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Abstract— We construct a class of linear space-time block codes M identity and null matrices respectivel}j; A ||7, det(A)
for any number of transmit antennas that have controllable gnd T(A) denote Frobenius norm, determinant and Trace of
ML decoding complexity with a maximum rate of 1 symbol 54y A respectively:C denotes the complex number field:;

per channel use. The decoding complexity forM transmit CN(0.1) d ¢ ircularl tri lex G .
antennas can be varied from ML decoding of2/°22 1~ symbols (0,1) denotes a circularly symmetric complex Gaussian

together to single symbol ML decoding. For ML decoding of Variable with zero mean and unit variance.

oflog2 M1—n (, — 1 9 ...) symbols together, a diversity of

min(M, 2082 M1=n+1y can be achieved. Numerical results show Il. SYSTEM MODEL AND DESIGN CRITERION
that the performance of the constructed code wherp/'ogz M1-1
symbols are decoded together is quite close to the performaa
of ideal rate-1 orthogonal codes (that are non-existent formore

Consider a system af/ transmit andN receive antennas.
For the ease of presentation, in this paper, we will assume

than 2 transmit antennas). that M is a power of2. The case of\/ not being a power of
2 can be treated easily as in [12] by constructing a code of
. INTRODUCTION size 2/1°52 M1 and deleting columns suitably chosen to have

Multiple antenna systems have been of great interest the code matrix of sizel'og: M1 x M,
recent times, because of their ability to support higheadat The statistically independent modulated information sym-
rates at the same bandwidth and noise conditions; see &gis are takerP at a time denoted by = (cy,---,cp)?. This
[1L,[2], [3], [13] and references therein. While orthogbnainformation vector is pre-coded (i.e. multiplied) byMd x P
designs offer full diversity with single symbol ML decoding matrix denoted byR. Lets = (s1,---,sa)T and
they don’t have ratd for more than2 transmit antennas.

The loss of rate has been addressed by the use of quasi- s =Re (1)
orthogonal codes that make the groups of symbols orthogoga{, E{|s;2} =1,i=1,---, M. As we shall soon see, the

where each group has more than one symbol in general [¢hgice of R is central to the construction of codesis the

[8], [10], [12]. A fully orthogonal code would have just onejnpyt 1 a linear space-time block code that outpufe a A/
symbol per group. Because of this relaxation of constrain{s,5irix Gpls], where

these codes achieve higher code rates that were hitherto not

possible with orthogonal codes. It was shown in [9], [11#][1 M
[15] that performance of above quasi-orthogonal codes ean b Guls] = Z (Comsm + Dmsy,,) s (2)
improved with constellation rotation. m=1

Codes for any number of transmit antennas were presenvdtereC,,, D,,, m = 1,---, M, areM x M complex matrices,

in [12]. In this paper, we construct that a new class of spacahich completely specify the code. This code is transmitted
time codes with a maximum code rate Iyfthat are inspired in M channel uses and the average code rate is h&yidé
from the codes in [12], that have a useful property that tteymbols per channel use. For a quasi-static fading channel,
ML decoding is controllable. On one extreme, one can desitfte received signal is given by
rate 1 codes that have single symbol ML decoding offering
diversity of 2, and on the other, one can have codes offering X[s] = \/ZGM [s|H +V, (3)
full diversity with ML decoding of M /2 symbols together. M

It is, however, shown for the constructed codes that for ratéhere X andV are theM x N received and noise matrices,
one codes with single symbol ML decoding, full-diversity isand H is the M x N complex channel matrix that is assumed
impossible and for codes that require more than one symbtisbe constant ovek/ channel uses and varies independently
to be decoded together for ML symbols decoding, it is indeeder the nextd/ channel uses and so on. The entriesrbf
possible to have full-diversity. andV are assumed to be mutually independent@ndo0, 1),

We use the following notation throughout the paperT” andp is the average SNR per received antenna. We assume
andf denote the conjugate, transpose and conjugate transpibse channel is perfectly known at the receiver but is unkmow
respectively of a matrix or a vectof™ and 0™ are M x at the transmitter.
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It has been shown in [1] by examining the pair-wise Proposition 1: For anyh, s € CM*1,
probability of error between two distinct information vert "
(sayu, v € CP), that for full-diversity, in quasi-static fading M (A1 (8))Gar[An2(s)] +
channelsG1,[R(u — v)]G[R(u — v)] should have a rank Gl [An2(9)]Gar[Anra(s)] = 0, (10)
of M. For square code matrices, the above criterion could be

modified to yield Elp1(0)En2(h) = 0M/2, (11)
u{,IllllI;év det{Gu[R(u—v)]} #0 (4) det {Ganr[A2nr,1(8)]} = det {Gum[Anr,1(sa1 — Sa2)]}
xdet {Grm[Am,1(sm,1 +8m,2)]}, (12)

IIl. | TERATIVE CONSTRUCTION OF SPACETIME CODES

The main difference between these codes and those in [Y4]ere for any 2M x 1 vector z, we define a trans-
is the choice ofR that will allow us to vary the ML decoding fofmation denoted byz that interchanges the two halves

complexity and construct full-diversity codes with decagli ©f z with a sign change for the second half, ig. =
of a pair of symbols. [—ZMHa'_'w—Zz_M,Zl,"'721»1]- _ _

Let us define two disjoint partition vectors that are functio BY taking conjugates appropriately, we can derive a mod-
of the vectors (whose length will be clear from the contextyfi€d signal model from (3) for receive antenna (n =
denoted by.Ays1(s) and A 2(s). These partition vectors L,---,N), as

have same length as and have the same symbols ssn 5 D .
S . o Xn(s) =+/77 1€ H, +& H, + Va,
indices they possess and zeros in other indices. If we denote (®) a7 [0 (Hn)vrn1(8) + Enr2(HnJoar 2(5)] (13)

the first and lastM elements of a2)M x 1 vectors by \hereH. is thenth column of  and X, andV,, are derived

sa,1 andsyy o respectively, then these partitions are |terat|vel%0m nth column of X and V respectively by taking the

constructed as conjugates of some or all their elements. Let the singullareva
Aonr1(s) = Anr1(sar) + Anra(Sarz) (5) decomposition (SVD) o, ;(H,,) be given by

Azn2(8) = Am2(sm1) + Ani(Swm2), (6) Eni(Hy) = UM,iSM,iWJL,ia (14)

and the code is iteratively constructed for thle partition as whereU,,; andW,, ; are unitary andSy; is a M x (M/2)
diagonal matrix. LetS,,; be aM x (M/2) diagonal matrix
whose diagonal elements are inverse of diagonal elements of

(7) Swm,: and hence
wherei = 2, if i = 1 and is1 otherwise, and hence by using

o GulAnm,i(sm,1)]  GumlAp(si,2)]
Ganr[A2n,i(s)] [ —GM[AM,E(SXI;)] GIVI[AIIZJ(SRI,?)} }’

A g R ; ™M/2 gM/2
linearity, we have SaiSir; = [ oM/2 QM2 } (15)
Gulsma] Gulswe] .
Gamls] = [ —Gulstyol Gurlshy ] (8) andSz\,{,iSjw_’iSAu = S, Multiplying both sides of (13) by

A UA,“S’A,“W&JE&J(HH) = Ul\'f-,igl\l-,is}w,iUk,w we get
whereG[s] = s; Vs € C', A;; = s1, and Ay is a null

set. U]W,ig]\ff,isj\,f,iU]{f,an(S) = \/%51\4,1'(1{11)%4,1‘(5)

A. Receiver Processing +U1\,4,i5*1\,4,i8},1,iU;,“Vn, (16)
We give a practical decoding algorithm to have a low ;

complexity ML decoding done over a single partition. wd/here we have used), , (Hn)En2(Hy,) = 0 to cancel the

note from (8) that any row of the constructed code eith&Pntribution of other FT)artmTon. Note that using (15), illeovs

contains the symbolss(s) or its conjugates (with a possibleth@t Vo = Unr,iSar,iSy; ;Up Ve has the same the statistics

sign change). For anya € CMx!, define a transformation 8 V- We can rewrite (16) as

denoted byJ that takes conjugates of those elementd/ok 1 , 0 ; .

vector G [s]h that contain conjugates of elementsspfand Xu(s) = \/%SMJWMJUMJ(S) +Va (17)

we can write ) ] ) )
Using (7), one can iteratively generate the equivalent €han

T{Gum[ A, (s)|h} = Enri(h)vari(s), (9) nels for each partitions withp; 1 = [h1, -+, ha] andhys o =
, A [h]\4+1,-~-,h2M], as
where £y, ;’s are M x (M/2) matrices dependent only on
h, vyr;'s are (M/2) x 1 vectors that contain symbols from Ean1(h) = Evalhari)  Ema(hare) (18)
partitioni, with i = 1,2. We need a few results from [12] that M1 Exvralthare) —Expolbary) |7
we state here without proof. Ear a(hng 1) Ear 1 (Bags)
—Cpm2(hp) —CEmi(hpge
Eoma(h) = [ —Erra(hae)  Expq(harn) ] (19)



B. Codes with controllable decoding complexity Proposition 5: If

Before we get to the code design, we first prove some { M } (29)
properties that are given in the following propositions. bans
Proposition 2: The matrices is an eigenvector off4/1(haar), then the eigenvectors of

Tsy1(h are
Tanr,i(hoy) = 55M71(h2M)52M,1(h2M)7 (20) sa1 (hsar)

t asM aunm
Taon2(hanr) = €y o (hanr)Eanr 2(hanr), (21) 1 ban 1 bans
' — and — (30)
V2 by V2 | —bam
Kuy(hari,hyo) = 5}:471(hM,1)51\{,2(h1\{,2) - —auM . ) admM

. N Proof: We prove this by induction. It is easy to check it
Enra(bar2)€hr2(har1), (22)  for M = 8. Let us assume that this is true 8%, 1 (hy) V k <

4M i.e. if { a4M ] is an eigenvector o1 (haar), then
Yar(hari, hare) = 5;\4_’1(111\4,1)5M,1(hM,2) + by
5}1,1(h1\4,2)é’M71(hMJ), (23) am = [ gzﬁ ] is an eigenvector oT'2/,1 (hayr). By using

Proposition 2,Tsys1(hsas) can be written as into smaller

Zn(hary,hare) = 5}472(}11\4,1)51\4,2(}11\4,2) + parts as
5;\4 o(har2)En2(has ) (24) Tanr,1(hanrn) + Tanr,1(hang2)
7 T (hsar) = Kanr (hans,1, hans2) (31)
are realV hayy € C2M*1 hy, € CMXL, hy o € CMXL 8M,1\8M K7, (haar, hans2)
Proof: Omitted. - Tanrz(hinro) + Tanrz(hans.y)

We have to show that if[ §4M ] is an eigenvector of
4M
Tynr1(hanrr), then

Proposition 3: For any hps1,hyo € CMx1,
if Yar(hara,har2) and Ty 1(hag1) have the same eigen- §4M 24M
V-eCtOI'S andZM(hM,l, hM72) andTMg(h%,[l)lha\./e the same TSM,I(h8I\{) b4M = s b4M (32)
eigenvectors, then for arlys s, gons € C* >, eigenvectors 4M
of Yans(hanr, g82nr), Taoar,1(hons) are the same, and similarly, —aupm —aypm
the eigenvectors o%aps(hanr, g2ar), Tanr2(haps) are also a
the same. From the induction assumptior{, b4M is an eigenvector
) . 4M
Proof: Omitted. B of Typr1(hanry) and Typs g (haps2) With eigenvalueshyyy,

gy, respectively and using Proposition 4, these are also the
eigenvectors Oﬂ:‘4M72(h4]\4,1) and T4]\4,2(h4M72). Substitut-

Proposition 4: If for any hyys € C1M! ing in (31) and (32), we have to show that
. 4M

)

b a
Ky (hans,1, hang2) { o ] = A& { Ei?\j ] (33)
by

asmM

o b
is an eigenvector fol'y 57,1 (hyar) With A4y, as the associated K, (hans1, hanro) { §4M ] = A { o ] (34)

. L) . 4 M agm
eigenvalue, then the eigenvector®Bf; 2(hyas) is

[ by ] (26) If E‘*M is an eigenvector dl'4ar,1 (haa), then it follows
—a4M from the induction assumption that,,, is an eigenvector of
with the same eigenvaluk,,,;. Furthermore, Tanr1 (@ndYzpr) andbyyy is an eigenvector o'y, 2 (and
Z-11), where the dependence @f on the channel realization
Kovban = MNjyaun, (27) is dropped for convenience. Using Propositions 3 and 4, we
KTMa41\,[ = /\ZMbM\,{, (28) have

where the dependence & on the channel realization is Koar(hoar1, hons2)banr = Ay (hoar1, hons2)asns, (35)
dropped for convenience.

(

Proof: Omitted. - hons 1, hons2)aan = Ay (hans 1, hons2)banr, (36)
(
(

( ) )

e ) )
Y2M(h2M,1, honr2)asn = Mgy (hoar 1, hons2)auns, (37)

( ) )

Zop (hons 1, honr2)aans = Ay (honr 1, honro)bans  (38)



Note that Kaunr(haar,1, hang2) A

—Koar(hanr,1, honr3) + Konr(hoara, hanr2) 1
. —Yonr(honr1, honra) + Y5, (hons 2, o ) hence '
- ~Zon (han,2, hon3) + 25, (a1, han,a) (2M82 M1 ) )
| KTM(I’!2M,1-,h2M,3) - K;M(h2M,4-,h2M,2) H
USIng (35), (Sé), (37), (38), we have ------------------------- .(2[1(@21\['\—2 2(10{;2]\['\—1) E
by by 2 :
Ky (h hyy, = A3 39 5 : .
4]\1( 4M,1, 4]\1,2) —au SM —ay ) ( ) % : :
whered,, = =Mk, (hans 1, hanrs) + A5 (honra, honr2) +
ASar(haoar 1, honra) — Agpy (hans 2, hops ). This proves (33). : 5
Hence : .
—Kon (han, 1, hons) + Ko (haar,a, han 2) L-(1.2) : :
—Yon (haar,1, honra) + Y35, (hane 2, hanr,3) by [ H ' =
—Zon (han,2, han,s) + 25, (han,1, haaa) —ay Decoding complexit
K], (hon1, honrs) — K5y (Bansa, hon,2) ing plexity

— e a4snm Fig. 1. Diversity versus decoding complexity tradeoff fbe tproposed rate
— 8M by 1 codes.

By interchanging the first half of the rows with the second

half, then interchanging the first half of the columns witle th Anp important aspect of the eigenvector matricesTaf ;
second half, then multiplying the first half of columns and thand T, , is that they are independent of the channel realiza-
second half of rows with-1, and using the fact tha¥ s, Zys  tion. This property is quite useful in constructing codeshwi
are real, Hermitian matrices, we can write the above egugticcontrollable ML decoding complexity.

*K;M(I’QM,L, haps,3) + K;M(thA{ hanr,2)
—ZgM(th,% han3) + 25y, (hans,1, hon,a) [ LM :|

w1
=Y} (hoar,1, hoara) + Y3, (hoas,2, hons) by
Kon (hons 1, honr3) — Kong(hansa, hang2)

Proposition 6: The eigenvalues for the first partition of the
code matrix are given by

{Q}fw woara(s), @ yoara (S*)} (43)
— e [ by ] ' '
- 8M . .
—uM whereQ 1 = /M /2Wi,1 and the determinant for the first
or partition of the code matrix is given by
i M | e by
Ky (hanr1, han2) [ by ] = A§um [ Cauy ] (40) det {Ga[Ani(8)]} = f (ijvm(s)) (44)
. ayns . . and for anyn length vectorq, f(q) = [[;_, &/
Hence if [ baas } is an eigenvector ofTyns1(hans), Proof:  Omitted. -
ayM
barr | . . .
bay | A" eigenvector offsy,1(hsar). Similarly, by - pog it is similar for the second partition, and due to siritita
—aunm with the above Proposition, we omit it.
agn We note here from (17) that it i8V,,,; that dictates the
. by | . ML decoding complexity. For example, we could precode the
using (33) and (34), one can show t at—b4M Is also an information-carrying symbol vectar in (1) such that
aspm
eigenvector forTsy 1(hsy). Q.E.D. ] vari(€) = Warivai(s) (45)

According to (17), this code will admit single symbol ML

) ) decoding. But this will give the determinant of the error eod
Example For M = 4, the eigenvector matrix fofly; (Or matrix as

W1 in (14)) is computed as

M
1 1 1 det {GM[.AMJ(WI\{J(C — e))]} = 7f (’UMJ-(C — e)) (46)
Wy =—= [ 1 _1 } (41)
i e w

V2 Since the elements of and e are drawn from the same
and using Proposition 5, the eigenvector matrix gy, is constellation, hence even if any elementofande is the
given by same, then

1 1 1 1 min det {GM [.AMJ(WM_; (C — e))]} =0 (47)

1 1 1 -1 -1 ce.cre
Wg1 = (42)

—_

i 2 1 -1 -1 For single symbol decoding, the minimum rank®f; would
-1 1 -1 1 be 2 (also the rank OGhGA,{). In general, ML decoding of
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Fig. 2. SER versus SNR for varioug and N = 1 with QPSK modulation Fig. 3. SER versus SNR fav/ = 16 and N = 1 with QPSK modulation for
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