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Abstract- Union bound based on Pair-wise Error Probability
(PEP) has been widely used for error-rate performance
evaluation of Space-Time (S-T) codes. At low signal-to-noise
ratios (SNRs), the PEP is not very accurate, leading to a loose
Union bound. A numerical integration method using correct
probability is proposed in this paper for the evaluation of block-
error rate (BLER) of S-T codes. Numerical results have shown
that the proposed method can provide exact BLER evaluation
for S-T codes.

evaluation of error probability for S-T codes, especially at
low SNRs.

The remainder of this paper is organized as follows. Section
II describes the system model. The PEP based approach and
its disadvantages are discussed in section III. The exact
evaluation of BLER using correct probability is proposed in
section IV. Numerical examples and simulation results using
a rotation based diagonal space-time code (D-code) are
reported in section V. Section VI is the conclusions.

I. INTRODUCTION

Pair-wise Error Probability (PEP) is defined as the error
probability between a pair of codewords [1,2]. By assuming
that there is only one pair of codewords in the codebook
dominating the error events, Union bound based on PEP has
been widely used for studying the error performance of
Space-Time (S-T) codes [1,2]. Such binary assumption
greatly simplifies the evaluation of error performance for S-T
codes [2-8]. Indeed, at high signal-to-noise ratios (SNRs),
the pair of codewords with the least Euclidean distance
dominates the error events and Union bound based on PEP
can thus produce accurate results for evaluating the error
performances. However, at low SNRs, errors can occur
between any pairs of codewords in the codebook. As a result,
the Union bound based on PEP approach becomes less
accurate and sometimes leads to a resultant error probability
of greater than 1 [1, p 191]. Communications systems
normally work well at high SNRs and problems occur at low
SNRs, thus there is a need to investigate accurate methods for
error-rate evaluation of S-T codes at low SNRs.

In Maximum Likelihood (ML) decoding, an error is decided
by a sequence of (comparison) events. The joint probability
of all these events is the true error probability. Unfortunately,
due to the correlation among all these events, their covariance
matrix is singular. So it is hard to use traditional non-singular
multivariate normal distribution to evaluate their joint
probability. In this paper, we propose to use correct
probability, instead of error probability, to calculate the exact
block-error rate (BLER) for S-T codes. The exact analytical
solution for correct probability is hard to obtain. Here we
adopt the numerical methods developed in [9]. Although the
result is not an analytical solution, to the best of our
knowledge, no explicit analytical or numerical solution has so
far been addressed in literatures to give the true exact

II. SYSTEM MODEL

The S-T system considered here is modeled as:

R =HX+Y (1)

where X , R, H and Y are the transmit, receive, channel and
noise matrices, respectively. The channel matrix H is a
M xN matrix with N and M being the number of transmit
and receive antennas, respectively. Each of the elements hm n

in H is the channel transfer function from the n-th transmit
antenna to the m-th receive antenna. For block fading, hmn
are independent identically distributed (i.i.d) complex
Random Variables (RVs) and remain static within a
transmission block. It should be noted that the numerical
methods proposed in this paper are not restricted to any
fading type. But for the convenience of numerical calculation
and simulation, we adopt the Rayleigh block fading model,
i.e., hm n are i.i.d complex Gaussian RVs with zero mean and

variance 0.5 for the real and imaginary parts. In (1), X is a
N x L coded symbol matrix where L is the number of time
intervals to transmit a complete coded-symbol block. Each of
the elements xn,t in X is a coded symbol transmitted from
the n-th antenna in the t-th interval with average symbol
energy Es . The received signal matrix R is a M x L matrix
with element rm being the signal received from the mth
antenna in the tth interval. Transmission delay is neglected
here. Additive white Gaussian noise (AWGN) is modeled by
a M xL matrix Y with elements being i.i.d complex
Gaussian RVs with zero-mean and variance N012 for both
parts. With perfect channel estimation, the Maximum-
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Likelihood (ML) detector determines the Euclidean distance
as:

R-HX r E h5 x (2)

and selects the codeword X with the smallest Euclidean
distance to R as the detected codeword.

The notations for some of the matrix operations used in this
paper are listed below:

|A| the squared Frobenius norm ofmatrix A:

i.e., I|AI = |ai ja2 with aij being the entries of matrix A;

tr{ I: trace of a matrix;
(0: transpose of a matrix;
}*: transpose conjugate of a matrix;

vec{A}: converting a mxn matrix A into a mnxl column
vector by stacking the columns of matrix A on top of one
another.
Re {3: real part of a complex matrix;
rank{ }: rank of a matrix.

III PEP, UNION BOUND AND THEIR PROBLEMS

3.1 PEP and Union Bound for S-T codes

The PEP is denoted here as PEP(X -X X) and defined as the
pair-wise error probability when codeword X is transmitted
but falsely detected as X. With the system model in (1) and
the use ofML decoding, the PEP for S-T codes is [10]:

PEP(X - X) = EHQ H(X - X) SNR/2 (3)

where SNR = ES I No, H(X - X) is the modified Euclidean

distance between X and X for a given channel H, and
EH(.) denotes the operation of expectation over H, which
can be evaluated in numerous ways [2-8]. The average of all
possible PEPs yields the Union bound for the BLER:

PU = E P(X) E PEP(X -X X) (4)
x X x:X

where P(X) is the probability of X being transmitted.

3.2 Problems of using PEP and Union bound

If all codewords are equally likely to be transmitted and the
SNR is low enough, the Union bound P, in (4) becomes:

li E E E Q H(X X) SNR/2HSNR-*OC XX LY~#

C-1
2

(5)

where C is the size of the codebook. It can be seen that, when
C > 3, P, will exceed t at very low SNRs and is in violation
with the fact that a probability should be less than or equal to
one. This agrees with [1, pl91]. Thus the PEP and Union
bound approach is not suitable for use at low SNRs.

The reason for the above contradiction can be explained as
follows. Consider the error event for a given channel matrix
H that when a codeword Xi is sent but is falsely detected as
another codeword X2 . We denote the probability of this
event as PJ(Xl - X2 H). For ML decoding, this error event
is decided by the following C -1 events:

S||R - HX1|| 2 ||>R - HX2 11
||R - HX3 112>|R - HX2 112

||R - HXC>|2|R - HX2

with

(6)

(7)R =HX1+Y

where Xi, for i=1, ...,C, are the codewords in the codebook
and R, H, Y, and Xi in (6) and (7) have the same
definitions as in the system model of (1).

It is clear that the joint probability of all C -1 events in (6) is
Pe(X, -* X2 H). Since all inequalities in (6) are subjected to
the same noise matrix Y, these C -1 events are correlated to
each other and so accurate evaluation of their joint
probability is difficult. However, if one of the events in (6)
dominates, the probability of this single event can be used to
approximate the joint probability of all events, i.e., using
PEP(X1X X2 H) to approximate Pe (X1 -* X2 H). At high
SNRs, if Xi is sent but is falsely detected as X2, it is most

likely that Xi and X2 are adjacent neighbors or having the
least Euclidean distance. In such case, PEP(X1 -X X2 H) is
very close to the true error probability Pe(XI -* X2 H). At
low SNRs, there is no dominating event in (6), so the PEP
and Union bound approach gives inaccurate results as
indicated in (5).
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IV NUMERICAL EVALUATION OF BLER USING CORRECT
PROBABILITY

4.1 New approach using "Correct" Probability and the
Singular Covariance Matrix

We define "correct" probability as the probability that the
codeword Xi is sent and is correctly detected as Xi for a
given H. Similar to (6), this probability, denoted as
P6 (X, IH), can also be determined by the following C-1
events:

|R - HX112 < ||R - HX2 (8)

q ~~~~~~~~~~(8)
I|R - HX112<K|R - HXC 112

Substituting (7) into (8) and rearranging yields:

tr{Y[H(X2 -X1)] + H(X2 - XI)Y*}< JJH(X2 _ X1)|2
(9)

ltrlY[H(Xc - XI)] + H(XC - XI)Y }< IIH(Xc _ XI1)||
Since the codeword Xi and channel matrix H are assumed to
be fixed during a coded symbol interval, the right-hand sides
(RHSs) of the inequalities in (9) are all constant values. The
left-hand sides (LHSs) of (9) are subjected to the same
AWGN noise matrix Y, so they are correlated Gaussian RVs.
To obtain the correct probability or the joint probability of (8),
we take the LHSs of (9) as multivariate normal distributed
RVs. The probability of this RV being inside the region
bounded by the RHSs of (9) is our expected probability.

The covariance matrix COV for the LHSs of (9) can be
derived as:

COV = 2No Re{ZZ* (10)

Z in (10) is a matrix with C-1 rows and M x L columns, and
is constructed as:

obtain the PDF of the distribution and then integrate the PDF
to obtain the expected probability. In the next section, we
propose a method to deal with the singular covariance matrix
case or singular multivariate normal distribution.

4.2 P, (X, H) Evaluation using Numerical Integration

Suppose rank(COV) =K The idea of using numerical
integration to obtain P,(Xl H) is outlined in the following 2
steps [9]:

Step 1: Find a lower triangular real matrix B with C-1 rows
and K columns, so that:

BBT =COV (13)

Step 2: Calculate the correct probability as:

P6(X1 H) = (2;T) K12 exp(--V V)dV'I.IIVAP\2 (14)

In (14), V is a column vector with K real entries, v1....VK. A is
a C-1 dimension column vector with i-th entry ai defined as:

ai = |IH(Xj+1 - X1)|| (15)

There are two key procedures in the above two steps:
1. Obtain B from COV:
la. Perform singular value decomposition (SVD) on COV:
UDUT = COV, where U is an orthogonal matrix and D is a
diagonal matrix with its first K diagonal entries being non-
zeros and the rest being zero.

lb. Consider that a diagonal matrix D'/2 satisfies: D1/2
D1/2=D, so the matrix UD1/2 has C-i-K zero columns.
Removing all these zero columns yields a new (C -1) x K
matrix G. Clearly G satisfies: GGT=COV.

lc. Perform QR decomposition on the matrix G': G'=QgRg,
where Qg is an orthogonal matrix and RBg is an upper
triangular matrix. Then B=(Rg)T is the lower triangular matrix
as expected.

2. Solve the linear inequalities:

where Z1, for i = l C-I, is the i-th column of the matrix Z*
and is constructed as:

Zi = vec{H(Xi+l - X1)}, i =1 C - 1

Let bi j, i =1 C -1, j = 1 - K being the entries of B. (16) is

composed of C-1 inequalities and the i-th inequality is:

(12)

Generally, the size of the codebook C is larger than M x L,
so the covariance matrix COV is singular. Thus we can not
use the traditional way, i.e., use the covariance matrix to

K

Ybi,jvj <ai,i=l1C-1
j=l

(17)

We can solve the K variables, V1... .VK, one by one.
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Solving v1: To solve v1, we find the rows in B, which satisfy:

bij =0,forj>1;bi,l #0

and transfer these rows into the constraints on v1:

JVI ' ai bi7l,ifbil >0

ivi >ai /bi'l, ifbi'l< 0

(18)

(19)

Elimination [11] to give some additional constraints. Both
solutions give the same results.

4.3 BLER Calculation

Once P6(X, H) is obtained, we use the Monte Carlo method
to obtain the expectations:

P (X1) = EH[PC(Xl H)] (24)

If there are multiple rows satisfying (18) in the lower
triangular matrix B, we find the multiple constraints on v1, in
which case we simply choose the tightest constraints, i.e., the
minimum one for the multiple upper limits and the maximum
one for the multiple lower limits.

Solving V2: We find the rows in B, which satisfy:

bij =O,fforj>2;bi,2.O (20)

and transfer these rows into the constraints on v2:

{V2 < (ai - vlbi,l) bi2,2ifbi,2 >O

IV2 > (ai -vlbi,l) Ibi2,ifbi,2 < 0

In our numerical examples described in the following section,
we use 100 realizations ofH to produce the expectations with
sufficient accuracy and take average on different codewords
to obtain the final BLER:

I C
BLER =1 - PC (Xi)

Cil
(25)

V NUMERICAL EXAMPLES OF ROTATION-BASED S-T CODES

5.1 D-code

(21) For S-T rotation code construction, four binary independent
(21) information symbols, s 1. s12 . S2,1 S222 are coded and placed

to form a matrix X as:
In numerical integration, once v1 is given a value, the upper or
lower limit in (21) is set. Similar to the case of v1, if there are
multiple constraints on v2, we choose the tightest constraint.

Solving Vk , < k < K: Here we find the rows in B, which
satisfy:

xl X1,2 1
x

x2,1 X2,3j

cos(01)s1 1- sin(Ol )S1,2

LCOS(02)S2 1 - sin(02)s2,2

sin(02)s2 1 + cos(02)s, 2 (26)
sin(01)s, + cos(01)s,1 2

bi,j =0,forj>k;bi,k .0

and transfer such rows into the constraints on Vk:

k-I

|vk <~(ai - YVibi j) /bi,kif bi,k > °
k-l (23)

Vk 2 (ai -,Vibij /) bik ",f bi,k < °k=l
j=1

Again, if there are multiple constraints, we choose the tightest
one for numerical integration.

B is a lower triangular matrix, so b,1j = 0, for j > i; and

b j 0, forj = i . This guarantees that, for every one of

v1... .VK, we can find at least one row in B to give the
suggested constraint. In doing numerical integration, it is
possible in some cases that, for an integrated variable, the
upper limit is less than the lower limit. In these cases, the
simple solution is to neglect it (i.e., setting the probability to
0) [9]. An alternative solution is to use Fourier-Motzkin

where the coded elements are transmitted in a diagonal [12]
way to the antennas, i.e. xi,, is the coded symbol transmitted

from the i -th transmit antenna at the time interval t. The
system has a transmission rate of 2 symbols per time interval
t, same as that of the V-BLAST system [13]. Since (26) can

be thought of as a rotation operation, we call the code of (26)
a rotation-based diagonal space-time code (D code). For
simplicity, we only consider BPSK modulation.

5.2 Numerical results comparison on two bounds

Monte Carlo simulation tests and numerical calculations
using correct probability, i.e., (25), have been used to assess

the BLER performance of the D code with the optimum angle
pair (0.2318 rad, 0.5536 rad) [12] and results are shown in
Fig 1. It can be seen that there is no significant difference
between them. The BLER performances using correct
probability and the "exact Union bound" with the exact PEPs
[8] and Monte Carlo simulation are all shown in Fig 1 for
comparison. At low SNRs, the BLER using the exact Union
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bound exceeds 1 as expected. At all the SNRs studied, the
BLER performances using correct probability and simulation
merge together. Clearly, correct probability as proposed in
this paper can provide exact BLER evaluation for S-T codes.

VI CONCLUSIONS
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