
Diversity-Multiplexing Trade-Off In Ad-Hoc
Networks

Mehdi Ansari, Alireza Bayesteh, and Amir K. Khandani
Dept. of Elec. and Comp. Eng., University of Waterloo

Waterloo, ON, Canada, N2L 3G1
Tel: 519-884-8552, Fax: 519-888-4338

e-mail: {mehdi, alireza khandani}@cst.uwaterloo.ca

Abstract— In this paper, the diversity-multiplexing trade-off
is derived for a one-dimensional equally-spaced Rayleigh fading
ad-hoc Network. It is assumed that the interference from each
link to the other links in the network declines exponentially with
the distance, such that the attenuation between two neighbor
links is ρα0 . For any given multiplexing gain r, the maximum
diversity gain is achieved by utilizing a general time-sharing
scheme. We obtain an explicit formula for the maximum diversity
gain, and show that depending on the value of r and α0, there
is an optimum time-sharing factor which yields the maximum
diversity gain.

I. INTRODUCTION

The rapidly increasing number of wireless users and new
bandwidth-consuming applications fuel the growing demand
for more bandwidth and higher data rates. The trend goes to
providing higher data rates in suitable areas, such as offices,
homes or public places. This is the domain of Wireless Local
Area Network (WLAN) systems, which are low-cost, easy to
deploy and robust due to their specific design for unlicensed
operation.

The primary goal of WLAN is to provide connectivity, or
in other words coverage at all desired locations. There are
several factors in designing WLAN systems; infrastructure
density which addresses the coverage requirement, e.g., the
number of access point required to cover a typical environment
and the frequency reuse factor which controls the received
interference level. It is of interest to find the frequency reuse
factor (or equivalent time-sharing factor in TDMA schemes)
which yields the highest spectral efficiency while maintaining
a given minimum signal quality. In this respect, there is an
inherent tradeoff between the reliability of reception and the
rate of communication. We may allocate different frequency
bands to different users such that all receivers are interference
free, which boosts the reliability of the network. On the other
hand, the rate can be increased by sharing the bandwidth
among users at the cost of a considerable interference level.
In this work, we investigate the optimal time-sharing factor
to maximize the network spectral efficiency considering the
network’s infrastructure density .

Resource allocation algorithms are studied vastly for ad-
hoc networks [4]–[6]. A joint scheduling and power control
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algorithm is proposed in the context of unicast transmissions
in ad-hoc networks [4]. The scheduling algorithm eliminates
strong interferers so that the remaining nodes can solve the
power control problem by using the distributed algorithm
in [5]. Optimal spectrum sharing for a single-hop wireless
network is studied in [6] where power allocation between
different users has been discussed. A prevalent medium access
scheme for channel reuse in ad-hoc wireless networks is spatial
time division multiple access (STDMA), in which time is
divided into fixed length slots that are organized cyclically
[1]–[3]. STDMA schemes (with no power control) proposed
in the literature can be classified into two focal categories:
link scheduling [1], [2] and node scheduling [2], [3]. In each
cycle, or time frame, every time slot is allocated to different
designated communication links (under link scheduling) or
to different designated user nodes (under node scheduling)
such that all transmissions are received successfully at their
intended receivers.

In this work, we consider a one-dimensional ad-hoc network
in the high signal to noise ratio (SNR) scenario, and investigate
the maximum achievable reliability in decoding (diversity
gain) at the receivers, assuming a fixed transmission rate
(multiplexing gain) for all the links in the network. The
fundamental trade-off between the diversity and multiplex-
ing gain has been characterized for multiple input multiple
output (MIMO) systems in [7] and is extended for MIMO
multiple-access channel in [8]. This approach has been applied
for other wireless channels and networks [9]–[11]; In [9],
the trade-off between the rate and the reliability is studied
for different strategies in a wireless relay network. In [11],
diversity-multiplexing trade-off upper bounds are obtained for
cooperative diversity protocols in a wireless network.

For characterizing the diversity-multiplexing trade-off, we
consider a simple one-dimensional equally-spaced Rayleigh
fading ad-hoc network utilizing a general TDMA scheme. The
one-dimensional model for wireless network is used in several
works (e.g. [12] [13]). It is assumed that the interference from
each link to the other links in the network grows exponentially
with the distance, such that the interference between two
neighbor links declines as ρ−α0 . It is shown that for any
given multiplexing gain r, the maximum diversity gain is
achieved by utilizing a general time-sharing scheme where the
active users form equal-size equally-spaced clusters (a group
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of adjacent nodes) with the size at most 3, and the distance at
most d 1

α0
e. The maximum diversity gain for each value of r

is obtained by taking the maximum diversity gain among all
the time-sharing strategies.

The rest of the paper is organized as follows; In section II,
the system model is described. Section III is devoted to the
characterization of the diversity-multiplexing trade-off for the
ad-hoc network and finally, section IV concludes the paper.

II. SYSTEM MODEL

We consider a homogeneous one-dimensional network, con-
sisting of n pairs of transmitters and receivers. The nodes are
equally spaced on two parallel lines such that the correspond-
ing transmitter-receiver links are parallel. The network utilizes
a general TDMA scheme, such that each link i is active in δi

portion of the times. The objective is to find the optimum
η(t) = (η1(t), · · · , ηn(t)), where ηi(t) is one, if the ith link
is active in the tth transmission block and otherwise is zero.

The channels between each transmitter and receiver nodes is
assumed to be Rayleigh fading. We consider a simplistic model
of signal attenuation, e−λd over a distance d, where λ ≥ 0 is
the absorption constant (high attenuation environment). The
attenuation factor from each node to its neighbors is assumed
to be ρα0 . Since the attenuation model is assumed to be
exponentially related to the distance, the closest active link
will dominate the interference. Each receiver perfectly knows
its own channel, as well as the channel corresponding to the
strongest interference. The received signal at the ith receiver
at transmission block t can be written as

yi(t) = Hi(t)xi(t)ηi(t)

+
∑

j 6=i

√
αjiHji(t)xj(t)ηj(t) + ni(t), (1)

where Hji(t) ∼ CN (0, 1) and αji denote the interference
channel and the attenuation factor from the jth transmitter
to the ith receiver, respectively. The power constraint for ith
transmitter is E{‖xi‖2} ≤ ρi.

III. DIVERSITY-MULTIPLEXING TRADE-OFF ANALYSIS

In this part, we derive the diversity-multiplexing trade-off
curve for the system described in the previous section. For
each link, we define

ri = lim
ρi→∞

Ri(ρi)
log ρi

, (2)

where Ri(ρi) denotes the transmission rate of link i. The
optimal diversity-multiplexing tradeoff curve for this setup is
defined as an (n + 1)-dimensional vector (r1, · · · , rn, d∗(r)),
r , (r1, · · · , rn), such that

d∗(r) = max lim
ρ→∞

log Pr{B(r)}
log ρ

, (3)

where B(r) ,
⋃n

i=1 Bi(r) and Bi(r) denotes the outage
event in link i, and the maximization is taken over all time-
sharing strategies. For simplicity, we assume that the multi-
plexing gains of all the links are the same, i.e., r1 = · · · =

R1 = log(1 + h1ρ1)

h11 h1

R1 + R2 = log(1 + h1ρ1 + h0ρ2)

h12

h02

h01
R1 = log

(

1 + h1ρ1

1+h0ρ2

)

A1

A2

h0

Fig. 1. Outage region

rn = r. Hence, we can express d∗(r) as d∗(r). Considering
this assumption and the symmetry of the network, we conclude
Pr{B(r)} = maxi Pr{Bi(r)}.

In the following, X0(t) and H0 represent the strongest
interference signal and the corresponding interference channel
for the ith link, respectively. We distinguish between two
scenarios:
• One strong interferer: ith link receives the dominant in-

terference from the mth transmitter. In this case, X0(t) =
xm(t), H0 = Hmi, R0 = Rm and αν = αmi =
ρ−|m−i|α0 . We set τi = 1 if ith link is in this case.

• Two strong interferers: ith link receives two equal inter-
ference from mth and lth transmitters such that m− i =
i − l. In this case, we have H0 = [Hli,Hmi], R0 =
Rl + Rm, X0(t) = [xl(t),xm(t)]T , and αν = αli =
αmi = ρ−|m−i|α0 . We set τi = 2 if ith link is in this
case.

Lemma 1 The probability of the outage event of the ith user
is as follows:

Pr{Bi}= Pr
{[
Ri > δi log

(
hiρ

1 + αφρ

)] ⋃

[
Ri +R0 > δi log

(
ανρ‖H0‖2 + hiρ

1 + αφρ

)] ⋂

[
Ri > δi log

(
1 +

ρhi

1 + ανρ‖H0‖2 + αφρ

)]}

(4)

where αφ = maxj,j /∈[2i−m,m],ηj=1 αji.

Proof: Please see Appendix A.
From Lemma 1, we find that the outage event is the

intersection of multiple access channel outage region and
interference outage region as depicted in Fig. 1. As can be
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observed, the outage event can be expressed as the union of
the events A1 and A2. A1 is the outage event as if the second
user does not exist. The effect of interference from the second
user is captured in A2.

Theorem 2 The diversity-multiplexing trade-off of ith link is
given by

d∗i (r) =





min(1− βφ − r
δi

, (1 + τiβν − (τi + 1)βφ)
− (τi+1)r

δi
(1 + τiβν)) F1

1− βφ − r
δi

(1 + τiβν) F2

0 Otherwise
(5)

where βν , (1 + log aν

log ρ )+, βφ , (1 + log aφ

log ρ )+, F1 ≡ r <
δi(βν−βφ)

1+τiβν
, and F2 ≡ δi(βν−βφ)

1+τiβν
< r <

δi(1−βφ)
1+τiβν

.

Proof: Considering the result of Lemma 1 and noting
Fig. 1, we define h11 , 1+aφρ

ρ (e
Ri
δi −1), h01 , 1+aφρ

aνρ (e
R0
δi −

1 + e
−Ri

δi ), h12 , 1+aφρ
ρ (e

Ri+R0
δi − e

R0
δi + e

−Ri
δi − 1), h02 ,

1+aφρ
aνρ (e

Ri+R0
δi −e

Ri
δi +1), m1 , h01

h12−h11
, and m2 , h02−h01

h12−h11
.

Considering Fig. 1, the outage probability in (4) can be written
as

Pr{Bi}= Pr{A1}+ Pr{A2}
= 1− e−h11

+
∫ h12

h11

∫ h02+m2(h11−h1)

m1(h1−h11)

f(h1)f(h0)dh0dh1, (6)

where h0 , ‖H0‖2. We consider the following two scenarios:
i) One strong interference: In this case, f(h0) = e−h0 and

f(h1) = e−h1 . From (6), we derive Pr{A2} as follows:

Pr{A2} =
e−h11

m1 + 1

(
1− e−(1+m1)(h12−h11)

)
−

e−(h12+h01)

m2 − 1

(
1− e−(m2−1)(h12−h11)

)

(a)
w e−h11(h12 − h11)−

e−(h12+h01)

m2 − 1

(
1− e−(m2−1)(h12−h11)

)
, (7)

where (a) comes from applying the approximation 1 −
e−(1+m1)(h12−h11) w (1 + m1)(h12 − h11), since (1 +
m1)(h12 − h11) → 0. For the case that r <

δi(βν−βφ)
1+βν

,
rewriting (7) as

Pr{A2} w e−h11(h12 − h11)−
1

m2 − 1
e−(h11+h02)

(
e(m2−1)(h12−h11) − 1

)
,

(a)
w e−h11

(
1− e−h02

)
(h12 − h11)

(b)
w h02(h12 − h11) (8)

where (a) comes from applying the approximation 1 −
e(m2−1)(h12−h11) w (m2 − 1)(h12 − h11) since in this case,
we have (m2 − 1)(h12 − h11) → 0 and (b) comes from the

facts that e−h11 w 1 and e−h02 w 1 − h02, since we have
h11, h02 → 0. For the case that r >

δi(βν−βφ)
1+βν

, noting that
(m2 − 1)(h12 − h11) →∞, (7) is approximated as

Pr{A2}w h12 − h11. (9)

Using (8) and (9), we derive the diversity gain in (5).
ii)Two strong interference: In this case, f(h0) = h0e

−h0

and f(h1) = e−h1 . In (6), I , Pr{A2} can be upper-bounded
and lower-bounded as follows:

I ≤I U ,
∫ h12

h11

∫ h02

0

h0e
−h0e−h1dh0dh1

=
(
e−h11 − e−h12

) (
1− (1 + h02)e−h02

)
, (10)

I ≥I L ,
∫ h12

h11

[e−m1(h1−h11)

− (h02 + 1)e−(h02+m2(h11−h1))]e−h1dh1

= e−h11 [
1

m1 + 1

(
1− e−(1+m1)(h12−h11)

)

− e−h02
(h02 + 1)
m2 − 1

(
e(m2−1)(h12−h11) − 1

)
]. (11)

For r <
δi(βν−βφ)

1+2βν
, the first and the second terms in (10)

can be approximated by (h12 − h11) and h2
02, respectively.

For r >
δi(βν−βφ)

1+2βν
, (10) can be approximated by h12−h11. It

can be easily shown that the same result is true for the lower-
bound. As a result, the final diversity gain is obtained as in
(5).

In the above, we have derived the maximum diversity gain
for the ith link, conditioned on having a fixed δi and η(t). Now,
we want to obtain the optimum values for δ = (δ1, δ2, · · · , δn)
and η(t), based on α0 and r. Let us consider the following
special cases:
• α0 > 1: In this case, it is easy to see that the interference

from all the links are negligible with respect to the noise.
Therefore, we can consider this case as a parallel non-
interfering ad-hoc Network, where the optimal values of
η and δ are equal to 1 and 1, respectively. The maximum
diversity gain of the network can be obtained as

d∗(r) = 1− r, 0 ≤ r < 1. (12)

• α0 = 0: In this case, the attenuation of all interference
channels is 1. Assuming that all the receiver nodes
know all their corresponding channels (direct channel
and interference channels), similar to (13), the outage
probability for all the links can be written as

Pr{Bi}=Pr
{

[r log ρ > δi log(1 + hiρ)]
⋃

[
n′r log ρ > δi log(1 + ρ‖H0‖2 + hiρ)

] ⋂
[
r log ρ > δi log

(
1 +

ρhi

ρ‖H0‖2 + 1

)]}
,

(13)
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where H0 , [h1i, · · · , h(i−1)i, h(i+1)i, · · · , hni] and n′

denotes the number of active links in the network. Due
to the symmetry between the links, we have δi = δ, ∀i.
As a consequence, n′ = nδ. Following the equations (6),

(10), and (11), and noting that f(h0) = hn′−1
0 e−h0

(n′−1)! , we
have

d∗i (r) =
{

min
(
1− r

δ , nδ(1− nr)
)

r < 1
n

0 Otherwise (14)

The value of δ which maximizes the diversity gain in (14)
is 1. Hence,

d∗(r) =
{

min (1− r, n(1− nr)) r < 1
n

0 Otherwise (15)

For 0 < α0 < 1, we make the following observations:
• Assuming large number of links in the network, almost

all the links have the same situation (except the very
end ones). Hence, as a result of the symmetry, we have
δi = δ, ∀i. This suggests that we only need to derive the
diversity-multiplexing trade-off for one link.

• We can categorize the links into clusters, where each
cluster consists of some neighbor links, which are active
simultaneously. Because of the symmetry in the network,
all the clusters have the same number of links.

• The number of links in each cluster must be less than or
equal to 3. The reason is that having more than 3 links
in a clusters makes the outage probability the same as
when all the links are active at the same time. Therefore,
the diversity gain will be strictly less than that of the
all-active case, and as a result, we can disregard these
cases.

• Defining the distance between two clusters as

D(C1, C2) , min
l1∈C1,l2∈C2

D(l1, l2), (16)

where l1 and l2 are two links in the clusters C1 and
C2, respectively, and D(l1, l2) denotes the normalized
distance between these links (in terms of the distance
between two neighbor links), we have

D(Ci, Cj) ≤ d1/α0e, (17)

for any active neighbor clusters Ci and Cj . The reason is
that for D(Ci, Cj) > d1/α0e, the inter-cluster interference
is negligible with respect to the noise, and since increas-
ing the distance between the clusters reduces the diversity
gain, there is no point to consider D(Ci, Cj) > d1/α0e.

From all the above observations, it follows that the diversity
gain is a function of k, the number of links in a cluster, and
s, the distance between two neighbor clusters. We denote the
diversity by d∗k,s(r) and define Fτ ( r

δ , βν , βφ) as the diversity
gain in (5). We determine d∗k,s(r) in terms of function F as
follows:

d∗1,s(r) = F2(rs, (1− sα0)+, (1− 2sα0)+). (18)

d∗2,s(r) = F1(
r(s + 1)

2
, (1− α0)+, (1− sα0)+). (19)
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Fig. 2. The diversity gain of a one-dimensional network vs. multiplexing
gain for α0 = .4.

d∗3,s(r) = min(d′3,s(r), d
′′
3,s(r)), (20)

where

d′3,s(r) = F1(
r(s + 2)

3
, (1− α0)+, (1− sα0)+), (21)

and

d′′3,s(r) = F2(
r(s + 2)

3
, (1− α0)+, (1− (s + 1)α0)+).(22)

The maximum diversity gain can be obtained as

d∗(r) = max
k,s

d∗k,s(r). (23)

The diversity gain d∗(r) is depicted in Fig. 2 for α0 = 0.4.
It is compared with the diversity gain of the network when
all the links are active simultaneously (No-time-sharing), and
also when the time-sharing is applied such that active links
do not project interference on each other (No-interference).
Fig. 2 clearly shows that the optimum scheme depends on
the rate of transmission, e.g. for low multiplexing gains, the
performance of No-interference scheme is close to optimum
while for high multiplexing gains, the performance of No-
time-sharing scheme is optimum.

IV. CONCLUSION AND FUTURE WORKS

This paper introduces a measure for optimally allocat-
ing bandwidth among users considering network’s infras-
tructure density in a one-dimensional ad-hoc network. The
diversity-multiplexing trade-off curve is characterized for one-
dimensional equally-spaced Rayleigh fading ad-hoc network
utilizing a general time-sharing scheme. We have shown that
the diversity gain for each strategy depends only on the size of
the clusters as well as the distance between two neighboring
clusters. Moreover, the maximum diversity gain for each value
of r is obtained by taking the maximum diversity gain among
all the strategies at r.
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V. APPENDIX A

Noting (1), for all the links (except the first and last ones),
we can write

yi(t)=Hi(t)xi(t)ηi(t) +
√

ανH0(t)X0(t)

+
∑

j,j /∈[2i−m,m]

√
αjiHji(t)xj(t) + ni(t), (24)

Let us define BL
i and BU

i as follows:

BL
i ,

{
(Ri > I (xi;yi|Hi,X0,H0,V0))

⋃

(Ri +R0 > I (xi,X0;yi|Hi,H0,V0))⋂
(Ri > I (xi;yi|Hi,H0,V0))

}
, (25)

where V0 includes all the transmitted signals except xi and
X0.

BU
i ,

{
(Ri > I (xi;yi|Hi,X0,H0))

⋃

(Ri +R0 > I (xi,X0;yi|Hi,H0))⋂
(Ri > I (xi;yi|Hi,H0))

}
. (26)

In fact, BL
i denotes the outage event for the ith link, when

the receiver has full access to the other users data, and BU
i

stands for the outage event in the ith link, when the receiver
treats all the users data, except the dominant interference, as
noise. It is clear that

Pr{BL
i } ≤ Pr{Bi} ≤ Pr{BU

i }. (27)

In the following, h(.) denotes the entropy function. We com-
pute the mutual information in (25) and (26) as follows:

I (xi;yi|Hi,X0,H0)
=Pr{ηi = 1}I (xi;yi|Hi,X0,H0, ηi = 1)
≥ δih(Hixi +

√
ανH0X0 + ni|Hi,X0,H0)

− δi log


2πeVar


 ∑

j,j /∈[2i−m,m]

√
αjiHjixjηj + ni







= δi log(2πe(ρhi + 1))

− δi log


2πe


 ∑

j,j /∈[2i−m,m]

αjiρηj + 1







= δi log

(
hiρ + 1∑

j,j /∈[2i−m,m] αjiρηj + 1

)
. (28)

I (xi,X0;yi|Hi,H0)
≥ δih(Hixi +

√
ανH0X0 + ni|Hi,H0)

− δi log


2πeVar


 ∑

j,j /∈[2i−m,m]

√
αjiHjixjηj + ni







= δi log

(
hiρ + ανρ‖H0‖2 + 1∑
j,j /∈[2i−m,m] αjiρηj + 1

)
. (29)

I (xi;yi|Hi,H0) ≥

δi log

(
hiρ + ανρ‖H0‖2 + 1

ανρ‖H0‖2 +
∑

j,j /∈[2i−m,m] αjiρηj + 1

)
. (30)

I (xi;yi|Hi,X0,H0,V0) ≥

δi log

(
1 +

ρhi

1 +
∑

j,j /∈[2i−m,m] αjiρηj

)
. (31)

I (xi,X0;yi|Hi,H0,V0) ≥

δi log

(
1 +

ρhi + ανρ‖H0‖2
1 +

∑
j,j /∈[2i−m,m] αjiρηj

)
. (32)

I (xi;yi|Hi,H0,V0) ≥

δi log

(
1 +

ρhi

1 + ανρ‖H0‖2 +
∑

j,j /∈[2i−m,m] αjiρηj

)
.(33)

We define αφ , maxj,j /∈[2i−m,m],ηj=1 αji. As ρ → ∞, we
have

∑
j,j /∈[2i−m,m] αjiρηj w αφρ. From the equations (28)-

(33), we can see that Pr{BL
i } w Pr{BU

i } and the result of
the lemma follows.
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