) = Λ(x),

which justifies the property (ii).

(iii). Let B∗(x) be the correction polynomial associated with Λ∗(x). It can be easily shown that

(cf. [4])




Λ∗(x)

B∗(x)



 =
2e
∏

r=1





1 −∆(r)x

(∆(r))−1δ(r) (1− δ(r))x









1

1





12



where δ(r) denotes a binary value associated with selection of B(r)(x) and is zero when ∆(r) = 0, and

likewise,




Λ(x)

B(x)



 =
n−k
∏

r=1





1 −∆(r)x

(∆(r))−1δ(r) (1− δ(r))x









1

1



 .

The above equalities, in conjunction with (15), indicate that

[

λ∗(x) xb∗(x)
]

=
[

1 0
]

.
2e
∏

r=n−k+1





1 −∆(r)x

(∆(r))−1δ(r) (1− δ(r))x



 .

We proceed to show by induction that λ∗(x) and xb∗(x) are coprime. When r = n − k + 1, we have

λ(1)(x) = 1 and xb(1)(x) = −∆(n−k+1)x. Clearly λ(1)(x) and xb(1)(x) are coprime. Assuming that

λ(i)(x) and xb(i)(x) (i.e., the case r = n− k + i) are coprime, we then have

[

λ(i+1)(x) xb(i+1)(x)
]

=
[

λ(i)(x) xb(i)(x)
]

·





1 −∆(r+1)x

(∆(r+1))−1δ(r+1) (1− δ(r+1))x





=
[

λ(i)(x) + (∆(r+1))−1δ(r+1)xb(i)(x) −∆(r+1)xλ(i)(x) + (1− δ(r+1))x2b(i)(x)
]

.

When δ(r+1) = 0, we obtain

[

λ(i+1)(x) xb(i+1)(x)
]

=
[

λ(i)(x) −∆(r+1)xλ(i)(x) + x2b(i)(x)
]

which clearly indicates that λ(i+1)(x) and xb(i+1)(x) are coprime. When δ(r+1) = 1, we obtain

[

λ(i+1)(x) xb(i+1)(x)
]

=
[

λ(i)(x) + (∆(r+1))−1xb(i)(x) −∆(r+1)xλ(i)(x)
]

which again indicates that λ(i+1)(x) and xb(i+1)(x) are coprime. Therefore, λ∗(x) is coprime to xb∗(x)

and subsequently to b∗(x).

(iv). The results clearly hold when Λ∗(x) = Λ(x). We next show for the case Λ∗(x) 6= Λ(x), which

indicates that the number of errors e > n−k
2 . Given the hypothetical 2e−(n−k) additional syndromes,

Sn−k, Sn−k+1, . . . , S2e−1, Λ∗(x) is the minimum-length LFSR to generate the syndrome sequence S0,

S1, S2, . . . , S2e−1. By Lemma 1, LΛ∗ = e = deg(Λ∗(x)). On the other hand, we observe that λ∗(x) and

b∗(x) are obtained by further applying the Berlekamp-Massey iterations on top of Λ(x) = Λ(n−k)(x)

and B(x) = B(n−k)(x), whose LFSR lengths are LΛ and LB, respectively. Therefore, we have

deg(λ∗(x)) ≤ LΛ∗ − LΛ = deg(Λ∗(x))− LΛ

deg(xb∗(x)) ≤ LΛ∗ − LB = deg(Λ∗(x)) − LB .

Further note that (15) indicates that

deg(Λ(x)) + deg(λ∗(x)) = deg(Λ∗(x)) or deg(xB(x)) + deg(b∗(x)) = deg(Λ∗(x)).

13



Without loss of generality, we assume deg(Λ(x))+deg(λ∗(x)) = deg(Λ∗(x)), which immediately yields

deg(λ∗(x)) = deg(Λ∗(x)) − deg(Λ(x)) ≥ deg(Λ∗(x)) − LΛ,

where the inequality follows Lemma 1. We thus obtain

deg(λ∗(x)) = deg(Λ∗(x))− LΛ and deg(Λ(x)) = LΛ.

(v). We prove Part (v) by contradiction. Assume that there is another pair λ(x) and b(x) satisfying

(15). Then, we have

Λ∗(x) = Λ(x) · λ∗(x) + xB(x) · b∗(x) = Λ(x) · λ(x) + xB(x) · b(x),

which immediately indicates

Λ(x) · (λ∗(x)− λ(x)) = xB(x) · (b(x)− b∗(x)).

Since Λ(x) is coprime to xB(x) (by Lemma 1.(iii)), Λ(x) divides b(x)− b∗(x). Likewise, xB(x) divides

λ∗(x)− λ(x). (15) indicates that

deg(Λ∗(x)) = max{deg(λ∗(x)) + deg(Λ(x)), deg(b∗(x)) + deg(xB(x))}

Without loss of generality, we assume deg(Λ∗(x)) = deg(λ∗(x)) + deg(Λ(x)). Then, deg(Λ(x)) = LΛ,

following Part (iv). Subsequently,

deg(Λ(x)) = n− k − LB > e− LB ≥ deg(b∗(x)).

Likewise, deg(Λ(x)) > deg(b(x)). Therefore, Λ(x) divides b(x)− b∗(x) if and only if b(x)− b∗(x) = 0,

i.e., b(x) = b∗(x). Part (v) is thus justified. 22

Example 1. Consider a transmitted codeword pertaining to the (15, 5) Reed-Solomon code

c = [0, α12, α10, α11, α7, α5, α11, α11, α6, α8, α14, α11, α6, α2, α]

where α denotes a primitive element of GF(16), and the corresponding received word which has 7

errors

r = [0, α6, α10, α5, α7, α5, α5, α11, α, α2, α14, α12, α6, α7, α].

The true error locator polynomial is

Λ∗(x) = (1− αx)(1 − α3x)(1− α6x)(1− α8x)(1 − α9x)(1 − α11x)(1− α13x)

= 1 + α9x + α11x3 + α5x4 + α12x6 + α6x7.
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Applying the Berlekamp-Massey algorithm, we obtain the following error locator and correction poly-

nomials

Λ(x) = 1 + α7x + α13x2 + αx3 + α13x4 + α4x5

B(x) = α6x + α5x2 + α10x3 + α3x4 + α11x5.

It can be verified that Λ∗(x) satisfies the following decomposition

Λ∗(x) = Λ(x)(1 + αx + α2x2) + xB(x) · α8.

22

Lemma 4 Let Λ(x) and B(x) be the error locator and correction polynomials, respectively, obtained

from the Berlekamp-Massey algorithm. Let the distance threshold t ≥ t0, where t0 is defined in (9).

(i). If the degree of Λ(x), LΛ > t, then there is no codeword within distance t from the received word.

(ii). If the degree of xB(x), LxB > t, then only Λ∗(x) = Λ(x) may result in a codeword within distance

t from the received word.

Proof: We show (i) by contradiction. Assume there is a codeword within distance t from the received

word. Then, the corresponding error locator locator polynomial Λ∗(x), which has degree up to t,

generates the syndrome sequence S0, S1, . . . , Sn−k−1. This contradicts the fact that Λ(x) represents a

minimum-length shift register which generates S0, S1, . . . , Sn−k−1.

(ii). If Λ(x) contains exactly LΛ distinct roots within {α−i}n−1
i=0 , then Λ∗(x) = Λ(x) leads to a

codeword with distance LΛ < t from the received word. Assume there is a codeword at distance e

from the received word, where e > LΛ. Then, e ≥ t0. This is because, if e < t0, then Λ∗(x) is the

unique minimum-length LFSR to generate the syndrome sequence, S0, S1, . . . , Sn−k−1, which obviously

conflicts the facts Λ∗(x) 6= Λ(x). Now assume that the additional syndromes Sn−k, Sn−k+1, . . . , S2e−1

are available and used for further applying the Berlekamp-Massey iterations. Let ∆(r) (r > n− k) be

the first nonzero discrepancy, then the error locator polynomial is updated as

Λ(r)(x) = Λ(n−k)(x)−∆(r)xr−(n−k)B(n−k)(x),

which immediately indicates

L∗
Λ ≥ L

(r)
Λ = LB + r − (n− k) ≥ LxB .

Since Λ∗(x) is a true error locator polynomial, e = LΛ∗ = deg(Λ∗(x)). Thus, Λ∗(x) has degree at least

LxB, i.e., e > LxB and the proof is completed. 22

Example 2. Consider a transmitted codeword pertaining to the (15, 5) Reed-Solomon code

c = [α2, α3, α5, α9, α12, α5, α4, α, α9, α14, α9, α8, α9, α11, α10]
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and the corresponding received word

r = [α2, α8, α5, α9, 1, α5, α4, α12, α2, α14, α9, α8, α13, 1, α11]

which has 7 errors. The true error locator polynomial is

Λ∗(x) = (1− αx)(1− α4x)(1 − α7x)(1 − α8x)(1− α12x)(1− α13x)(1 − α14x)

= 1 + α5x + α4x3 + α14x4 + α8x5 + α12x6 + α14x7.

The Berlekamp-Massey algorithm returns the error locator and correction polynomials below

Λ(x) = 1 + α9x + α5x2 + α6x3 + α9x5 + αx6 + α4x7

B(x) = α11 + α5x + αx2 + α2x3.

Note that Λ(x) has degree 7, Lemma 4 asserts no codewords within 6 symbol difference from the

received word. 22

B. Rational Interpolation

Dividing both sides of (15) by xB(x), we obtain

Λ∗(x)

xB(x)
=

Λ(x)

xB(x)
· λ∗(x) + b∗(x).

Define

yi = − Λ(α−i)

α−iB(α−i)
, i = 0, 1, 2, . . . , n− 1 (16)

where yi is set to ∞ when B(α−i) = 0, whose implication will be explored shortly. Let α−i1 , α−i2 ,

. . . , α−ie , be all the valid roots of the true error locator polynomial Λ∗(x). Then, y · λ∗(x) − b∗(x)

passes precisely through e points, (α−i1 , yi1), (α−i2 , yi2), . . . , (α−ie , yie).

Given the set of n distinct points {(α−i, yi)}n−1
i=0 , we are interested in finding rational functions

y(x) which pass t (t ≥ t0) points, in the sense that y(α−i) = yi. If yi =∞, then y(x) must contain the

pole α−i. This is because, when B(α−i) = 0, λ(α−i) must be zero, due to the fact that B(x) and Λ(x)

are coprime and thus cannot share the root. This is essentially a rational curve-fitting problem. In [9],

a powerful approach which makes use of multiple interpolation was presented to solve the polynomial

curve-fitting problem. In essence, it constructs a global bivariate polynomial (curve) Q(x, y) that

passes through all points with certain multiplicity. By its algebraic nature all desired polynomials

of the form y − p(x) are its factors [9]. In the following we generalize the approach to the rational

domain.

The most efficient known interpolation technique was presented in [18], whose prototype was

proposed in [15]. This approach exhibits quadratic complexity, as opposed to the straightforward

16



Gaussian elimination method which exhibits cubic complexity. We show that the same approach can

also be applied to the rational interpolation with appropriate modifications. Firstly, the weight of y

is determined differently. Note that we are essentially interested in the form of y · λ(x) − b(x). We

naturally assign the weight of y to be

w
△
= LΛ − LxB. (17)

We denote by deg1,w(Q(x, y)) the (1, w)-weighted degree of a bivariate polynomial Q(x, y) (refer

to [9, 16] for a detailed description of “weighted degree”). It is worth noting that the weight w may

take negative values, beyond the traditional notion. Secondly, passing through the point (α−i,∞) with

multiplicity m has the special meaning, i.e., the companion polynomial Q̄(x, y) = Q(x, 1/y)yPy passes

(α−i, 0) at m times. Finally, it is worth clarifying the (unconventional) relation between the power of y

in Q(x, y), denoted by Py, and the (1, w)-weighted degree of Q(x, y), denoted by deg1,w(Q(x, y)). Py is

no longer implicitly ⌊deg1,w(Q(x,y))

w ⌋ as in the case of polynomial interpolation, but a more sophisticated

function of deg1,w(Q(x, y)), as will be characterized in (22) in an optimal setup.

Example 3. (i). For the case presented in Example 1, the weight is set to w = −1. The n = 15

interpolation points are

(1, α6) (α−1, α8) (α−2, α12) (α−3, α13) (α−4, α11)

(α−5, α9) (α−6, ∞) (α−7, α4) (α−8, α12) (α−9, α13)

(α−10, α13) (α−11, ∞) (α−12, α6) (α−13, α10) (α−14, 1)

The following (1,−1)-weighted degree bivariate polynomial passes each of the above points 7 times.

Q(x, y) =

y0· [α7 + α9x + α14x2 + α5x3 + α2x4 + α8x5 + α12x6 + α6x7 + αx8 + α2x9 + α9x10 + αx12

+α5x13 + α12x14 + α7x15] +

y1· [α11 + α11x + α14x2 + α9x3 + α12x4 + α11x5 + α11x6 + x7 + α4x8 + α7x9 + α9x10 + α11x11

+α8x12 + α13x13 + α14x14 + α10x15 + α2x16 + αx17]

+ . . . + . . . +

y15· [α13 + α14x + α7x2 + α2x3 + x4 + α3x5 + α5x6 + α6x7 + α9x8 + x9 + α2x10 + α14x11

+α11x12 + x13 + α6x14 + α2x15 + α3x16 + α2x17 + α11x18 + α12x19 + α2x20 + α5x21

+α7x22 + α3x23 + α14x24 + α10x25 + α6x26 + α7x27 + αx28 + αx29 + α2x30] +

y16· [α6 + x + α12x2 + α12x3 + α6x5 + α7x6 + α8x7 + αx9 + α3x10 + α9x11 + α4x12

+α9x13 + α8x14 + α4x15 + α2x16 + αx17 + α10x18 + α6x19 + α4x20 + α8x21 + α14x22

+α9x23 + α11x24 + α11x25 + α9x26 + x27 + α6x28 + α10x29 + α14x30 + α2x31].

Note the (1,−1)–weighted degree of the above Q(x, y) is 16, which is beyond the conventional notion

of degree.
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(ii). For the case given in Example 2, the weight is set to w = 3. The n = 15 interpolation points

are

(1, ∞) (α−1, α5) (α−2, α2) (α−3, α9) (α−4, α5)

(α−5, α4) (α−6, α11) (α−7, α) (α−8, α4) (α−9, α13)

(α−10, α13) (α−11, α) (α−12, α11) (α−13, α3) (α−14, α5)

The following (1, 3)-weighted degree bivariate polynomial passes each of the above points 7 times.

Q(x, y) =

y0· [α4 + α14x + α2x2 + α9x3 + α11x4 + α14x6 + α12x7 + α4x8 + α8x9 + α2x10 + α5x11 + α11x12

+α14x13 + α10x14 + α6x15 + α3x16 + α14x17 + α13x18 + α5x19 + α12x21 + x22 + α3x23 + α11x24

+α8x25 + α8x26 + α10x28 + α6x31 + α6x32 + α7x33 + α13x34 + α5x35 + αx36 + α12x37 + α2x38

+x39 + α4x40 + α2x41 + α10x42 + α6x43 + α7x44 + α3x45 + α11x46 + α5x47 + α3x48] +

y1· [α8 + α7x + α3x2 + α14x3 + α10x4 + α9x5 + α3x6 + α8x7 + αx10 + α14x11 + α6x12 + α4x13

+α6x14 + α4x15 + α6x16 + α4x17 + α9x18 + α7x19 + x20 + α10x21 + α13x22 + α9x23

+α9x24 + α5x25 + α12x26 + α10x27 + α12x28 + α4x29 + α10x30 + α11x31 + α7x32 + α6x34

+α10x35 + x36 + α3x37 + α5x38 + α2x39 + α10x40 + α3x41 + αx42 + α8x43 + α6x45]

+ . . . + . . . +

y12· [1 + α4x2 + α4x3 + α6x4 + α4x6 + α14x7 + α12x8 + α11x9 + α11x10 + α3x11] +

y13· [α11x + α10x2 + α13x3 + α5x4 + α11x5 + α10x6 + α13x7 + α5x8]

22

Lemma 5 Let Q(x, y) be a bivariate polynomial passing through all n points {(1, y0), (α−1, y1),

(α−2, y2), . . . , (α−(n−1), yn−1)}, where yi is defined in (16), each with multiplicity m. If

(t− LΛ)Py + deg1,w(Q(x, y)) < tm, (18)

where Py denotes the power of y in Q(x, y) and deg1,w(Q(x, y)) (where w is defined in (17)) denotes

the (1, w)-weighted degree of Q(x, y), then Q(x, y) contains all factors of the form yλ(x)− b(x) which

pass through t (t ≥ LΛ) points.

Proof: Let yλ(x)− b(x) be a polynomial passing through t points. Then,

g(x)
△
= λPy(x)Q

(

x,
b(x)

λ(x)

)

is a polynomial and contains at least tm roots, i.e., all roots of Λ∗(x) each with multiplicity m. We

proceed to show that the degree of g(x) is at most (t− LΛ)Py + deg1,w(Q(x, y)). This is true for the

starting term without involving y, i.e., λPy(x)Q(x, 0), following the fact

deg
(

λPy(x)Q(x, 0)
)

≤ deg(λ(x))Py + deg1,w(Q(x, y)) ≤ (t− LΛ)Py + deg1,w(Q(x, y)),
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where deg(λ(x)) ≤ (t−LΛ) is due to Lemma 3.(iv). It also holds true for the ending term associated

with yPy , i.e., bPy(x) · [yPy ]Q(x, y), as follows

deg
(

bPy(x) · [yPy ]Q(x, y)
)

≤ deg(b(x))Py + (deg1,w(Q(x, y)) − wPy)

= deg1,w(Q(x, y)) + Py(deg(b(x)) + LxB − LΛ)

≤ deg1,w(Q(x, y)) + Py(t− LΛ),

where deg(b(x)) + LxB ≤ t is due to Lemma 3.(iv). Hence, it trivially holds true for the intermediate

terms. Finally, the fact

deg(g(x)) ≤ (t− LΛ)Py + deg1,w(Q(x, y)) < tm

indicates the polynomial g(x) has more roots than its degree. This is possible only with g(x) ≡ 0.

Therefore, we conclude that y · λ(x)− b(x) divides Q(x, y). 22

On the other hand, a sufficient condition for Q(x, y) to pass through all n points {(1, y0), (α−1, y1),

(α−2, y2), . . . , (α−(n−1), yn−1)}, each with multiplicity m, is that the number of coefficients (degrees of

freedom) of Q(x, y) is greater than the number of linear constraints. Note that the degrees of freedom,

denoted by Nfree, is easily seen to be

Nfree =

Py
∑

i=0

(deg1,w(Q(x, y)) + 1− iw) =
(2 deg1,w(Q(x, y)) + 2− wPy)(Py + 1)

2
(19)

whereas passing through a point with multiplicity m results in m(m+1)
2 linearly independent constraints

(readers are referred to [9] for detailed description). Thus, the number of linear constraints, denoted

by Ncstr, is

Ncstr =
nm(m + 1)

2
. (20)

We proceed to maximize the degrees of freedom subject to fixed number of errors e = t and the

fixed multiplicity m and the constraint (18), as follows

Nfree =
(2deg1,w(Q(x, y)) + 2−wPy)(Py + 1)

2

≤ (2(tm− 1− (t− LΛ)Py) + 2− wPy)(Py + 1)

2

= (tm− Py(t− t0))(Py + 1)

= −(t− t0)P
2
y + Py(tm− t + t0) + tm

= −(t− t0)

(

Py −
tm− t + t0

2t− 2t0

)2

+
(tm + t− t0)

2

4(t− t0)
(21)

where “=” is achieved in “≤” if and only if

deg1,w(Q∗(x, y)) = tm− 1− (t− LΛ)Py (22)
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which optimally accommodates the zero constraint (18), and the first equality is due to the fact

LΛ −
w

2
=

LΛ + LxB

2
=

n− k + 1

2
= t0.

Clearly, the maximum degrees of freedom is achieved by choosing P ∗
y to be the closest integer to

tm−t+t0
2t−2t0

, i.e.,

P ∗
y =

⌊

tm− t + t0
2t− 2t0

+ 0.5

⌋

=

⌊

tm

2t− 2t0

⌋

. (23)

Therefore, the optimal choice of m is the minimum integer that enforces Nfree > Ncstr, i.e.,

− (t− t0)

(⌊

tm

2t− 2t0

⌋

− tm− t + t0
2t− 2t0

)2

+
(tm + t− t0)

2

4(t− t0)
>

nm(m + 1)

2
. (24)

We next present an explicit construction of a valid (but not necessary optimal) multiplicity. Note

the maximum degrees of freedom is bounded by

max{Nfree} = −(t− t0)

(⌊

tm

2t− 2t0

⌋

− tm− t + t0
2t− 2t0

)2

+
(tm + t− t0)

2

4(t− t0)

≥ − t− t0
4

+
(tm + t− t0)

2

4(t− t0)
. (25)

Hence, to solve for the linear equation system, it suffices to enforce

(tm + t− t0)
2

4(t− t0)
− t− t0

4
>

nm(m + 1)

2
, (26)

which is reduced to

m2(t2 − 2n(t− t0))− 2m(t− t0)(n− t) > 0. (27)

The above inequality holds true for sufficiently large m if and only if

t2 − 2n(t− t0) > 0

which in turn indicates that

t < n−
√

n(n− d) (28)

which is equal to that of [9]. When t < n−
√

n(n− d), it suffices to choose the multiplicity m to be

m∗ =

⌊

2(t− t0)(n− t)

t2 − 2n(t− t0)
+ 1

⌋

=

⌊

t(2t0 − t)

t2 − 2n(t− t0)

⌋

. (29)

The following derives a lower bound on the optimal multiplicity mopt by relaxing Py to a real

number. More specifically, with Py being a real number, the constraint Nfree > Ncstr simplifies to

(tm + t− t0)
2

4(t− t0)
>

nm(m + 1)

2

⇔ m2(t2 − 2n(t− t0))− 2m(t− t0)(n − t) + (t− t0)
2 > 0
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which indicates

m >
(t− t0)(n − t) +

√

(t− t0)2(n− t)2 − (t2 − 2n(t− t0))(t− t0)2

t2 − 2n(t− t0)

=
(t− t0)

(

n− t +
√

n(n− d)
)

t2 − 2n(t− t0)

=
t− t0

n−
√

n(n− d)− t
. (30)

We thus conclude that the optimal value of m is within the range
⌊

1 +
t− t0

n−
√

n(n− d)− t

⌋

≤ mopt ≤
⌊

t(2t0 − t)

t2 − 2n(t− t0)

⌋

. (31)

It is worth noting that the LECC t, the multiplicity m and the y-degree Py are all irrelevant to

the degrees of Λ(x) or B(x) individually. We ought to ensure there is no negative freedom terms with

the above choice, which is easily verified by the fact that deg1,w(Q(x, y)) + 1 − iw is always positive

for i = 0, 1, 2, . . . , Py .

We summarize the above discussions into the following lemma.

Lemma 6 Let t satisfy (28), the multiplicity m be chosen as in (29) and the y-degree Py of bivariate

polynomial Q(x, y) as in (23). Then, all valid polynomials λ(x) · y − b(x) that pass through exactly

t points are factors of the minimum (1, w)-weighted (where w is defined in (17)) degree polynomial

Q(x, y) that passes through {(α−i, yi)}n−1
i=0 (where yi is defined in (16)), each with multiplicity m.

However, different values of e require different values of Py and m. We next show that for a given

LECC t, it suffices to choose a unified value Py and m based upon the LECC t to identify all valid

polynomials λ(x) ·y−b(x) corresponding to up to t errors. Since the degrees of freedom is independent

of the actual number of errors, it is only left to show that

(e− LΛ)Py + deg1,w(Q(x, y)) = (e + t− 2t0)Py + (t− t0) < em,

where deg1,w(Q(x, y)) satisfies (22) and m satisfies (30). By assumption the above inequality holds

when e = t, i.e.,
(2t− 2t0)Py

tm− t + t0
< 1.

Therefore, it suffices to show

(2t− 2t0)Py

tm− t + t0
≥ (t + e− 2t0)Py

em− t + t0
⇔ (t− e)Py ((t− 2t0)m + (t− t0)) ≤ 0

⇔ m ≥ t− t0
2t0 − t

,

which holds true following (30) and the fact 2t0 = d > n−
√

n(n− d).

The following theorem wraps up the subsection.
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Theorem 1 Let Λ(x) and B(x) be the error locator and correction polynomials, respectively, computed

by the Berlekamp-Massey algorithm. For any given t satisfying (28), if we choose the multiplicity m as

in (29) and the y-degree Py of bivariate polynomial Q(x, y) as in (23), then the minimum (1, LΛ−LxB)-

weighted degree polynomial Q(x, y) that passes through each of n distinct points, {(α−i, yi)}n−1
i=0 (where

yi is defined in (16)), with multiplicity m, contains all factors λ(x)y− b(x) which pass through at least

LΛ but at most t out of n points.

Remarks: The above theorem can be viewed as a generalization of Lemma 5 in [9] from polynomial to

rational curve-fitting. Although we do not address this explicitly, the choice of weight of y in Q(x, y)

is optimal in the sense of maximizing the LECC t. It optimally trades off between (18) and (27).

Example 4. For the (15, 5) Reed-Solomon code, we have n −
√

n(n− d) = 7.254. We consider

correcting up to t = 7 errors. It suffices to choose the multiplicity m =
⌊ t(2t0−t)

t2−2n(t−t0)

⌋

= 7. Let the

degree of y be chosen as Py =
⌊

tm
2t−2t0

⌋

= 16, following (23), and the degree of Q(x, y), deg1,w(Q(x, y)),

as in (22). As a result, the degrees of freedom is (tm− Py(t− t0))(Py + 1) = 425 whereas the number

of linear constraints is nm(m + 1)/2 = 420. The lower bound of m is
⌊

1 + t−t0
n−
√

n(n−d)−t

⌋

= 6. When

m = 6, it can be verified that the maximum degrees of freedom and the number of constraints are

both 315. Thus, m = 6 is not satisfactory and the optimal choice of multiplicity is m = 7. For the

received words given in Examples 1 & 2, the minimum (weighted) degree bivariate polynomials Q(x, y)

constructed with m = 7 and Py = 16 are presented in Example 3. In contrast, to achieve the same

LECC t = 7, the Guruswami-Sudan algorithm requires multiplicity m = 16 with Py = 31 (recall that

Py is a natural upper bound on the list size). 22

C. Rational Factorization

In this section we apply rational factorization to obtain b(x)
λ(x) , following the developments in [21, 28].

However, our particular application is complicated by not knowing a priori the degrees of λ(x) and

b(x).

Define

f(x)
△
=

b(x)

λ(x)
(32)

which is well defined, as indicated by Lemma 3 that b(x) and λ(x) are coprime. We, thus, only need

to determine f(x) to construct Λ∗(x). Note that λ0 = 1, as indicated by Lemma 3. Consequently,

f(x) can be expressed by an infinite-length non-negative power series

f(x) =
b(x)

λ(x)
= s0 + s1x + s2x

2 + . . . six
i + . . . .

When Q(x, y) contains factors of the form y − f(x), we can obtain the infinite-length power series

of the rational function f(x) through making use of the following factorization procedure [21,28].
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Rational Factorization Procedure

0. Initialization: i = 0 and Q(0)(x, y)← Q(x, y).

1. Determine the roots of Q(i)(0, y).

2. For each root s,

• Compute the shifted polynomial: Q̂(i)(x, y)← Q(i)(x, s + y).

• Transform and then remove x factors: Q(i+1)(x, y)← Q̂(i)(x, xy)/xa, where xa denotes the

largest power of x contained as a factor in Q̂(i)(x, xy).

3. Set i← i + 1 and repeat Steps 1 and 2 for the derivative Q(i)(x, y) with respect to each root s.

We proceed to show that a pertinent finite-length, say Ls, power series of s(x) suffices to retrieve

b(x) and λ(x). Note we have
b(x)

λ(x)
≡ s(x) (mod xLs). (33)

It can be efficiently solved by the Berlekamp-Massey algorithm given that Ls is large enough, as

demonstrated below.

We first assume that the degrees of b(x) and λ(x) are known a priori. When deg(b(x)) < deg(λ(x)),

λ(x) is then uniquely determined (upon normalization) by the Berlekamp-Massey algorithm (note that

s(x) (mod xLs), λ(x), and b(x) correspond to syndrome, error locator, and error evaluator polynomi-

als, respectively), with Ls = 2deg(λ(x)). Note that the condition deg(b(x)) < deg(λ(x)) implies

deg(λ(x))
∑

j=0

λjsi−j = 0, i = deg(λ(x)), deg(λ(x)) + 1, . . . , 2 deg(λ(x)) − 1.

Therefore, the LFSR length described by λ(x) is Lλ = deg(λ(x)).

When deg(b(x)) ≥ deg(λ(x)), let

b(x)

λ(x)
= a(x) +

b′(x)

λ(x)

where a(x) is a polynomial of degree deg(b(x))− deg(λ(x)) and the degree of b′(x) is less than that of

λ(x). Let j1 = deg(b(x))− deg(λ(x)) and j2 = deg(b(x)) + deg(λ(x)). We observe that λ(x) generates

the sequence (s0 − a0), . . . , (sj1 − aj1), sj1+1, . . . , sj2, consequently, its subsequence sj1+1, sj1+2, . . . ,

sj2. Therefore, λ(x) can be uniquely determined (upon normalization) using the sequence sj1+1, sj1+2,

. . . , sj2, and subsequently b(x) is computed by following the equality

b(x) = s(x)λ(x) (mod xdeg(b(x))+1).

Clearly, in this case it suffices to compute the power series expansion of f(x) up to length Ls =

deg(b(x)) + deg(λ(x)) + 1.
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Because we do not know a priori the degrees deg(b(x)) and deg(λ(x)), we have to take into account

the worst cases. When deg(b(x)) = t− LxB and deg(λ(x)) = 0, the Berlekamp-Massey algorithm has

to start from the syndrome st−LxB+1, on the other hand, deg(λ(x)) may be as large as t− LΛ, hence

the Berlekamp-Massey algorithm requires 2(t − LΛ) syndromes in the worst case. Therefore we may

safely set the length of s(x) to:

Ls = t− LxB + 1 + 2(t− LΛ) = 3t + 1− 2t0 − LΛ. (34)

We thus obtain λ(x) by applying the Berlekamp-Massey algorithm which starts from the syndrome

st−LxB+1 and iterates 2(t− LΛ) times. Thereafter, we compute b(x) via

b(x) = s(x)λ(x) (mod xt−LxB+1). (35)

After we have determined the error locator polynomial Λ′(x) = Λ(x)λ(x) + xB(x)b(x), we can

subsequently identify all error locations and apply Forney’s formula to compute the corresponding

error magnitudes [4].

Example 5. (i). For the bivariate polynomial Q(x, y) constructed in Example 3.(i), applying the

proposed rational factorization returns three candidate rational functions.

(1). λ(x) = 1+ αx+ α2x2 and b(x) = α+ α2x. The candidate error locator polynomial is constructed

Λ′(x) = λ(x) · Λ(x) + b(x) · xB(x)

= 1 + α9x + α5x2 + α10x3 + α4x4 + α7x5 + x6 + α4x7

= (1− x)(1− α3x)(1− α6x)(1− α7x)(1 − α10x)(1− α11x)(1− α12x)

which produces the following candidate codeword

c = [α2, α6, α10, α8, α7, α5, α6, α12, α, α2, α3, α9, α9, α7, α].

(2). λ(x) = 1 + α12x and b(x) = α7. The candidate error locator polynomial is constructed as

Λ′(x) = 1 + α2x1 + α4x2 + α5x3 + α2x4 + α4x5 + α10x6

which has less than 6 distinct roots in GF(16) and thus is spurious.

(3). λ(x) = 1 + αx + α2x2 and b(x) = α8. The corresponding candidate error locator polynomial is

Λ′(x) = 1 + α9x1 + α11x3 + α5x4 + α12x6 + α6x7

= (1− αx)(1 − α3x)(1− α6x)(1− α8x)(1 − α9x)(1 − α11x)(1− α13x)

which successfully retrieves the transmitted codeword

c = [0, α12, α10, α11, α7, α5, α11, α11, α6, α8, α14, α11, α6, α2, α].
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(ii). For the bivariate polynomial Q(x, y) constructed in Example 3.(ii), applying the proposed

rational factorization returns one candidate rational function: λ(x) = 1 and b(x) = α12 + α10x +

α4x2 + α7x3. Consequently, the candidate error locator polynomial is constructed

Λ′(x) = λ(x) · Λ(x) + b(x) · xB(x)

= 1 + α5x + α4x3 + α14x4 + α8x5 + α12x6 + α14x7

= (1− αx)(1− α4x)(1 − α7x)(1 − α8x)(1− α12x)(1− α13x)(1 − α14x)

which produces the original codeword. It also verifies Lemma 4.(i), that there does not exist codewords

within distance 6 from the received word. 22

D. Algorithmic Description and Performance Assertion

We summarize the complete list decoding algorithm and its characterization as follows.

List Decoding Algorithm for Reed-Solomon Codes

0. Initialization: Input code length n, information dimension k, and LECC t satisfying t < n −
√

n(n− d). Initialize the multiplicity m based on (29), then greedily optimize it subject to the

constraint (24), subsequently choose the y-degree Py as in (23).

1. Input the received word and compute syndromes.

2. Apply the Berlekamp-Massey algorithm to determine Λ(x) and B(x). If LΛ > t then declare a

decoding failure.

3. Perform error correction and evaluate yi = − Λ(α−i)
α−iB(α−i)

, i = 0, 1, 2, . . . , n− 1.

4. If LxB > t, then return the corresponding unique codeword when Λ(x) has LΛ valid roots,

otherwise declare a decoding failure.

5. Apply the rational interpolation procedure to compute a (1, LΛ−LxB)-weighted-degree polyno-

mial Q(x, y) that passes through
{

(α−i, yi)
}n−1

i=0
, each with multiplicity m.

6. Apply the rational factorization process to obtain finite-length power series s(x) (mod xLs) of

the rational functions b(x)
λ(x) .

7. For each finite-length power series s(x) (mod xLs), do:

• Apply the Berlekamp-Massey algorithm to determine λ(x).

• Compute b(x) = s(x)λ(x) (mod xt−LxB+1).
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• Construct Λ′(x) = λ(x) · Λ(x) + b(x) · xB(x).

• Determine the distinct roots of Λ′(x) within {α−i}n−1
i=0 .

• Compute error magnitudes using the Forney’s formula if the number of distinct roots is

equal to the degree LΛ′ .

8. Return the list of codewords which are within distance t from the received word.

Theorem 2 Let a LECC t satisfy (28). If the multiplicity m is chosen as in (29) and subsequently

the y-degree Py as in (23), then the proposed list decoding algorithm produces all codewords within

distances t from a received word.

Remarks: The proposed list decoding algorithm can be applied to the decoding of generalized

Reed-Solomon codes, and error-and-erasure decoding using the method in [8].

Let topt denote the achievable LECC

topt
△
= ⌈n− 1−

√

n(n− d)⌉. (36)

Corollary 1 The number of codewords that lie within (strictly less than) Hamming distance n −
√

n(n− d) from a received word is O(n−
√

n(n− d)).

Proof: The number of such codewords is upper bounded by the degree Py that corresponds to t = topt.

Substituting (29) into (23), we further obtain

Py = O

(

topt

2topt − d
· topt(d− topt)

t2opt − ntopt + nd

)

= O

(

topt

2topt − d
· topt(d− topt)

(n−
√

n(n− d)− topt)(n +
√

n(n− d)− topt)

)

= O

(

topt

2topt − d
· topt(2t0 − topt)

n +
√

n(n− d)− topt

)

= O

(

n−
√

n(n− d)

2n− 2
√

n(n− d)− d
· (n−

√

n(n− d))(d− (n−
√

n(n− d)))

n +
√

n− d− (n +
√

n(n− d))

)

= O
(

n−
√

n(n− d)
)

as desired.

We next justify the treatment of the term n−
√

n(n− d)−topt as O(1). Indeed, n−
√

n(n− d)−topt

can be arbitrarily small with appropriate choices of n. However, if we replace topt by

t′ = ⌊n−
√

n(n− d)− 0.5⌋,
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then we immediately have 0.5 ≤ n −
√

n(n− d) − t′ < 1.5, i.e., n −
√

n(n− d) − t′ = O(1). On

the other hand, we have 0 ≤ topt − t′ ≤ 1, in which difference by 1 can be safely ignored in light of

asymptotic behavior. 22

Remarks: In [9], the product term (n−
√

n(n− d)−topt)(n+
√

n(n− d)−topt) is regarded as constant

O(1), which results in a quadratic bound O(
√

kn3) for list size, which otherwise is a linear term as

well. Given a LECC t < n −
√

n(n− d) for (n, k) Reed-Solomon code, the explicit construction of

the Guruswami-Sudan algorithm is given in [9]:

Py =

⌊

1

n− d

(

(n− t)
(

1 +
⌊n(n− d) +

√

n2(n − d)2 + 4((n − t)2 − n(n− d))

2((n − t)2 − n(n− d))

⌋)

− 1

)⌋

whereas the explicit construction of the proposed algorithm shows

Py =

⌊

t

2t− 2t0
·
⌊

t(2t0 − t)

t2 − 2n(t− t0)

⌋⌋

.

Figures 2 and 3 shed some light on the tightness of the list size bound between the two algorithms.

Note that due to integer precision, it is possible that under a fixed multiplicity m, larger LECC t

causes smaller list size, specifically, let t and t′, t < t′ be permissible for the same m, then it holds

⌊ tm
2(t−t0)⌋ ≥ ⌊

t′m
2(t′−t0)⌋. To this end, the minimum value should be chosen in the range where the same

multiplicity m applies.

Ignoring the integer precision, the ratio
Py,GS

Py,prop
with respect to the LECC limit t = n(1−

√
1−D)

is expressed as
Py,GS

Py,prop

∣

∣

∣

∣

t=n(1−
√

1−D)

=
1

1−
√

1−D
,

which reveals that the derivative bound of the proposed algorithm is universally tighter than that of

the Guruswami-Sudan algorithm on the boundary of the optimal LECC, as illustrated in Figure 4.

Finally, we clarify that the above results are consistent with the work in [13, 22], in which the list-l

Guruswami-Sudan bound is shown to be tight only when the algorithm degenerates to the classical

(list-1) hard-decision decoding.

E. Complexity Analysis

Finally we analyze the computational complexity in terms of field operations, assuming n and k are

large enough and the field cardinality q ≤ 2n (which is used to bound the factorization complexity,

as discussed in [9]). Following the convention, we will fix the normalized minimum distance D = d/n

while letting n (and d) go to infinity. Our particular interest lies in the case of the achievable LECC
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topt which is defined in (36). In this case, the multiplicity chosen in (29) simplifies to

m = O

(

topt(d− topt)

t2opt − 2ntopt + nd

)

= O

(

topt(d− topt)

(n−
√

n(n− d)− topt)(n +
√

n(n− d)− topt)

)

= O

(

topt(d− topt)

n +
√

n(n− d)− topt

)

= O

(

(n−
√

n(n− d))(d− (n−
√

n(n− d))

2
√

n(n− d)

)

= O

(

(√
n−
√

n− d
)2
)

.

To the best of our knowledge, the up-to-date most efficient interpolation technique is through the

Koetter updating procedure which exhibits complexity O(N2) with N linear constraints [15, 18]. To

achieve optimal performance, the number of constraints is of the order O(nm2) = O
(

n(
√

n−
√

k)4
)

.

Thus, we have the following characterization regarding the interpolation complexity.

Lemma 7 The rational interpolation of the proposed list decoding algorithm can be implemented with

the complexity of

O
(

n2(
√

n−
√

n− d)8
)

to achieve the LECC topt = ⌈n− 1−
√

n(n− d)⌉.

We next analyze the complexity of the proposed factorization procedure, following the development

in [21]. Note the length of s(x), which is factorized and used in the Berlekamp-Massey algorithm to

obtain λ(x) and b(x), is bounded by

3t− 2t0 − deg(λ(x)) ≤ 3t− 2t0 − deg(λ(x)) + (t− LxB) = 4(t− t0).

In [17], it is shown that the roots in GF(q) of a polynomial of degree u can be found in expected time

complexity O(u2 · log2 u · log q). We observe that in each iteration “(i)” the degrees of the polynomials

Q(i)
j (0, y) satisfy

∑

j deg(Q(i)
j (0, y)) ≤ Py (See Lemma 6.2 in [21]). The root-finding complexity in one

iteration is then bounded by

∑

j

O(deg2(Q(i)
j (0, y)) · log2 deg(Q(i)

j (0, y)) · log q) ≤ O(P 2
y · log2 Py · log q).

Thus, the computational complexity of determining roots of Q(0, y) in up to 4(t − t0) iterations is

bounded by

O
(

(t− t0) · P 2
y · log2 P 2

y · log q
)

.
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We now analyze the shift operation Q̂(i)(x, y) ← Q(i)(x, y + si). Lemma 6.2 in [21] indicates

that the step Q(i+1)(x, y) ← Q̂(i)(x, xy)/xa, where xa denotes the largest power of x which divides

Q̂(i)(x, xy), results in

deg
(

Q(i+1)(0, y)
)

≤ a ≤ h ≤ deg
(

Q(i)(0, y)
)

,

where h denotes the multiplicity of the root si of Q(i)(0, y). Hence, the parameter a is non-increasing

with iterations going on. Therefore, it suffices, in each iteration, to update the first 4a(t − t0) terms

of [yl]Q(i)(x, y), l = 0, 1, 2, . . . , Py, in order to determine the first 4(t − t0) terms of s(x). Since each

term can be updated with O(Py) operations, the corresponding complexity in one iteration is

∑

j

4aj · (t− t0)P
2
y ≤

∑

j

4 deg(Q(i)
j (0, y)) · (t− t0)P

2
y = O

(

(t− t0)P
3
y

)

.

and thus the resulting overall complexity is O
(

(t− t0)
2P 3

y

)

.

Finally, since there are at most Py candidate polynomials s(x), it takes O(Py(t− t0)
2) operations

to compute the corresponding λ(x) and b(x) through the Berlekamp-Massey algorithm. Clearly, the

overall complexity of the proposed factorization procedure is dominated by the shift operation with

the complexity of

O
(

(t− t0)
2P 3

y

)

= O
(

n3/2(
√

n−
√

n− d)7
)

.

Therefore, we characterize the complexity of the factorization procedure as follows

Lemma 8 Given that the field cardinality is at most 2n, the rational factorization procedure of the

proposed list decoding algorithm can be implemented with the complexity of

O
(

n3/2(
√

n−
√

n− d)7
)

to achieve the LECC topt.

The following theorem summarizes the complexity of the proposed algorithm.

Theorem 3 Given that the field cardinality is at most 2n, the proposed list decoding algorithm exhibits

the computational complexity in terms of field operations

O
(

n2(
√

n−
√

n− d)8
)

(37)

to achieve the LECC topt = ⌈n− 1−
√

n(n− d)⌉.

Remarks: Note that the multiplicity dictates the complexity. It is insightful to also compare the

minimum multiplicities between the Guruswami-Sudan algorithm and the proposed algorithm. For an

intermediate n−k
2 < t < n−

√

n(n− d), the value of multiplicity given in [9] is, under our notations,

mGS = 1 +

⌊

n(n− d) +
√

(n2(n− d)2 + 4((n − t)2 − n(n− d))

2(t2 − 2nt + nd)

⌋

29



72 74 76 78 80 82 84 86
0

20

40

60

80

100

120

140

160

180

List Error Correction Capability

 

 

Multiplicity, Guruswami−Sudan
Multiplicity, Proposed
List−Size−Bound, Guruswami−Sudan
List−Size−Bound, Proposed

Figure 2: Multiplicity and list-size-bound as functions of list error correction capability for the (255,

112) Reed-Solomon code.

whereas the value of multiplicity of the proposed approach is given in (29), i.e.,

mprop = 1 +

⌊

2(t− t0)(n − t)

t2 − 2nt + nd

⌋

.

(recall that the above mprop is a sufficient value but not necessarily the minimum/optimal value, as

indicated in (31).)

Figures 2 and 3 plot the above two multiplicity functions for the (255, 112) Reed-Solomon code

and the (2047, 1647) Reed-Solomon code, respectively. We observe in Figure 3, where the code rate is

0.8, that to correct extra five erroneous symbols, the proposed algorithm requires multiplicity m = 1,

whereas the Guruswami-Sudan algorithm requires multiplicity m = 143; to achieve the LECC limit

of correcting extra 11 errors, the former requires the multiplicity m = 26, whereas the latter requires

m = 2197.

We further consider the ratio mGS

mprop
with respect to the LECC limit t = n(1 −

√
1−D), which is

expressed as
mGS

mprop

∣

∣

∣

∣

t=n(1−
√

1−D)

=
n(n− d)

2(t− t0)(n− t)
=

√
1−D

(1−
√

1−D)2
.
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Figure 3: Multiplicity and list-size-bound as functions of list error correction capability for the (2047,

1647) Reed-Solomon code.

(Note the integer precision is not taken into account in the above equality.) It is plotted in Figure 4

as a function of normalized minimum distance D. Evidently, the proposed algorithm reduces the

(required) multiplicity (to achieve the optimal LECC) by orders of magnitude.

F. An Alternative Perspective

In the above we have characterized the multiplicity m with respect to a fixed LECC t as in (31), and in

particular, its asymptotics with respect to the maximum LECC topt as in (37). In this subsection, we

characterize the LECC with respect to a fixed multiplicity and show that the derivative algorithm has

quadratic complexity which is identical to that of the Berlekamp-Massey algorithm. To simplify our

analysis we will treat Py, and subsequently deg1,w(Q(x, y)), as real numbers. Indeed, this treatment

reveals many fundamental insights.

Note that the degrees of freedom is maximized to

max{Nfree} =
(tm + t− t0)

2

4(t− t0)

31



0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

6

7

Normalized Minimum Distance (d/n)

lo
g 10

 

 
Multiplicity Ratio
List−Size−Bound Ratio

Figure 4: The ratio of multiplicity and list-size-bound of the Guruswami-Sudan algorithm to that of

the proposed algorithm in achieving the limit of list error correction capability.

associated with Py = tm−t+t0
2(t−t0) . Consequently, the constraint max{Nfree} > Ncstr with respect to a

fixed multiplicity m is reduced to

(tm− t + t0)
2

4(t− t0)
>

nm(m + 1)

2
, (38)

which simplifies to

t2(m + 1)2 − 2t(m + 1)(t0 + mn) + t20 + 2t0nm(m + 1) > 0.

Solving, we obtain

t <
1

m + 1
t0 +

m

m + 1

(

n−
√

n(n− d)
)

. (39)

It indicates that, the practical LECC gain can be achieved with very small constant multiplicity,

irregardless of the code length n, and particularly, half the LECC gain is achieved with multiplicity

m = 1.
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Recall that the above LECC is achieved with Py set to

Py =
tm− t + t0
2(t− t0)

=
D

(1−
√

1−D)2
+

m− 1

1−
√

1−D
, (40)

where the second equality is obtained by substituting t with the limit in (39). It indicates that the

list size is upper bounded by a constant for a fixed normalized minimum distance D, regardless of

code length n. Figure 6 also reveals that the bound increases when the distance D decreases, although

the algorithm itself becomes less and less powerful. On the other hand, the algorithmic complexity is

quadratic following the step-by-step analysis of the preceding subsection, fundamentally attributed to

a constant upper bound on the list size.

The above two-fold facts immediately reveals the following fundamental insights

Theorem 4 For arbitrarily small ǫ > 0, the list decoding up to the LECC

t =
⌊

ǫ · t0 + (1− ǫ) · (n−
√

n(n− d))
⌋

(41)

can be achieved by the proposed algorithm with multiplicity m = ⌊1ǫ ⌋, whose complexity is quadratic in

nature, O(n2).

Remarks: (i). Even if m = 1 the proposed algorithm universally outperforms the conventional hard-

decision decoding, as shown in Figure 5, in contrast to the Sudan algorithm, where the improvement

is observed only when the code rate k
n < 1

3 [25]. (ii). The list size of candidate codewords is upper

bounded by a constant arbitrarily close to the LECC limit n−
√

n(n− d). However, the list size may

be as large as superpolynomial slightly beyond the LECC limit, as explicitly constructed in [11].

IV. Improved List Decoding Algorithm for Binary BCH Codes

In this section we investigate the list decoding of the narrow-sense binary BCH codes. It is straightfor-

ward to apply the algorithm in the preceding section to the decoding of a binary BCH code and obtain

the inherent LECC to be n(1 −
√

1−D), where D denotes the normalized designed minimum dis-

tance. In the following we present an improved list decoding algorithm for the binary BCH codes that

achieves the Johnson bound for the binary codes n
2 (1−

√
1− 2D), which gives a general lower bound

on the number of correctable errors using small lists for any code, as a function of the normalized

minimum distance of the code [12].

The following lemma identifies a special feature of binary BCH codes. Its proof follows from

Lemma 3 and the particularity of the Berlekamp algorithm.
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Figure 5: Normalized (list) error correction capability as a function of the normalized minimum

distance on decoding Reed-Solomon codes.

Lemma 9 Let Λ∗(x) be the true error locator polynomial as defined in (2). Let Λ(x) and B(x) be the

error locator and correction polynomials, respectively, obtained from the (re-formulated) Berlekamp

algorithm. Then, Λ∗(x) exhibits the form of

Λ∗(x) = Λ(x) · λ∗(x2) + x2B(x) · b∗(x2), (42)

where the polynomials λ∗(x) and b∗(x) exhibit the following properties:

(i). λ∗
0 = 1;

(ii). if b∗(x) = 0, then λ∗(x) = 1;

(iii). λ∗(x) and b∗(x) are coprime;

(iv). 2 deg(λ∗(x)) = deg(Λ∗(x))− LΛ and 2 deg(b∗(x)) ≤ deg(Λ∗(x))− Lx2B, or

2 deg(λ∗(x)) ≤ deg(Λ∗(x))− LΛ and 2 deg(b∗(x)) = deg(Λ∗(x))− Lx2B;

(v). if deg(Λ∗(x)) < d, then λ∗(x) and b∗(x) are unique;

We proceed to incorporate the special form (42) into the rational interpolation process to optimize
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Figure 6: The bound on the list size with multiplicity m = 1.

the LECC. Define

yi = − Λ(α−i)

α−2iB(α−i)
, i = 0, 1, 2, . . . , n− 1. (43)

Note we are interested in determining the form of yλ(x2)− b(x2), so we naturally assign the weight of

y to be

w = LΛ − Lx2B, (44)

which is always odd since LΛ + Lx2B = d is odd.

Lemma 10 Let Λ(x) and B(x) be the error locator and correction polynomials, respectively, obtained

from the (re-formulated) Berlekamp algorithm. Let Q(x, y) be a bivariate polynomial passing through

all n points {(1, y0), (α−2, y1), (α−4, y2), . . . , (α−2(n−1), yn−1)} (where yi is defined in (43)), each with

multiplicity m. If

(t− LΛ)Py + deg2,w(Q(x, y)) < 2tm, (45)

where Py denotes the power of y in Q(x, y) and deg2,w(Q(x, y)) (where w is defined in (44)) denotes

the (2, w)-weighted degree of Q(x, y), then Q(x2, y) contains all factors of the form yλ(x2) − b(x2)

which pass through t (t ≥ LΛ) points.
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Proof: Let yλ(x2) − b(x2) be a polynomial passing through t out of n points, {(1, y0), (α−1, y1),

(α−2, y2), . . . , (α−(n−1), yn−1)}, and (α−i, yi) be one of points. Let

p(x)
△
=

b((x + α−i)2)

λ((x + α−i)2)
− yi =

b(x2 + α−2i)

λ(x2 + α−2i)
− yi,

where the second equality is due to the field of characteristic of 2. Then p(0) = 0 and moreover p(x)

must be in the form of

p(x) = x2p′(x),

where p′(x) contains no pole of zero. We next show that (x−α−i)2m divides the following polynomial

g(x)
△
= λPy(x2)Q

(

x2,
b(x2)

λ(x2)

)

To this end, consider

g′(x)
△
= λPy(x2 + α−2i) · Q(i)(x2, p(x)),

where Q(i)(x, y) is the shift of Q(x, y) to (α−2i, yi). Consequently,

g(x) = λPy(x2)Q(i)

(

x2 + α−2i,
b(x2)

λ(x2)
− yi

)

= λPy(x2)Q(i)
(

x2 + α−2i, p(x− α−i)
)

= g′(x− α−i).

By construction, Q(i)(x, y) has weighted degree less than m. Thus, plugging in p(x) = x2p′(x), we

conclude that (x − α−i)2m divides g(x). Therefore, g(x) is a polynomial that contains at least 2tm

roots, i.e., all roots of Λ∗(x) each with multiplicity 2m. The remaining proof trivially follows that of

Lemma 5. 22

Note that the degrees of freedom in Q(x, y), given the degrees deg2,w(Q(x, y)) and Py, is

Py
∑

i=0

(

1 + ⌊
deg2,w(Q(x, y)) − iw

2
⌋
)

≥
Py
∑

i=0

(

1 +
deg2,w(Q(x, y)) − iw − 1

2

)

=
(deg2,w(Q(x, y)) + 1− Pyw/2)(Py + 1)

2
.

Define

t0
△
= LΛ − w/2 =

LΛ + Lx2B

2
=

d

2
.

Note that the above definition is consistent with the case of Reed-Solomon codes.

We next maximize the lower bound of Nfree,
(deg2,w(Q(x,y))+1−Pyw/2)(Py+1)

2 , subject to fixed number

of errors t, fixed multiplicity m and the zero constraint (45)

(deg2,w(Q(x, y)) + 1− Pyw/2)(Py + 1)

2
≤ 1

2
(2tm− Py(t− t0))(Py + 1)

= − t− t0
2

P 2
y +

2tm− t + t0
2

Py + tm

= − t− t0
2

(

Py −
2tm− t + t0

2(t− t0)

)2

+
(2tm + t− t0)

2

8(t− t0)
,(46)
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where “=” in the “≤” is achieved if and only if

deg2,w(Q∗(x, y)) = 2tm− 1− Py(t− LΛ). (47)

We note that the maximum degrees of freedom is achieved by choosing P ∗
y to be the closest integer

to 2tm−t+t0
2t−2t0

, i.e.,

P ∗
y =

⌊

2tm− t + t0
2t− 2t0

+ 0.5

⌋

=

⌊

tm

t− t0

⌋

. (48)

Therefore, the maximum degrees of freedom has the following lower bound

− t− t0
8

+
(2tm + t− t0)

2

8(t− t0)
=

t2m2 + tm(t− t0)

2(t− t0)
. (49)

Hence, to solve for the linear equation system, it suffices to enforce

t2m2 + tm(t− t0)

2(t− t0)
>

nm(m + 1)

2
, (50)

which is equivalent to

m2(t2 − n(t− t0))−m(t− t0)(n − t) > 0.

The above condition holds true for sufficiently large m if and only if

t2 − n(t− t0) > 0,

which indicates the following limit of LECC

t <
n−

√

n(n− 4t0)

2
=

n−
√

n(n− 2d)

2
. (51)

It is always superior to the inherent LECC n−
√

n(n− d), following the fact

n−
√

n(n− 2d)

2
−
(

n−
√

n(n− d)
)

=
t0
√

n√
n− d +

√
n− 2d

− t0
√

n√
n +
√

n− d
> 0.

When (51) is satisfied, we may choose the multiplicity m to be

m∗ =

⌊

(t− t0)(n− t)

t2 − n(t− t0)
+ 1

⌋

=

⌊

tt0
t2 − n(t− t0)

⌋

. (52)

The following presents the “lossless” maximization of the degrees of freedom conditioned on the

fixed t and m. It can be easily verified that the degrees of freedom is bounded by

(deg2,w(Q(x, y)) + 1− Pyw/2)(Py + 1)

2
+

Py

4
+

1

2
≥

Py
∑

i=0

(

1 + ⌊
deg2,w(Q(x, y)) − iw

2
⌋
)

≥
(deg2,w(Q(x, y)) + 1− Pyw/2)(Py + 1)

2
+

Py

4
.
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Due to the integer constraint, it suffices to treat and optimize the degrees of freedom as follows

Nfree =
(deg2,w(Q(x, y)) + 1− Pyw/2)(Py + 1)

2
+

Py

4

≤ 1

2
(2tm− Py(t− t0))(Py + 1) +

Py

4

= − t− t0
2

(

Py −
2tm− t + t0 + 0.5

2(t− t0)

)2

+
(2tm− t + t0 + 0.5)2

8(t− t0)
+ tm (53)

where “=” is achieved by choosing deg2,w(Q(x, y)) as in (47). Evidently, the optimal choice of Py is

as follows,

P ∗
y =

⌊

2tm− t + t0 + 0.5

2(t− t0)
+ 0.5

⌋

=

⌊

tm + 0.25

t− t0

⌋

, (54)

which is slightly different from (48). Consequently, the optimal multiplicity m is the minimum one

that complies with the following constraint

− t− t0
2

(⌊

tm + 0.25

t− t0

⌋

− 2tm− t + t0 + 0.5

2(t− t0)

)2

+
(2tm− t + t0 + 0.5)2

8(t− t0)
+ tm >

nm(m + 1)

2
. (55)

We are ready to present the complete list decoding algorithm for binary BCH codes as follows.

List Decoding Algorithm for Binary BCH Codes

0. Initialization: Input code length n, minimum distance d, and LECC t satisfying t < 1
2

(

n−
√

n(n− 2d)
)

.

Initialize the multiplicity m based on (52), then greedily optimize it subject to the constraint

(55), subsequently choose the y-degree Py as in (54).

1. Input the received word and compute syndromes.

2. Apply the Berlekamp algorithm to determine Λ(x) and B(x). If LΛ > t then declare a decoding

failure.

3. Perform error correction and evaluate yi = − Λ(α−i)
α−2iB(α−i)

, i = 0, 1, 2, . . . , n− 1.

4. If Lx2B > t, then return the corresponding unique codeword when Λ(x) has precisely LΛ valid

roots, otherwise declare a decoding failure.

5. Apply the rational interpolation procedure to compute a (2, LΛ − Lx2B)-weighted-degree poly-

nomial Q(x, y) that passes through
{

(α−2i, yi)
}n−1

i=0
, each with multiplicity m.

6. Apply the rational factorization process to obtain finite-length power series s(x) (mod xLs) of

the rational functions b(x)
λ(x) .

7. For each finite-length power series s(x) (mod xLs), do:

• Apply the Berlekamp-Massey algorithm to determine λ(x).
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• Compute b(x) = s(x)λ(x) (mod xt−L
x2B

+1).

• Construct Λ′(x) = λ(x2) · Λ(x) + b(x2) · x2B(x).

• Determine the distinct roots of Λ′(x) within {α−i}n−1
i=0 .

8. Return the list of codewords which are within distance t from the received word.

We summarize the above discussions into the following theorem

Theorem 5 For a given (n, k, d) BCH code, let the LECC t satisfies (51) and the multiplicity m be

chosen as in (52), then the proposed list decoding algorithm produces all codewords up to distance t

from a received word.

Remarks: The LECC limits of the proposed algorithm and the Guruswami-Sudan algorithm are

illustrated in Figure 1. The proposed performance matches the Johnson bound for binary codes [12].

The proposed performance also demonstrates the tightness of the improved bound of the list size in [7].

Following the step-by-step complexity analysis in the preceding section, we characterize the com-

plexity of the proposed algorithm as follows

Theorem 6 Given that the field cardinality is at most 2n, the proposed list decoding algorithm for

(n, k, d) binary BCH codes exhibits the computational complexity in terms of field operations

O
(

n2(
√

n−
√

n− 2d)8
)

(56)

to achieve the maximum LECC topt = ⌈n−
√

n(n−2d)

2 − 1⌉.

We proceed to characterize the proposed list decoding algorithm with respect to a fixed multiplicity

m. For the conciseness of analysis, we treat the degrees of freedom to be 1
2(deg2,w(Q(x, y)) + 1 −

Pyw/2)(Py + 1), and Py as well as deg2,w(Q(x, y)) to be real numbers. Following (46), the maximum

degrees of freedom is

max{Nfree} =
(2tm + t− t0)

2

8(t− t0)

which is achieved by choosing Py = 2tm−t+t0
2(t−t0) . Subsequently, the constraint of more degrees of freedom

than the number linear constraints is reduced to

(2tm + t− t0)
2

8(t− t0)
>

nm(m + 1)

2

which is re-organized in decreasing order of t

t2(2m + 1)2 − 2t((2m + 1)t0 + 2m(m + 1)n) + t20 + 4t0(m + 1)mn > 0.

Solving, we obtain the following LECC limit with respect to the fixed m

t <
(2m + 1)t0 + 2m(m + 1)n − 2m

√

n2(m + 1)2 − nd(m + 1)(2m + 1)

(2m + 1)2
. (57)
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It can be shown that

(2m + 1)t0 + 2m(m + 1)n − 2m
√

n2(m + 1)2 − nd(m + 1)(2m + 1)

(2m + 1)2

>
1

2m + 1
· t0 +

2m

2m + 1
· n−

√

n(n− 2d)

2
. (58)

On the other hand, we have

Py =
2tm− t + t0

2(t− t0)

≤
(2m− 1)

(

1
2m+1 t0 + 2m

2m+1

n−
√

n(n−2d)

2

)

+ t0

2
2m+1 t0 + 4m

2m+1

n−
√

n(n−2d)

2 − d

=
2D

(1−
√

1− 2D)2
+

2m− 1

1−
√

1− 2D
, (59)

which indicates that the list size is upper bounded by a constant with respect to a given normalized

minimum distance D. We characterize the above discussions into the following theorem.

Theorem 7 For arbitrarily small ǫ > 0, the list decoding of the (n, k, d) binary BCH code up to the

LECC

t =

⌊

ǫ · t0 + (1− ǫ) · n−
√

n(n− 2d)

2

⌋

(60)

can be achieved by the proposed algorithm with multiplicity m = ⌊ 1
2ǫ⌋, whose complexity is quadratic

in nature, O(n2).

Example 6. Consider the (63, 18, 21) BCH code. Its conventional error correction capability is

10. The achievable LECC of the Guruswami-Sudan algorithm is ⌈63 −
√

63× 42 − 1⌉ = 11, whereas

that of the proposed algorithm is ⌈63−
√

63×21
2 −1⌉ = 13. To correct up to t = 13 errors, the multiplicity

and the degree of y are set as follows. Let the multiplicity be m = ⌊ 13×10.5
132−63×(13−11.5)⌋ = 11, following

(52), which turns out to be optimal. Let the y degree be Py = ⌊13×11+0.25
13−10.5 ⌋ = 57, following (48), which

also turns out to be optimal. We next walk through a simulation example to illustrate the algorithmic

procedure. Let the prototype codeword be

c = [ 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1,

0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0 ]

and the received word be

r = [ 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1,

0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0 ]
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which has 13 erroneous bits. The true error locator polynomial is

Λ∗(x) = (1− α4x)(1 − α7x)(1− α16x)(1− α17x)(1 − α19x)(1− α20x)(1 − α33x)(1− α45x)

(1− α46x)(1− α47x)(1− α50x)(1− α53x)(1− α60x)

= 1 + α29x + α23x2 + α37x3 + α61x4 + α42x5 + α28x6 + α15x7 + α35x8 + α40x9

+α35x10 + αx11 + α12x12 + α39x13.

The Berlekamp algorithm outputs the following pair of error locator and correction polynomials

Λ(x) = 1 + α29x + α16x2 + α5x3 + α2x4 + α47x5 + α6x6 + α49x7 + α27x8 + α19x9 + α34x10

B(x) = α2 + α31x + α23x2 + α50x3 + α51x4 + α42x5 + α53x6 + α53x7 + α32x8 + α15x9.

In this case, the weight of y is set to w = LΛ−Lx2B = −1. The following lists the n = 63 interpolation

points {(α−2i, Λ(α−i)
α−2iB(α−i)

)}62i=0:

(1, α57) (α−2, α19) (α−4, α54) (α−6, α35) (α−8, α13) (α−10, α38) (α−12, α48) (α−14, α46)

(α−16, α27) (α−18, α49) (α−20, α52) (α−22, α58) (α−24, α14) (α−26, α34) (α−28, α45) (α−30, α31)

(α−32, α5) (α−34, α44) (α−36, α45) (α−38, α3) (α−40, α15) (α−42, α61) (α−44, α62) (α−46, α30)

(α−48, α31) (α−50, ∞) (α−52, α49) (α−54, α8) (α−56, α35) (α−58, α41) (α−60, α57) (α−62, α4)

(α−1, α45) (α−3, α17) (α−5, α34) (α−7, α5) (α−9, α16) (α−11, α62) (α−13, α7) (α−15, α47)

(α−17, α26) (α−19, α8) (α−21, ∞) (α−23, α12) (α−25, α54) (α−27, α38) (α−29, α11) (α−31, α25)

(α−33, α62) (α−35, α8) (α−37, α59) (α−39, α8) (α−41, α30) (α−43, α53) (α−45, α12) (α−47, α47)

(α−49, α44) (α−51, α15) (α−53, α49) (α−55, α26) (α−57, α57) (α−59, α5) (α−61, α48)

Rational factorization returns three candidate rational functions.

(1). λ(x) = 1+ α15x and b(x) = α31 + α24x. The candidate error locator polynomial is constructed as

Λ′(x) = λ(x2) · Λ(x) + b(x2) · x2B(x)

= 1 + α29x + α59x2 + α38x3 + α2x4 + α46x5 + α52x6 + α62x7 + α39x8 + α14x9 + α5x10

+α59x11 + α6x12 + α37x13

= (1− α4x)(1− α7x)(1 − α16x)(1− α17x)(1− α19x)(1− α20x)(1− α33x)(1 − α45x)(1− α46x)

(1− α47x)(1 − α50x)(1− α53x)(1 − α60x)

which properly retrieves the prototype codeword.

(2). λ(x) = 1 + α52x and b(x) = α55. The candidate error locator polynomial is constructed as

Λ′(x) = 1 + α29x + α29x2 + α7x3 + α8x4 + α11x5 + a11x6 + α15x7 + α15x8 + α28x9

+α17x10 + α13x11 + α23x12

= (1− α10x)(1 − α12x)(1− α19x)(1− α24x)(1− α28x)(1− α31x)(1 − α33x)(1− α36x)

(1− α48x)(1 − α49x)(1− α52x)(1− α59x)
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which yields an alternative candidate codeword with only 12-bit difference from the received word.

c = [ 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1,

1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0 ].

(3). λ(x) = 1 + α32x + α19x2 and b(x) = α45 + α28x. The corresponding candidate error locator

polynomial is

Λ′(x) = 1 + α29x + α59x2 + α38x3 + α2x4 + α46x5 + α52x6 + α62x7 + α39x8 + α14x9

+α5x10 + α59x11 + α6x12 + α37x13 + α53x14

which does not contain precisely 14 distinct nonzero roots in GF(64) and thus is spurious. 22

V. Concluding Remarks

Although the proposed list decoding algorithms are presented in the context of the list decoding of

Reed-Solomon and BCH codes, their core is a rational curve-fitting algorithm, which may be viewed

as an extension of the polynomial curve-fitting algorithm proposed in [9].

Following the strategy of soft reliability transformation in the Koetter-Vardy algorithm [16], the

proposed hard-decision list decoding algorithm can be extended in a straightforward manner to al-

gebraic soft-decision decoding using weighted multiplicity array (in one-dimension), where weight is

proportional to symbol error probability for (generalized) Reed-Solomon codes, or bit error probability

for binary BCH codes. However, we may only obtain a one-dimensional multiplicity array due to the

preprocessing of the Berlekamp-Massey algorithm, instead of a two-dimensional multiplicity matrix as

in the Koetter-Vardy algorithm [16].

It is shown that the number of codewords is less than n for list decoding up to the Johnson bound

for binary codes [1, 7, 10], whereas we have disclosed that the list size for decoding up to the Johnson

bound is bounded by O(topt) for the particular class (nonbinary) Reed-Solomon and binary BCH

codes. We thus conjecture that n is the universal bound for list decoding up to the Johnson bound

for any code.

Our developments are based on the notion of one-to-one correspondence along the two different

definitions/interpretations of Reed-Solomon codes. Following the notion as well as the fact that BCH

codes are subfield subcodes of Reed-Solomon codes [24], we conjecture that the Guruswami-Sudan

algorithm can be modified in a way to achieve the Johnson bound for binary BCH codes.
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