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Abstract

A power optimal scheduling algorithm that guarantees ddsinroughput and bounded delay to
each user is developed for fading multi-access multi-bastems. The optimization is over the joint
space of all rate allocation and coding strategies. Theqeeg scheduling assigns rates on each band
based only on the current system state, and subsequenslyppsmal multi-user signaling to achieve
these rates. The scheduling is computationally simple,rerte scalable. Due to uplink-downlink

duality, all the results extend in straightforward fashtorthe broadcast channels.

Index Terms

Power minimization, scheduling, stability, convex optation, super-position encoding and

successive decoding.

DRAFT


http://arxiv.org/abs/cs/0702007v1

I. INTRODUCTION

We consider a multi-access fading channel wkhusers and a single access point. Each éser
requires certain long term ratéhfoughpu} guaranteer;,. Our aim is to design a scheduling strategy
that arbitrates, in every slot, the instantaneous rate gissgient to each user and coding strategy to
realize the assigned rates depending on the current fadiaigs so that the throughput requirement
for each user is fulfilled and the total power expenditure igimized

In their seminal work, Tse and Hanly have characterized #edcthroughput capacityanddelay-
limited capacityof the multi-access fading channel with Gaussian noise [{]], The throughput
capacity region quantifies the achievable rate region widrage power constraint for ergodic fading.
For the delay limited capacity, each user must be given theimed rate irrespective of its fading
states in every slot (strict delay of one slot). The aim herm®iobtain a coding and power allocation
scheme to minimize the energy.

The notion of throughput capacity leads to schemes thatadikentage of users’ differential channel
qualities. Specifically, it is known that the sum throughjouthe system is maximized by letting only
one user with the best channel transmit. Schemes that takentichannel states into account while
making scheduling decisions are referred td'‘@pportunistic Scheduling”and may result in unfair
rate allocation if the fading statistics are not symmetrigick is typical in wireless systems. To
alleviate this limitation, several opportunistic schedglschemes with fairness constraints have been
designed [3], [4]. Among them, Proportional Fair Schedyl{PFS) has many desirable properties
including provable fairness guarantees and suitabilitydio-line implementation, i.e., without prior
knowledge of channel statistics [5]. But, PFS does not quaeathe required throughput to users.

Unlike opportunistic scheduling schemes, the delay-ichschemes guarantee the required through-
put to every user. Specifically, super-position encodind) successive decoding is shown to minimize
power for achieving the required throughputs [2]. But, tHaimization is achieved under an additional
constraint that the required rate should be provided to @aehin each slot irrespective of its channel
state. Thus, these schemes can not benefit from users’ dhaamability over time. Recently, we
have shown that the significant power saving can be achieyakploiting a small delay tolerance
of the application [6]. In absence of a specific delay coistrdhe proposed scheme is shown to
minimize power while guaranteeing the desired throughput bounded delay for each user. The
optimality result has been shown in asymptotic case, ietha number of users go to infinity [6].
Optimality for the finite users case has remained open.

For finite users case, [7], [8], [9] have found back-presdased scheduling strategies to minimize

the energy consumption in the wireless system with ergoaitinf while providing the required
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throughputs and bounded delays to the users. These schaswmethat the coding strategy is
predefined and for the given coding strategy determine tleetoabe provided in each slot by solving
an optimization problem. The optimization problem may ba-finear depending on coding/signaling
strategy used, and hence may become computationally eéxpensractice.

Here, we consider the finite users case, and propose a caiopatly simple power optimal scheme
that provides the required throughputs and bounded detatreetusers. The optimization is over the
joint space of coding and rate allocations. Specificallg, pnoposed optimal policy is back-pressure
based policy like that in [7], [8], [9], and employees supesition encoding and successive decoding
in each slot. The proposed policy arbitrates schedulingdbasly on the users’ current backlogs and
the channel states. In spite of using this limited inforimmatiit is shown to be optimal even in the
class ofoffline policies that take into account the channel states andadsrin past, present and even
the future slots. One of the main challenges in executiorhefgroposed policy is that the optimal
rate allocation can only be obtained by solving a convexnoighition in every slot. But, we obtain
a computationally simple algorithm that exploits the pesblstructure and solves the optimization.
All the results extend in straightforward fashion to the dmtoast case because of uplink-downlink
duality [10].

The paper is arranged as follows. In Secfidn Il, we presentsgstem model. In Sectidn]Il, we
present some known results that we use. In Se€fion IV, wegsepur optimal policy and prove its

optimality. In Sectiori'V, we conclude.

II. SYSTEM MODEL

We consider a multi-access channel withusers. Time is slotted. For each ugefet { Ay (t)}+>1
denote the random process of arrivals, i4,(t) denote the arrivals fok in slot ¢. We assume that
At) = [Ai(t) --- An(t)] are the independent and identically distributed (i.i.idom vectors
across the slots. Moreover, let = E[Ax(t)]. Alternatively, a;, denotes the throughput requirement
of userk. We assume that; < oo for everyk. The arrivals for each usérare queued in the infinite
capacity buffer. We denote b§(¢) = [Q1(¢) --- Qn(t)], whereQ,(t) is the backlog or queue length
for userk in slot ¢, i.e., Qx(t) is the difference between the total arrivals minus the tdégdartures
until time ¢.

Now, we describe our channel model. We assume multi-bangrsysSpecifically, we assume that
there areM non-interfering bands available for communication. dgft) = [dia(t) - diga(t)]
denote the vector of channel gains for uken slot¢ on each of the bands. Thus,Af, ,,,(¢) denotes
the transmit energy per symbol for uskeron sub-bandn in slot ¢, then the received energy on

the sub-band is given by, ,,,(t)Ey .. (t). We assume thafd, (t) : k = 1,...,n}s>1 is a positive
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recurrent finite state Markov process. Note that this assoms not restrictive as correlated Rician
and Rayleigh fading channels can be modeled reasonablyusiglfy a finite state Markov process
[11], [12]. Let Ny denote the noise power spectral efficiency.

Let R, ,(t) denote the service rate for uskron sub-bandn in slot ¢. Then, for everyk, the

gueue length dynamics is characterized by

Qk(t+1):maX{Qk + Ag(t) Zka }

Clearly, Ry, ,,(t) depends on the channel gains, transmit energies and thegcstiategy used. We
consider the space of coding strategies such that the ralbésvad on sub-band: is independent of
the rates on the other sub-bands. Alternatively, commtinitgaon various sub-bands are independent.
Note that the communication on the same sub-band for vareass may not be independent.

Definition 1 (Scheduling StrategyA scheduling policyA arbitrates the rate allocatioR}, ,,(t)
and coding strategy for every uskrand sub-bandn in every slott.

This class includeffline policies that decide their rate allocation and coding basedthe
knowledge of arrivals and channel states in each past, mresel even future slots.

We assume tha@(t) and cfk(t) for every k is known and a scheduling policy can utilize this
knowledge in its decision process. In case of a possible guitipj we use superscripk to indicate
the dependence of various terms An e.g.,R,ﬁm(t) and Eﬁm(t) will denote the rate and transmit
energy respectively for usérin sub-bandn in slot ¢t underA.

Definition 2 (Stability): The multi-access system is said to be stable if the mean glesggh
in every slott for every userk is upper bounded by a number that is independent,one.,
sup;>1{E[Qk ()]} < oo for everyk. A scheduling policy that stabilizes the system is calleablgt
scheduling policy.

Note that every stable scheduling policy guarantees theinest) throughputa;, to every usetrk,
and in addition, guarantees bounded delay for the arrivals.

Definition 3 (Power Efficiency)The power efficiency of scheduling polick is defined as
T N M

P2 = limsup — ZZZEkm

T—oc0 t=1 k=1 m=

Definition 4 (Optimality): A stable policy A is sald to be optimal if with probability (w.p.) 1 it
attains the smallest power efficiency among all the stableips.

Let Pnin(C) be the infimum of the power efficiencies of all the stable peficn a clas<C of
scheduling policies. IfC does not contain any stable policy, thét,,(C) is defined to becc.
Furthermore, letP,,;, denote the optimal power efficiency, i.€%in = Pnin(C) WhereC is the

set of all policies.
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Definition 5 ¢-optimality): A scheduling policyA is said to bes-optimal in clas<C of scheduling
policies if it is stable andP® < Pin(C) + ¢ w.p. 1. MoreoverA is said to bee-optimal if it is

stable andP?® < Ppin + € W.p. 1.

[1l. BACKGROUND

We present the following known results for the sake of comepless. To be consistent, we state
these results in the notation introduced here.

Fix a sequence of coding strategies in every slot and léenote the class of scheduling policies
that use this fixed sequence of the coding strategies. Adda)](V') € C denote a parametrized
scheduling policy that assigns the rates by solving themipéition problem
Minimize: S0 |00 V Bk (t) — Sply Quk(t) Riem (1)

Subject to: Ry, (t) > 0 for everyk andm,
whereV is a fixed constant. Then, the following are the performanearantees for\; (V).

Theorem 1 (Result from [7], [8], [9]):For everye > 0, there existsV/ > 0 such that for every
V >V, A (V) is e-optimal inC.

We present the intuition for the result. Consider a case wg(t) is much smaller thari/.
Broadly, it implies that the user was receiving the desir@ iin the past. Thus); (V) provides
positive rate to the user only if the corresponding energst @much smaller, i.e., when the user’s
channel gain is large. On the contrary,(.(¢) is much larger thar//, then it implies that the user
was not receiving the desired rate and also that the usezimge channel gain is small. Thus; (V)
provides positive rate to the user even when the user hasntidty, small channel gain in order to
preserve stability. Alternatively, the current queue kbngepresents the history of the rate provided
to the user and its channel quality. Thus; (V') estimates users’ desired throughput and channel
quality using the current queue length, and then investsgngugh power to maintain stability.

Given coding strategies, Theoréin 1 provides a way to oktajotimal policies. Thus, it remains to
determine how optimal coding strategy can be obtained inyeslet. The following theorem provides
useful guidelines in this direction.

Theorem 2 (Results in [2])For a given rate assignmeRy, . .., Ry and channel states, ..., dy
the total sum energE]kV:1 E}, required to realize the rates is minimized by super-pasitioding and
successive decoding. Moreover, for optimal signaling,sihecessive decoding order depends only on
channel gains, but not on the rate assignment.

Let 7 denote the permutation that sorts the gains in the incrgamider, i.e..d;, < d, <--- <

dr.. Then, the required transmit energy per symbol for useis given by

No
E, =
k dﬂ—

[BR”’C _ 1] 62i<k R”i. (1)

k
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IV. e-OPTIMAL SCHEDULING PoLIcY

Let us define the following function for a fixed constdnt
PRt def iv: dWVNO( 5 |:6R,,;€n,m(t) _ 1] oXicr Barrom (1) ZQW Ry (1),

where7™ is a permutatlon that sorts the gains on sub-banth the increasing order. Now, let us
consider a parametrized scheduling politty (V') that assigns in every slot the raté& ,,(¢) that
solve

Optimization (O1) - Minimize: "™ F(R,.(t))

Subject to: Ry, (t) > 0 for everyk andm,
and then achieves the rates using super-position codingactessive decoding on each sub-band
separately. CIearIyRA V) ( ) = 0 for everym, if Qx(t) = 0. We show the following optimality
result for A*(V).

Theorem 3:For everye > 0, there exists/ > 0 such that for every > V, A*(V) is e-optimal.

Proof: Let C* denote the class of scheduling policies that use supetigrosbding and successive

decoding in every slot. Then, we show that;, = Ppin(C*).

Let A; denote any stable policy. Now, we construsy € C* as follows. For everyk, m and
t chooseRy? (t) = Ry% (t). Clearly, A, is also stable. Moreover, by Theorerh 2, for every
PR S 1EA2 (t) < Yom_y Yaly Egl (). Thus, by Definitior B,PAt > P22, Since,A; is an
arbitrary stable scheduling policy, we conclude t®at, = Puin(C*).

Now, the result follows from Theorel 1 and (1). [

Note that Theorerhl3 provides a way to minimize power whilditmng the system. The mini-
mization is over the space of all coding and rate assignnieaiegies. The policA*(V') achieves the
optimality by taking into account only the current systemtet and does not require the knowledge
of statistics of the arrival and channel processes a pilitoireover, optimality holds among the class
of off-line scheduling policies. In spite of these desieptopertiesA*(V') has one major limitation
which is that it needs to solve a non-linear optimizat{@1) in every slot to obtain the optimal rate
assignment. SolvingO1) may be computationally expensive, and thereby limit thectirality of
A*(V). In the following discussion, we focus q@®1) and derive certain properties of the optimal
solution and using these propose an algorithm that obtaitisnal rate allocation with polynomial
complexity.

Since the communication on each of the sub-bands is indepentb solve(O1), it suffices to
solve separately for eveny,

Optimization (02) - Minimize: F(R,,(t))

Subject to: Ry, (t) > 0 for everyk.
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Moreover, since the nature of optimization (objective fim and constraints) is identical for every
m, an algorithm to solv€O2) for a givenm can be utilized for alm’s. So, we fixm andt¢ and
focus on(02).

In the following discussion, for notational brevity, we dmi andt. Also, without loss of generality,
let ;" = k. With this simplified notation(O2) becomes

Minimize: F(R) = Y00, X [efe — 1] eXoan e — 578 Qi Ry,

Subject to: Ry > 0 for everyk.

Note that(O2) is strictly convex (see Appendik I). This can be verified bgcking that the Hessian
is positive definite in the positive half plane [13]. For cervoptimization, polynomial complexity
algorithms using the interior point method have been preg¢$4]. These algorithms obtain a solution
within 6 > 0 neighborhood of the optimal value. The computational cexipt of these algorithms is
O(N?3) per accuracy digit [14]. We, however, propose égV?) complexity algorithm that computes
the exact optimal solution.

We start by looking at the Lagrange relaxation(6f2).

Minimize: F(R,X) = Y30, Yo [efe — 1] eXiae B — 20 (Qp + M) Ry,

where X = {A1,...,An} are Lagrange multipliers. Now, for eveky
OF(R,X) & VNy, g st p  VNo s+ g
— = — (e —1 I B e e k) 2
R, Z di (e )e ¢ (Qr + M) )
i=k+1
Lemma 1:The following relations satisfy%?) = 0 for everyk.
[(Qr + M) = (Qrt1 + Ait1)] [ﬁ - d_lk]
Ry = log for k > 1 3)
(@1 + M) = Qe+ M) [ 3 — 7]
R, = log (Q1+ A1) — (Q2+ A2) 7 (@)
VNo & - %]
by definingdy.1 = oo andQni1 = Ani1 = 0.
Proof: We show the required by proving that for evd«y%lfi’x) = 0 implies
oS R _ Qe+ M) = (Qr1 + Aur) (5)

v [k -]
We prove the above using induction én
As a base case we shol (5) fer= N. Note that substituting = N in (@) and equating it to 0,
we obtain [(b). Thus[{5) holds fdt = N. Now, for induction, we assume thafl (5) holds for every
k > s+ 1 and verify it for k = s.
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Consider the second term il (2) with= s.

N
3 VNo (ef — 1) eXumi R
imst1
N N
-y VNo s R _ 3 VNo st ,
i=s+1 g i=s+1 ‘

vt di  dit1 dn ds+1
V N s
= (Qoy1+ Ast1) — SQZ“” A
s+

Last equality follows from[(5) and the induction hypothe$i®w, substituting the above ial(2), we
obtain the desired.
Finally, (3) follows by observingr; = log (ﬁfﬁi?) and [4) is obtained directly froni](5) with

k=1. ]

Definition 6 (From [15], pp. 328):The vectorsk’ and X’ are said to satisfy Karush-Kuhn-Tucker

(KKT) conditions if they satisfy the following relations.

(RS

m = 0 for everyk (6)
ORy, Lo
R=R'

R >0 ()

X >0 8

RN, = 0 foreveryk. 9)

Since(02) is strictly convex in the feasible region, we conclude thikofaing [15].

1) The optimal solution is unique.

2) The rate allocatiod’ is optimaliff there exists\ such that?’ and )’ satisfy the KKT conditions.

Also, suchX is unique since linear independence constraint qualifinatiolds.

In Figure[1, we propose a general procedure for obtainingte aiocation 2 and Lagrange
multipliers X that satisfy the KKT conditions for any give andd. We first intuitively describe the
proposed algorithm and subsequently prove that the afgoraptimally solveq02).

The main procedure Computatiafi OptimalLRates takes current queue length vecﬁjoand the
channel gainsfas input and outputs the optimal rate allocati®nin this procedure, we define two
setsA and& that partition the set of all users. The s&{(&, resp.) denotes the set of active (inactive,
resp.) users. A useékr is said to be active ifR; > 0, i.e., it is served at positive raté; is inactive
otherwise. Initially, all the users are assumed to be adtivee [1). Next, the algorithm iterates and
in each iteration determines an inactive user using (10)(@&fy (Line[2). Once the inactive user is

determined the setd and¢& are updated (Linesl 3 afnd 4), and subsequently the Lagrantjgliacs
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Computationof_OptimalRatesQ,d)
begin

1: Initialize A + {1,..., N}, E« ¢andX « 0
2: while There existsk € A such that

(@r—1+ Ap—1) [L ;] + (Qr+1 + Aet1) [ﬁ - L]

Qv < . d“ll - Gl for k> (10)
[dk—l _-dk+1]
Q< VN [i - é} (@24 M) (1)
do
3 £« Uik}
4: A+ A—{k}
5: UpdateLagrangeMultipliers(A, &)
{/* Optimal Rate computation ¥/
6: Ry < 0 for everyk € £
7: ComputeRy, for every k € A using [3) and[[(4)
end
UpdateLagrangeMultipliers(A, &)
begin
1: \p < O for everyk € £
2:if {1,...,u —1} C & andu € A then
3:  foreveryme {1,..., u—1}
A 4 VN {# - ﬂ +(Qu — Qum)- (12)
4 if {fo+1,..., u—1} C Aand{v,u} C € then
5. foreveryme {v+1,...,u—1}
A -] od - a] — Qm. (13)

end

Fig. 1. Figure shows the pseudo code of an algorithm that atespthe optimal rate allocation in a given slot

are also updated (Lirld 5). If no user i satisfy [10) and[(11), then the algorithm terminates after
computing the rate allocation using (3) and (4) (Libés 6 @ndThis ensures thaktl(6) is satisfied for
all k € £. Now, we explain why a user satisfying_{10) ar{11) should bactive. Note that[(10)
and [11) are equivalent t&; < 0 in (3) and [(4), respectively. Since the assigned rates cinhmn
non-negative, we put such a ugein £ and update correspondirig so as to ensur&; = 0.

Now, we briefly explain how the procedure UpdategrangeMultipliers computes Lagrange mul-
tipliers in each iteration. Note that for every active uger\;, must be zero in order to satisfy the

KKT condition (9). Thus in the first step, the procedure assiy, = 0 for everyk € A (Line [1).

DRAFT



Next, for everyk € &, it computes)\;, so thatR;, in (@) or (4) equals zero (Linds 2 [d 5). This ensures
that [6), [7) and[(9) hold for every € A. We need to recompute all the Lagrange multipliers in
every iteration because the value Xf is a function ofA\;_; and \;; as can be seen frorh](3) and
@).

Even though the algorithm is straightforward, mainly, tweegtions are unanswered. First, whether
A IS non-negative for every € £. Second, since tha,’s for many users (not only the recently
added user) irf are updated, how is it ensured that an inactive user doesewainte active in the
subsequent iterations. We formally address these questiod prove the optimality of the proposed
algorithm.

For analysis, we introduce the following additional naiati Let B* and X* denote the rate vector
and Lagrange multipliers computed by the algorithm at teation. Also, letA* and£* denote the
setsA and &, respectively, when the algorithm terminates. Next, weirtisiish between the value
of X, A and & computed by the algorithms in every iteration. Lét A° and £¢ denote), A and
£, respectively, computed by the algorithmiifi iteration. Because of the initialization in Lifé 1 of
procedure Computatioaf_OptimalRates X° = 0, A° = {1,..., N} and&° = ¢. Let the algorithm
terminate inl iterations. Then, clearly] < N and X! = X*, Al = A* and&! = £*. Now, we show
the following result.

Lemma 2:1f X* > 0, then B* and X* satisfy the KKT conditions.

Proof: Note that for everyk € A*, R; is computed using[{3) andl(4). Thus by Lemfda 1,
clearly, [6) is satisfied for every € A*. Now, we show that{(6) also holds for evekyc £*. Note
that Rt = 0 for everyk € £*. Thus, it suffices to show that when the chosenis substituted in
@) and [4) yieldsR; = 0 for every k € £*. The required can be easily verified using elementary
algebra. Thus{6) holds for eveky

Now, we show that\* satisfy [7). SinceR; = 0 for everyk € £, (@) clearly holds for every
k € £*. Now, we show((l7) for every: € A*. We show the required using contradiction. Let there

be k € A* such thatR; < 0. But then from [(B) and_{4) it implies that

* 1 1 * 1 1
o < Gt ENE TG
{dk—l o dk+1}
1 1 N )
Qr < VNo |7 ——| +(Qpy1+ A1) FE=1
dp  dpyr

Now, from (10) and[(1l1), we conclude that the algorithm wilt nerminate, but instead addto &£
and continue. Thus, no such index exists. Soand B* satisfy [7).
The vectors\* and £~ satisfy [8) because of the supposition in the lemma. Monedkie vectors

satisfy [9) becaus&; = 0 for everyk € £*, while X\; = 0 for everyk € A*. [ |
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In the following theorem, we show that is non-negative.

Theorem 4:For everyi < I, X < Xit1,

Note that since\’ = 0, Theoreni# implies thakt* > 0. We prove the above theorem by showing
the required in each of the cases that may be arise in the tixeai the algorithm. The proofs use
elementary algebra. For better readability, proofs fortladl cases are given in AppendiX II.

Finally, we prove the optimality of the proposed algorithm.

Theorem 5:The rate allocation?* is the unigue optimal solution d©2).

Proof: The result follows immediately from the strict convexity @2), Lemmal2 and Theo-

rem[4. ]

V. CONCLUSION

We have considered a multi-access channel witkusers. We have proposed a parametrized
scheduling policyA*(V') which is e-optimal for everye > 0 for appropriate choice of the parameter
V' even among the offline strategies in spite of considering tivd current queue lengths and channel
gains in its decision process. Moreover, the optimizat®mver the joint space of coding and rate
allocation strategies. The policy*(V') needs to solve a convex optimization in every slot to obtaén t
optimal rate allocation. We have propose®@N?) algorithm that accurately solves the optimization.

All the results extend in straightforward fashion to broastccase because of uplink-downlink duality.
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APPENDIX |

CONVEXITY OF OPTIMIZATION (O2)

The second partial derivative d@f(R) is as follows.

. i—1 k .
*F(R) _ DR T (e = 1) e e Bloedin G <k
OROR; Vd_zzfoezg:l Ru 4 Zfiﬁl Vé:fo (efi —1) e e Sk
Note that for everyfi € [0,00)", g;’:é? > 0 for any k and j. This shows that the Hessian of

F(R) is positive definite. Also, it is clear that the feasible mgj0, o) is a convex set. Thug02)

is an instance of convex optimization.

APPENDIXII

SUPPORTINGLEMMAS FOR PROVING THEOREMZ

Lemma 3:Let indexk be added to the sé¥~! in thei'" iteration. Then for all users such that
there exist € A’ betweenk andu, \!, = AL,
Proof: The proof follows immediately from the procedure UpdatgrangeMultipliers in Fig-
ure[d. [
Lemma 4:Let indexk be added to the sé¥~! in thei'! iteration. Also, let{k—1,k+1} € AL
Then,\i, — X\i=1 > 0 for everyn.
Proof: Since indext is added te€’~! in thes'" iteration, we know the following. Firsty: ' = 0.

Second, from[(10)

Q-1+ N7 [F - 25| + Qe + 350 [75 - 2]

Qk; < |: T :| (14)
di—1 di41
Note thatAj_} = A} = 0. Thus the result follows fron{(13), (1l4) and Lemiia 3. (]

Lemma 5:Let index 1 be added to the s&t! in the'! iteration. Also, let{2,...,m—1} C &1

andm ¢ £, Then,\!, — i1 > 0 for everyn.
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Proof: Since index 1 is added © ! in the:'" iteration, we know the following. Firstyf1 =0.
Second, from[(1]1)

1 1 .

Q1 <VNy | — | +(Q2+ A1), (15)
di  dy
Moreover, sincg?2,...,m—1} C £~ andm ¢ £~!, we also know that for everny € {2,...,m—
1},

. Q|+ —F+|+Qm |+ -+

il = [d“ di} 1 [@ d”}—-Qn. (16)
-

N,
@ < Vodl da [L_L}
di  dm
1 1
= Q1 < VNy|———|+4Qn. a7
di  dp
Now, note that from[(12), for every =1,...,m — 1
; 11
)‘n =V DNy [d_ - d_:| + (Qm - Qn) (18)
From [17), clearly\} > 0. Now, from [16) and[{I18), it follows that for every=2,...,m — 1
1 1 1 1
o 11 Qu|g;, —a, | tWm|a —a
AZ _'AZ71 = ‘/be T *‘(anz_'CBn)'_ [ ] [ } +'(?n
d, dn [L _ 1]
dl dnL
- 2]
S T S

The last inequality follows from the fact thaf, < dj,, for everyk and \{ > 0. Furthermore, by
Lemmal3, forn ¢ {1,...,m — 1}, \i-! = X!, Thus, the result follows. ]
Lemma 6:Letindexk > 1 be added to the séf~! in thei'! iteration. Also, let{v+1,...,k—1} C
-t and{v,k + 1} C A". Then,\i, — \i"1 > 0 for everyn.
Proof: Since indext is added te€'~! in thes'! iteration, we know the following. Firsty: ' = 0.
Second, from[(10)

Q-1+ N0 [F = 2&] + Qe + 250 |75 - 2]

11
dk71 dk+1

Moreover, sincgv +1,...,k—1} C &1 and{v,k, k+1} C A, we also know that for every

nef{v+1,....k—1},

Qr <

(19)

Q. {é—dik]Jer [i—d%}

At = — Qn. (20)

|~

e
dy

Q

k
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Now, substituting\;.}; = 0 and A~} from (20) in [19), we obtain

Q|7

dj 1_E:| +Qk{d1 dkl,li| 1 1 1 1 1
11 [ - dk+1:| (Qry1 + )‘;c+1)) [qu - d_k]
Qr < o

dp
{ —1 dk+1:|

= Qr < : : (21)
I B dk+1
Now, note that from[(13), for every = v +1,...,k
Qo g + Qi1 |- —
2\¢ |: dn d’““] [d“ d"] _ Qn (22)

n - 1 1
dy di+1

From [21) and[(22), clearly); > 0. Now, from [20) and[{22), it follows that for every = v +

1., k—1
d, d,

Aoyl - ]+Qk“[%_i}_Qv{i—%
n [di_

I_l

&=

}

The last inequality follows from the fact thaf, < d,.; for everyn and X, > 0. Furthermore, by
Lemmal3, forn ¢ {v+1,...,k}, A\i-! = \i . Thus, the result follows. ]
Lemma 7:Let indexk > 1 be added to the s&¥~! in thei'! iteration. Also, let{1,... , k—1} C
E-Yandk + 1 € A% Then,\}, — \i=1 > 0 for everyn.
Proof: Since indext is added t&€~ ! in thei'! iteration, we know the following. First),i;l =0.
Second, from[(10)

(@ + M) [ — ] + @en +X50) [ — &

Qk; < |: R :| (23)
di—1 di41
Moreover, sincg1,...,k—1} C &~ andk € A", we also know that for every € {1,...,k—
1},
o 1 1
N =V || (@ Q) (24)
n k
Now, substituting\;2}; = 0 and A~} from (24) in [23), we obtain
1 1 1
0 < (VNO [E - d_k] +Qk> { a dk+1:| + Qr1 |:dk " a] 25)
g [L _ L}
di—1 dit1
1 1
= Qr < VDN [— - —} + Qk+1- (26)
dp  diyr
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Now, note that from[(13), for every = 1,...,k

. 1 1
A, =V No [d_ — d—} + (Qr41 — Qn)- (27)
n k+1
From (26) and[(27), clearlypi > 0. Now, from [24) and{27), it follows that for every=1,... k—1
) ) 1 1
A I 7\ [d_ - d—} + (Qr+1 — Qk)
k k+1
= M. >0.
Furthermore, by Lemmi 3, for ¢ {1,...,k}, Ai-1 = \,. Thus, the result follows. ]

Lemma 8:Let indexk > 1 be added to the sét—! in thei*® iteration. Also, le{k+1,...,u—1} C
E-Yand{k — 1,u} C A% Then,\}, — \i:-t > 0 for everyn.
Proof: Since indext is added te€'~! in the:'" iteration, we know the following. Firsty: ' = 0.
Second, from[(10)
@1+ N7 [ — ] + @+ X20) [25 - ]
& 2]
Moreover, sincglk +1,...,u—1} C &~ and{k —1,k,u} C A""!, we also know that for every

nef{k+1,...,u—1},

(28)

Qr <

Qu [k -] +QulE -4

)\i—l — d
" 11
d. d.,

Now, substituting\; ", = 0 and\} ", from (29) in [28), we obtain

— Qn. (29)

Qk[d‘llfi}‘i’Qu[dl*dll}
Qi [ - ]+ 2L i I

M 5] o
0 5
e [ - a5
g < 2 et Rt ek d (30)
[d,},l - i}
Now, note that from[(13), for every = k,...,u —1
Qe oA relds -4 o o

" 11
a1 da

From [30) and[(31), clearly)i > 0. Now, from [29) and[(31), it follows that for every = k +

Qo [#-2]+ou[is -4 @l-#]+ou[t-4]
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The last inequality follows from the fact thaf, < d,,.; for everyn and X, > 0. Furthermore, by
Lemmal3, forn ¢ {k,...,u— 1}, Xi-1 = M/, Thus, the result follows. ]
Lemma 9:Let indexk > 1 be added to the s&t—! in the'! iteration. Also, let{v +1,... &k —
1Ju{k+1,...,u—1} C &t and{v,u} C A% Then,\i — \i-1 > 0 for everyn.
Proof: Since indext is added t&€~ ! in thei'! iteration, we know the following. First),i;l =0.
Second, from[(10)

(Qr—1+ A Y) [dk dw} (Qrs1+ M) [d%l - i}

1 1
di—1 dit1

Moreover, since{v +1,....k —1}U{k+1,...,u—1} C &' and {v, k,u} C AL, we also

Qr <

(32)

know that for everyn € {v +1,...,k — 1},

— Qn, (33)

and for everyn € {k+1,...,u — 1},

_ dL]
— Qn. (34)

Now, substituting\; "}, and A +11 from (33) and[(34), respectively, in_(32), we obtain

Q“[%ﬁ*ﬂw’“[@”ﬁ} [L _ L] L& {ﬁfﬂm“ [ffdkil} [L _ L}

[L_L] dy. drg1 11 di—1 dy
Or < dy  dp an,  du

—Qr < — (35)
-]
Now, note that from[(13), forevery = v +1,...,u—1
, Qv + -4 + Qu L1
2\ = |:d"' d“] [d“ d"} _ Qn (36)

" 1 _ 1
d, d,

From [35) and[(36), clearly); > 0. Now, from [33) and[(36), it follows that for every = v +

1. k-1
Q-+ [t-4] @lt-4]+a[: -4

d
1 _
d,

[E—

)

8-
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The last inequality follows from the fact that, < d,,,1 for everyn and A}% > 0. Moreover, from

(34) and [(3), it follows that for every =k +1,...,u — 1
A= . Qv{if]*‘@u][ijdﬂQk[ii}+@a[id{z}
n = \n L A
o &~
= MAPO.
de ~ du

Furthermore, by Lemmi@ 3, for ¢ {v +1,...,u — 1}, Ai-1 = XL Thus, the result follows. ®

Lemma 10:Let indexk > 1 be added to the set’~! in the i*" iteration. Also, let{1,...,k —
Ju{k+1,...,u—1} C & andu € A% Then,\!, — \i-t > 0 for everyn.
Proof: Since indext is added t&€*~! in thei*" iteration, we know the following. Firsiy; ' = 0.
Second, from[(1]0)

(@r—1+ X [i - ﬁﬂ} + Qi1+ X20)) [ﬁ - i}

11
di-1 dit1

Moreover, since{l,...,k—1}U{k+1,...,u— 1} C &1 and {k,u} C A"~!, we also know

Qr <

37)

that for everyn € {1,...,k — 1},

1 1

Nt =V |- | @), (38)

and for everyn € {k+1,...,u — 1},
Nl = @ [d%—i] + Qu [d%v_d%}
# - 2]

Now, substituting\,_}; and Xj_" from (38) and[(3D), respectively, il (37), we obtain

- ] v [ -] - Al )

— Qn. (39)

I di—1 di.
Qr < ; ;
|:dk—1 B dk+1:|
1 1
= Qr < VNy|— ——|+Qu. (40)
di  dy
Now, note that from[(13), for every = 1,...,u—1
; 11
)‘n:VNO - = 5 +(Qu_Qn) (41)
dn  dy
From (40) and[{41), clearlpi > 0. Now, from [38) and{41), it follows that for every=1,... k-1
_ _ 1 1 1 1
1 yi—1 — N, - = o — VN, el o
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The last inequality follows from the fact that and > 0. Moreover, from[(3B) and_(41), it follows
that foreveryn =k +1,...,u—1

. . 1 1 d k
Mo AL — YNy [ - — w— A
a T d.
1 1 .
= |—— =] >0
RSl
Furthermore, by Lemmid 3, for ¢ {1,...,u — 1}, Ai-! = X\¢. Thus, the result follows. ]
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