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Abstract— We construct a class of linear space-time block codes
for any number of transmit antennas that have controllable
ML decoding complexity with a maximum rate of 1 symbol
per channel use. The decoding complexity forM transmit
antennas can be varied from ML decoding of2⌈log2 M⌉−1 symbols
together to single symbol ML decoding. For ML decoding of
2⌈log2 M⌉−n (n = 1, 2, · · ·) symbols together, a diversity of
min(M, 2⌈log2 M⌉−n+1) can be achieved. Numerical results show
that the performance of the constructed code when2⌈log2 M⌉−1

symbols are decoded together is quite close to the performance
of ideal rate-1 orthogonal codes (that are non-existent formore
than 2 transmit antennas).

I. I NTRODUCTION

Multiple antenna systems have been of great interest in
recent times, because of their ability to support higher data
rates at the same bandwidth and noise conditions; see e.g.
[1],[2], [3], [13] and references therein. While orthogonal
designs offer full diversity with single symbol ML decoding,
they don’t have rate1 for more than2 transmit antennas.

The loss of rate has been addressed by the use of quasi-
orthogonal codes that make the groups of symbols orthogonal
where each group has more than one symbol in general [7],
[8], [10], [12]. A fully orthogonal code would have just one
symbol per group. Because of this relaxation of constraints,
these codes achieve higher code rates that were hitherto not
possible with orthogonal codes. It was shown in [9], [11], [14],
[15] that performance of above quasi-orthogonal codes can be
improved with constellation rotation.

Codes for any number of transmit antennas were presented
in [12]. In this paper, we construct that a new class of space-
time codes with a maximum code rate of1, that are inspired
from the codes in [12], that have a useful property that the
ML decoding is controllable. On one extreme, one can design
rate 1 codes that have single symbol ML decoding offering
diversity of 2, and on the other, one can have codes offering
full diversity with ML decoding ofM/2 symbols together.

It is, however, shown for the constructed codes that for rate
one codes with single symbol ML decoding, full-diversity is
impossible and for codes that require more than one symbols
to be decoded together for ML symbols decoding, it is indeed
possible to have full-diversity.

We use the following notation throughout the paper:* , T

and† denote the conjugate, transpose and conjugate transpose
respectively of a matrix or a vector;IM and 0M are M ×

M identity and null matrices respectively;|| A ||F , det(A)
and Tr(A) denote Frobenius norm, determinant and Trace of
matrix A respectively;C denotes the complex number field;
CN (0, 1) denotes a circularly symmetric complex Gaussian
variable with zero mean and unit variance.

II. SYSTEM MODEL AND DESIGN CRITERION

Consider a system ofM transmit andN receive antennas.
For the ease of presentation, in this paper, we will assume
thatM is a power of2. The case ofM not being a power of
2 can be treated easily as in [12] by constructing a code of
size 2⌈log2

M⌉ and deleting columns suitably chosen to have
the code matrix of size2⌈log2

M⌉ ×M .
The statistically independent modulated information sym-

bols are takenP at a time denoted byc = (c1, · · · , cP )T . This
information vector is pre-coded (i.e. multiplied) by aM × P
matrix denoted byR. Let s = (s1, · · · , sM )T and

s = Rc (1)

with E{|si|2} = 1, i = 1, · · · ,M . As we shall soon see, the
choice ofR is central to the construction of codes.s is the
input to a linear space-time block code that outputs aM ×M
matrix GP [s], where

GM [s] =

M
∑

m=1

(Cmsm +Dms∗m) , (2)

whereCm, Dm, m = 1, · · · ,M , areM×M complex matrices,
which completely specify the code. This code is transmitted
in M channel uses and the average code rate is henceP/M
symbols per channel use. For a quasi-static fading channel,
the received signal is given by

X [s] =

√

ρ

M
GM [s]H + V, (3)

whereX andV are theM ×N received and noise matrices,
andH is theM ×N complex channel matrix that is assumed
to be constant overM channel uses and varies independently
over the nextM channel uses and so on. The entries ofH
andV are assumed to be mutually independent andCN (0, 1),
and ρ is the average SNR per received antenna. We assume
that channel is perfectly known at the receiver but is unknown
at the transmitter.
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It has been shown in [1] by examining the pair-wise
probability of error between two distinct information vectors
(sayu, v ∈ CP ), that for full-diversity, in quasi-static fading
channels,G†

M [R(u − v)]GM [R(u − v)] should have a rank
of M . For square code matrices, the above criterion could be
modified to yield

min
u,v,u 6=v

det{GM [R(u− v)]} 6= 0 (4)

III. I TERATIVE CONSTRUCTION OF SPACE-TIME CODES

The main difference between these codes and those in [12]
is the choice ofR that will allow us to vary the ML decoding
complexity and construct full-diversity codes with decoding
of a pair of symbols.

Let us define two disjoint partition vectors that are function
of the vectors (whose length will be clear from the context)
denoted byAM,1(s) and AM,2(s). These partition vectors
have same length ass and have the same symbols ass in
indices they possess and zeros in other indices. If we denote
the first and lastM elements of a2M × 1 vector s by
sM,1 andsM,2 respectively, then these partitions are iteratively
constructed as

A2M,1(s) = AM,1(sM,1) +AM,2(sM,2) (5)

A2M,2(s) = AM,2(sM,1) +AM,1(sM,2), (6)

and the code is iteratively constructed for theith partition as

G2M [A2M,i(s)] =
[

GM [AM,i(sM,1)] GM [AM,̄i(sM,2)]
−GM [AM,̄i(s

∗
M,2

)] GM [AM,i(s
∗
M,1

)]

]

,

(7)
where ī = 2, if i = 1 and is1 otherwise, and hence by using
linearity, we have

G2M [s] =

[

GM [sM,1] GM [sM,2]
−GM [s∗M,2] GM [s∗M,1]

]

, (8)

whereG1[s]
∆
= s1 ∀ s ∈ C

1, A1,1 = s1, andA2,1 is a null
set.

A. Receiver Processing

We give a practical decoding algorithm to have a low
complexity ML decoding done over a single partition. We
note from (8) that any row of the constructed code either
contains the symbols (si’s) or its conjugates (with a possible
sign change). For anyh ∈ CM×1, define a transformation
denoted byT that takes conjugates of those elements ofM×1
vectorGM [s]h that contain conjugates of elements ofs, and
we can write

T {GM [AMi
(s)]h} = EM,i(h)vM,i(s), (9)

where EM,i’s are M × (M/2) matrices dependent only on
h, vM,i’s are (M/2) × 1 vectors that contain symbols from
partition i, with i = 1, 2. We need a few results from [12] that
we state here without proof.

Proposition 1: For anyh, s ∈ C
M×1,

G†
M [AM,1(s)]GM [AM,2(s)] +

G†
M [AM,2(s)]GM [AM,1(s)] = 0M , (10)

E†
M,1(h)EM,2(h) = 0M/2, (11)

det {G2M [A2M,1(s)]} = det {GM [AM,1(sM,1 − ŝM,2)]}

×det {GM [AM,1(sM,1 + ŝM,2)]}, .(12)

where for any 2M × 1 vector z, we define a trans-
formation denoted bŷz that interchanges the two halves
of z with a sign change for the second half, i.e.ẑ =
[−zM+1, · · · ,−z2M , z1, · · · , zM ].

By taking conjugates appropriately, we can derive a mod-
ified signal model from (3) for receive antennan, (n =
1, · · · , N ), as

X̂n(s) =
√

ρ
M

[EM,1(Hn)vM,1(s) + EM,2(Hn)vM,2(s)] + V̂n,
(13)

whereHn is thenth column ofH andX̂n andV̂n are derived
from nth column of X and V respectively by taking the
conjugates of some or all their elements. Let the singular value
decomposition (SVD) ofEM,i(Hn) be given by

EM,i(Hn) = UM,iSM,iW
†
M,i, (14)

whereUM,i andWM,i are unitary andSM,i is aM × (M/2)
diagonal matrix. LetŜM,i be aM × (M/2) diagonal matrix
whose diagonal elements are inverse of diagonal elements of
SM,i and hence

ŜM,iS
†
M,i =

[

IM/2 0M/2

0M/2 0M/2

]

(15)

andŜM,iS
†
M,iSM,i = SM,i. Multiplying both sides of (13) by

UM,iŜM,iW
†
M,iE†

M,i(Hn) = UM,iŜM,iS
†
M,iU

†
M,i, we get

UM,iŜM,iS
†
M,iU

†
M,iX̂n(s) =

√

ρ

M
EM,i(Hn)vM,i(s)

+UM,iŜM,iS
†
M,iU

†
M,iVn, (16)

where we have usedE†
M,1(Hn)EM,2(Hn) = 0 to cancel the

contribution of other partition. Note that using (15), it follows
that V̂n = UM,iŜM,iS

†
M,iU

†
M,iVn has the same the statistics

asVn. We can rewrite (16) as

X́n(s) =

√

ρ

M
SM,iW

†
M,ivM,i(s) + V̂n (17)

Using (7), one can iteratively generate the equivalent chan-
nels for each partitions withhM,1 = [h1, · · · , hM ] andhM,2 =
[hM+1, · · · , h2M ], as

E2M,1(h) =

[ EM,1(hM,1) EM,2(hM,2)
E∗
M,1(hM,2) −E∗

M,2(hM,1)

]

, (18)

E2M,2(h) =

[ −EM,2(hM,1) −EM,1(hM,2)
−E∗

M,2(hM,2) E∗
M,1(hM,1)

]

(19)



B. Codes with controllable decoding complexity

Before we get to the code design, we first prove some
properties that are given in the following propositions.

Proposition 2: The matrices

T2M,1(h2M ) = E†
2M,1(h2M )E2M,1(h2M ), (20)

T2M,2(h2M ) = E†
2M,2(h2M )E2M,2(h2M ), (21)

KM (hM,1,hM,2) = E†
M,1(hM,1)EM,2(hM,2)−
ET
M,1(hM,2)E∗

M,2(hM,1), (22)

YM (hM,1,hM,2) = E†
M,1(hM,1)EM,1(hM,2) +

E†
M,1(hM,2)EM,1(hM,1), (23)

ZM (hM,1,hM,2) = E†
M,2(hM,1)EM,2(hM,2) +

E†
M,2(hM,2)EM,2(hM,1) (24)

are real∀ h2M ∈ C2M×1, hM,1 ∈ CM×1, hM,2 ∈ CM×1.
Proof: Omitted.

Proposition 3: For any hM,1,hM,2 ∈ CM×1,
if YM (hM,1,hM,2) and TM,1(hM,1) have the same eigen-
vectors andZM (hM,1,hM,2) andTM,2(hM,1) have the same
eigenvectors, then for anyh2M ,g2M ∈ C

2M×1, eigenvectors
of Y2M (h2M ,g2M ), T2M,1(h2M ) are the same, and similarly,
the eigenvectors ofZ2M (h2M ,g2M ), T2M,2(h2M ) are also
the same.

Proof: Omitted.

Proposition 4: If for any h4M ∈ C4M×1

[

a4M
b4M

]

(25)

is an eigenvector forT4M,1(h4M ) with λ4M as the associated
eigenvalue, then the eigenvector ofT4M,2(h4M ) is

[

b4M

−a4M

]

(26)

with the same eigenvalueλ4M . Furthermore,

K2Mb4M = λk
4Ma4M , (27)

K
†
2Ma4M = λk

4Mb4M , (28)

where the dependence ofK on the channel realization is
dropped for convenience.

Proof: Omitted.

Proposition 5: If
[

a4M
b4M

]

(29)

is an eigenvector ofT4M,1(h4M ), then the eigenvectors of
T8M,1(h8M ) are

1√
2









a4M
b4M

b4M

−a4M









and
1√
2









a4M
b4M

−b4M

a4M









(30)

Proof: We prove this by induction. It is easy to check it
for M = 8. Let us assume that this is true forTk,1(hk) ∀ k ≤
4M i.e. if

[

a4M
b4M

]

is an eigenvector ofT4M,1(h4M ), then

a4M =

[

a2M
b2M

]

is an eigenvector ofT2M,1(h2M ). By using

Proposition 2,T8M,1(h8M ) can be written as into smaller
parts as

T8M,1(h8M ) =

2

6

4

T4M,1(h4M,1) +T4M,1(h4M,2)
K4M (h4M,1,h4M,2)

K
T
4M (h4M,1,h4M,2)
T4M,2(h4M,2) +T4M,2(h4M,1)

3

7

5
(31)

We have to show that if

[

a4M
b4M

]

is an eigenvector of

T4M,1(h4M ), then

T8M,1(h8M )









a4M
b4M

b4M

−a4M









= λ8M









a4M
b4M

b4M

−a4M









(32)

From the induction assumption,

[

a4M
b4M

]

is an eigenvector

of T4M,1(h4M,1) andT4M,1(h4M,2) with eigenvaluesλ4M ,
λa
4M respectively and using Proposition 4, these are also the

eigenvectors ofT4M,2(h4M,1) andT4M,2(h4M,2). Substitut-
ing in (31) and (32), we have to show that

K4M (h4M,1,h4M,2)

[

b4M

−a4M

]

= λa
8M

[

a4M
b4M

]

(33)

K
†
4M (h4M,1,h4M,2)

[

a4M
b4M

]

= λa
8M

[

b4M

−a4M

]

(34)

If

[

a4M
b4M

]

is an eigenvector ofT4M,1(h4M ), then it follows

from the induction assumption thata4M is an eigenvector of
T2M,1 (andY2M ) andb4M is an eigenvector ofT2M,2 (and
Z2M ), where the dependence ofT on the channel realization
is dropped for convenience. Using Propositions 3 and 4, we
have

K2M (h2M,1,h2M,2)b4M = λk
4M (h2M,1,h2M,2)a4M , (35)

K
†
2M (h2M,1,h2M,2)a4M = λk

4M (h2M,1,h2M,2)b4M , (36)

Y2M (h2M,1,h2M,2)a4M = λc
4M (h2M,1,h2M,2)a4M , (37)

Z2M (h2M,1,h2M,2)a4M = λc
4M (h2M,1,h2M,2)b4M (38)



Note that K4M (h4M,1,h4M,2)

=

2

6

6

4

−K2M (h2M,1,h2M,3) + K2M (h2M,4,h2M,2)
−Y2M (h2M,1,h2M,4) + Y

∗
2M (h2M,2,h2M,3)

−Z2M (h2M,2,h2M,3) + Z
∗
2M (h2M,1,h2M,4)

K
†
2M

(h2M,1,h2M,3) − K
†
2M

(h2M,4,h2M,2)

3

7

7

5

, hence

using (35), (36), (37), (38), we have

K4M (h4M,1,h4M,2)

[

b4M

−a4M

]

= λa
8M

[

b4M

−a4M

]

, (39)

whereλa
8M = −λk

4M (h2M,1,h2M,3) + λk
4M (h2M,4,h2M,2) +

λc
4M (h2M,1,h2M,4) − λc

4M (h2M,2,h2M,3). This proves (33).
Hence
2

6

6

4

−K2M (h2M,1,h2M,3) + K2M (h2M,4,h2M,2)
−Y2M (h2M,1,h2M,4) + Y

∗
2M (h2M,2,h2M,3)

−Z2M (h2M,2,h2M,3) + Z
∗
2M (h2M,1,h2M,4)

K
†

2M
(h2M,1,h2M,3) − K

†

2M
(h2M,4,h2M,2)

3

7

7

5

[

b4M

−a4M

]

= λa
8M

[

a4M
b4M

]

By interchanging the first half of the rows with the second
half, then interchanging the first half of the columns with the
second half, then multiplying the first half of columns and the
second half of rows with−1, and using the fact thatYM , ZM

are real, Hermitian matrices, we can write the above equations
as
2

6

6

6

4

−K
†

2M
(h2M,1,h2M,3) + K

†

2M
(h2M,4,h2M,2)

−Z
†
2M

(h2M,2,h2M,3) + Z
∗†

2M (h2M,1,h2M,4)

−Y
†

2M
(h2M,1,h2M,4) + Y

∗†

2M (h2M,2,h2M,3)
K2M (h2M,1,h2M,3) − K2M (h2M,4,h2M,2)

3

7

7

7

5

[

a4M
b4M

]

= λa
8M

[

b4M

−a4M

]

or

K
†
4M (h4M,1,h4M,2)

[

a4M
b4M

]

= λa
8M

[

b4M

−a4M

]

(40)

Hence if

[

a4M
b4M

]

is an eigenvector ofT4M,1(h4M ),








a4M
b4M

b4M

−a4M









is an eigenvector ofT8M,1(h8M ). Similarly, by

using (33) and (34), one can show that









a4M
b4M

−b4M

a4M









is also an

eigenvector forT8M,1(h8M ). Q.E.D.

Example: For M = 4, the eigenvector matrix forT4,1 (or
WM,1 in (14)) is computed as

W4,1 =
1√
2

[

1 1
1 −1

]

(41)

and using Proposition 5, the eigenvector matrix forT8,1 is
given by

W8,1 =
1

2









1 1 1 1
1 1 −1 −1
1 −1 −1 1

−1 1 −1 1









(42)

(1, 2)

(2⌈log2 M⌉−2, 2⌈log2 M⌉−1)

(2⌈log2 M⌉−1,M)

Decoding complexity

D
iv

e
rs

ity

Fig. 1. Diversity versus decoding complexity tradeoff for the proposed rate
1 codes.

An important aspect of the eigenvector matrices ofTM,1

andTM,2 is that they are independent of the channel realiza-
tion. This property is quite useful in constructing codes with
controllable ML decoding complexity.

Proposition 6: The eigenvalues for the first partition of the
code matrix are given by

{

Q†
M,1vM,1(s), Q

†
M,1vM,1(s

∗)
}

(43)

whereQM,1 =
√

M/2WM,1 and the determinant for the first
partition of the code matrix is given by

det {GM [AM,1(s)]} = f
(

Q†
M,1vM,1(s)

)

(44)

and for anyn length vectorq, f(q) =
∏n

k=1 |qi|2.
Proof: Omitted.

Result is similar for the second partition, and due to similarity
with the above Proposition, we omit it.

We note here from (17) that it isWM,i that dictates the
ML decoding complexity. For example, we could precode the
information-carrying symbol vectorc in (1) such that

vM,i(c) = WM,ivM,i(s) (45)

According to (17), this code will admit single symbol ML
decoding. But this will give the determinant of the error code
matrix as

det {GM [AM,1(WM,1(c− e))]} =
M

2
f (vM,i(c − e)) (46)

Since the elements ofc and e are drawn from the same
constellation, hence even if any element ofc and e is the
same, then

min
c,e,c6=e

det {GM [AM,1(WM,1(c− e))]} = 0 (47)

For single symbol decoding, the minimum rank ofGM would
be 2 (also the rank ofG†

MGM ). In general, ML decoding of
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Fig. 2. SER versus SNR for variousM andN = 1 with QPSK modulation
for the rate-1 constructed codes withM/2 symbols decoded together and the
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M/2n, n = 1, 2, · · · , log2 M , symbols together would mean
having the precoding matrix as a block diagonal matrix with
each block asWM/2n−1,1 (scaled appropriately) with constel-
lation rotation to ensure that the rank ofGM [AM,1(c− e)] is
M/2n−1.

The only way to achieve full diversity would be to choose
n = 1 or decodeM/2 information symbols together. One can
employ various methods like constellation rotation given in
[9], [11], [14], [15].

By using this block diagonal structure, we can construct
codes with ML decoding of different symbols together and
hence the ML decoding complexity can be controlled. We plot
the diversity versus complexity tradeoff in Fig. 1, whereM
is not necessarily a power of2. The code design for suchM
is done by consturcting a code for2⌈log2

M⌉ transmit antennas
that admits ML decoding complexity of2⌈log2

M⌉−n (n =
1, 2, · · ·) and has rank of each partition as2⌈log2

M⌉−n+1 and
then deleting columns suitably chosen to retain the same rank
and to have the code matrix of the size2⌈log2 M⌉ ×M .

Note that it is not necessary to assume thatP = M i.e.
unit rate. One could design codes withP < M that may have
additional coding gain while sacrificing code rate.

IV. N UMERICAL RESULTS

The symbol error rate (SER) versus the average SNR per
receive antenna for the proposed rate-1 code that admits
decoding in pairs of symbols is plotted in Fig. 2 with QPSK
modulation forM = 4, 8, 16 andN = 1. Also plotted is the
performance of anideal rate-1 orthogonal space-time codes
(non-existent forM > 2) with equivalent channel as||H ||F .

Fig. 3 plots the SER curves forM = 16 andN = 1 for
different ML decoding complexities. Fig. 1 plots the diversity
versus complexity tradeoff for the proposed codes.

V. CONCLUSIONS

We have constructed a class of linear space-time codes that
have controllable ML decoding complexity for any number of
transmit antennas. The diversity versus decoding complexity
tradeoff is shown. We show that one can design rate1
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Fig. 3. SER versus SNR forM = 16 andN = 1 with QPSK modulation for
the rate-1 constructed and theideal codes for varying decoding complexity.

codes that achieve performance quite close to the rate1 ideal
orthogonal codes (non-existent for forM > 2).
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