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Abstract

A power optimal scheduling algorithm that guarantees desired throughput and bounded delay to

each user is developed for fading multi-access multi-band systems. The optimization is over the joint

space of all rate allocation and coding strategies. The proposed scheduling assigns rates on each band

based only on the current system state, and subsequently uses optimal multi-user signaling to achieve

these rates. The scheduling is computationally simple, andhence scalable. Due to uplink-downlink

duality, all the results extend in straightforward fashionto the broadcast channels.

Index Terms

Power minimization, scheduling, stability, convex optimization, super-position encoding and

successive decoding.
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I. INTRODUCTION

We consider a multi-access fading channel withN users and a single access point. Each userk

requires certain long term rate (throughput) guaranteeak. Our aim is to design a scheduling strategy

that arbitrates, in every slot, the instantaneous rate assignment to each user and coding strategy to

realize the assigned rates depending on the current fading states so that the throughput requirement

for each user is fulfilled and the total power expenditure is minimized.

In their seminal work, Tse and Hanly have characterized so called throughput capacityanddelay-

limited capacityof the multi-access fading channel with Gaussian noise [1],[2]. The throughput

capacity region quantifies the achievable rate region with average power constraint for ergodic fading.

For the delay limited capacity, each user must be given the required rate irrespective of its fading

states in every slot (strict delay of one slot). The aim here is to obtain a coding and power allocation

scheme to minimize the energy.

The notion of throughput capacity leads to schemes that takeadvantage of users’ differential channel

qualities. Specifically, it is known that the sum throughputin the system is maximized by letting only

one user with the best channel transmit. Schemes that take current channel states into account while

making scheduling decisions are referred to as“Opportunistic Scheduling”and may result in unfair

rate allocation if the fading statistics are not symmetric which is typical in wireless systems. To

alleviate this limitation, several opportunistic scheduling schemes with fairness constraints have been

designed [3], [4]. Among them, Proportional Fair Scheduling (PFS) has many desirable properties

including provable fairness guarantees and suitability for on-line implementation, i.e., without prior

knowledge of channel statistics [5]. But, PFS does not guarantee the required throughput to users.

Unlike opportunistic scheduling schemes, the delay-limited schemes guarantee the required through-

put to every user. Specifically, super-position encoding and successive decoding is shown to minimize

power for achieving the required throughputs [2]. But, the minimization is achieved under an additional

constraint that the required rate should be provided to eachuser in each slot irrespective of its channel

state. Thus, these schemes can not benefit from users’ channel variability over time. Recently, we

have shown that the significant power saving can be achieved by exploiting a small delay tolerance

of the application [6]. In absence of a specific delay constraint, the proposed scheme is shown to

minimize power while guaranteeing the desired throughput and bounded delay for each user. The

optimality result has been shown in asymptotic case, i.e., as the number of users go to infinity [6].

Optimality for the finite users case has remained open.

For finite users case, [7], [8], [9] have found back-pressurebased scheduling strategies to minimize

the energy consumption in the wireless system with ergodic fading while providing the required
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throughputs and bounded delays to the users. These schemes assume that the coding strategy is

predefined and for the given coding strategy determine the rate to be provided in each slot by solving

an optimization problem. The optimization problem may be non-linear depending on coding/signaling

strategy used, and hence may become computationally expensive in practice.

Here, we consider the finite users case, and propose a computationally simple power optimal scheme

that provides the required throughputs and bounded delays to the users. The optimization is over the

joint space of coding and rate allocations. Specifically, the proposed optimal policy is back-pressure

based policy like that in [7], [8], [9], and employees super-position encoding and successive decoding

in each slot. The proposed policy arbitrates scheduling based only on the users’ current backlogs and

the channel states. In spite of using this limited information, it is shown to be optimal even in the

class ofofflinepolicies that take into account the channel states and arrivals in past, present and even

the future slots. One of the main challenges in execution of the proposed policy is that the optimal

rate allocation can only be obtained by solving a convex optimization in every slot. But, we obtain

a computationally simple algorithm that exploits the problem structure and solves the optimization.

All the results extend in straightforward fashion to the broadcast case because of uplink-downlink

duality [10].

The paper is arranged as follows. In Section II, we present our system model. In Section III, we

present some known results that we use. In Section IV, we propose our optimal policy and prove its

optimality. In Section V, we conclude.

II. SYSTEM MODEL

We consider a multi-access channel withN users. Time is slotted. For each userk, let {Ak(t)}t≥1

denote the random process of arrivals, i.e.,Ak(t) denote the arrivals fork in slot t. We assume that

~A(t) = [A1(t) · · · AN (t)] are the independent and identically distributed (i.i.d.) random vectors

across the slots. Moreover, letak = E[Ak(t)]. Alternatively,ak denotes the throughput requirement

of userk. We assume thatak < ∞ for everyk. The arrivals for each userk are queued in the infinite

capacity buffer. We denote by~Q(t) = [Q1(t) · · · QN (t)], whereQk(t) is the backlog or queue length

for userk in slot t, i.e.,Qk(t) is the difference between the total arrivals minus the totaldepartures

until time t.

Now, we describe our channel model. We assume multi-band system. Specifically, we assume that

there areM non-interfering bands available for communication. Let~dk(t) = [dk,1(t) · · · dk,M (t)]

denote the vector of channel gains for userk in slot t on each of the bands. Thus, ifEk,m(t) denotes

the transmit energy per symbol for userk on sub-bandm in slot t, then the received energy on

the sub-band is given bydk,m(t)Ek,m(t). We assume that{~dk(t) : k = 1, . . . , n}t≥1 is a positive
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recurrent finite state Markov process. Note that this assumption is not restrictive as correlated Rician

and Rayleigh fading channels can be modeled reasonably wellusing a finite state Markov process

[11], [12]. Let N0 denote the noise power spectral efficiency.

Let Rk,m(t) denote the service rate for userk on sub-bandm in slot t. Then, for everyk, the

queue length dynamics is characterized by

Qk(t+ 1) = max

{
Qk(t) +Ak(t)−

M∑

m=1

Rk,m(t), 0

}
.

Clearly,Rk,m(t) depends on the channel gains, transmit energies and the coding strategy used. We

consider the space of coding strategies such that the rates achieved on sub-bandm is independent of

the rates on the other sub-bands. Alternatively, communications on various sub-bands are independent.

Note that the communication on the same sub-band for varioususers may not be independent.

Definition 1 (Scheduling Strategy):A scheduling policy∆ arbitrates the rate allocationRk,m(t)

and coding strategy for every userk and sub-bandm in every slott.

This class includesoffline policies that decide their rate allocation and coding basedon the

knowledge of arrivals and channel states in each past, present and even future slots.

We assume that~Q(t) and ~dk(t) for every k is known and a scheduling policy can utilize this

knowledge in its decision process. In case of a possible ambiguity, we use superscript∆ to indicate

the dependence of various terms on∆, e.g.,R∆
k,m(t) andE∆

k,m(t) will denote the rate and transmit

energy respectively for userk in sub-bandm in slot t under∆.

Definition 2 (Stability): The multi-access system is said to be stable if the mean queuelength

in every slot t for every userk is upper bounded by a number that is independent ont, i.e.,

supt≥1{E[Qk(t)]} < ∞ for everyk. A scheduling policy that stabilizes the system is called stable

scheduling policy.

Note that every stable scheduling policy guarantees the required throughputak to every userk,

and in addition, guarantees bounded delay for the arrivals.

Definition 3 (Power Efficiency):The power efficiency of scheduling policy∆ is defined as

P∆ = lim sup
T→∞

1

T

T∑

t=1

N∑

k=1

M∑

m=1

E∆
k,m(t).

Definition 4 (Optimality): A stable policy∆ is said to be optimal if with probability (w.p.) 1 it

attains the smallest power efficiency among all the stable policies.

Let Pmin(C) be the infimum of the power efficiencies of all the stable policies in a classC of

scheduling policies. IfC does not contain any stable policy, thenPmin(C) is defined to be∞.

Furthermore, letPmin denote the optimal power efficiency, i.e.,Pmin = Pmin(C) where C is the

set of all policies.
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Definition 5 (ǫ-optimality): A scheduling policy∆ is said to beǫ-optimal in classC of scheduling

policies if it is stable andP∆ ≤ Pmin(C) + ǫ w.p. 1. Moreover,∆ is said to beǫ-optimal if it is

stable andP∆ ≤ Pmin + ǫ w.p. 1.

III. B ACKGROUND

We present the following known results for the sake of completeness. To be consistent, we state

these results in the notation introduced here.

Fix a sequence of coding strategies in every slot and letC denote the class of scheduling policies

that use this fixed sequence of the coding strategies. Also, let ∆1(V ) ∈ C denote a parametrized

scheduling policy that assigns the rates by solving the optimization problem

Minimize:
∑M

m=1

[∑N
k=1 V Ek,m(t)−

∑N
k=1Qk(t)Rk,m(t)

]

Subject to: Rk,m(t) ≥ 0 for everyk andm,

whereV is a fixed constant. Then, the following are the performance guarantees for∆1(V ).

Theorem 1 (Result from [7], [8], [9]):For everyǫ > 0, there existsV̂ > 0 such that for every

V > V̂ , ∆1(V ) is ǫ-optimal in C.

We present the intuition for the result. Consider a case whenQk(t) is much smaller thanV .

Broadly, it implies that the user was receiving the desired rate in the past. Thus,∆1(V ) provides

positive rate to the user only if the corresponding energy cost is much smaller, i.e., when the user’s

channel gain is large. On the contrary, ifQk(t) is much larger thanV , then it implies that the user

was not receiving the desired rate and also that the user’s average channel gain is small. Thus,∆1(V )

provides positive rate to the user even when the user has, potentially, small channel gain in order to

preserve stability. Alternatively, the current queue length represents the history of the rate provided

to the user and its channel quality. Thus,∆1(V ) estimates users’ desired throughput and channel

quality using the current queue length, and then invests just enough power to maintain stability.

Given coding strategies, Theorem 1 provides a way to obtainǫ-optimal policies. Thus, it remains to

determine how optimal coding strategy can be obtained in every slot. The following theorem provides

useful guidelines in this direction.

Theorem 2 (Results in [2]):For a given rate assignmentR1, . . . , RN and channel statesd1, . . . , dN

the total sum energy
∑N

k=1Ek required to realize the rates is minimized by super-position coding and

successive decoding. Moreover, for optimal signaling, thesuccessive decoding order depends only on

channel gains, but not on the rate assignment.

Let ~π denote the permutation that sorts the gains in the increasing order, i.e.,dπ1
≤ dπ2

≤ · · · ≤

dπN
. Then, the required transmit energy per symbol for userπk is given by

Eπk
=

N0

dπk

[
eRπk − 1

]
e

P

i<k
Rπi . (1)

DRAFT



5

IV. ǫ-OPTIMAL SCHEDULING POLICY

Let us define the following function for a fixed constantV .

F (~Rm(t))
def
=

N∑

k=1

V N0

dπm
k ,m(t)

[
e
Rπm

k
,m(t) − 1

]
e

P

i<k
Rπm

i
,m(t) −

N∑

k=1

Qπm
k
(t)Rπm

k ,m(t),

where~πm is a permutation that sorts the gains on sub-bandm in the increasing order. Now, let us

consider a parametrized scheduling policy∆∗(V ) that assigns in every slot the ratesRk,m(t) that

solve

Optimization (O1) - Minimize:
∑M

m=1 F (~Rm(t))

Subject to: Rk,m(t) ≥ 0 for everyk andm,

and then achieves the rates using super-position coding andsuccessive decoding on each sub-band

separately. Clearly,R∆∗(V )
k,m (t) = 0 for everym, if Qk(t) = 0. We show the following optimality

result for∆∗(V ).

Theorem 3:For everyǫ > 0, there existŝV > 0 such that for everyV > V̂ , ∆∗(V ) is ǫ-optimal.

Proof: Let C∗ denote the class of scheduling policies that use super-position coding and successive

decoding in every slot. Then, we show thatPmin = Pmin(C
∗).

Let ∆1 denote any stable policy. Now, we construct∆2 ∈ C∗ as follows. For everyk, m and

t chooseR∆2

k,m(t) = R∆1

k,m(t). Clearly, ∆2 is also stable. Moreover, by Theorem 2, for everyt
∑M

m=1

∑N
k=1E

∆2

k,m(t) ≤
∑M

m=1

∑N
k=1E

∆1

k,m(t). Thus, by Definition 3,P∆1 ≥ P∆2 . Since,∆1 is an

arbitrary stable scheduling policy, we conclude thatPmin = Pmin(C
∗).

Now, the result follows from Theorem 1 and (1).

Note that Theorem 3 provides a way to minimize power while stabilizing the system. The mini-

mization is over the space of all coding and rate assignment strategies. The policy∆∗(V ) achieves the

optimality by taking into account only the current system state, and does not require the knowledge

of statistics of the arrival and channel processes a priori.Moreover, optimality holds among the class

of off-line scheduling policies. In spite of these desirable properties,∆∗(V ) has one major limitation

which is that it needs to solve a non-linear optimization(O1) in every slot to obtain the optimal rate

assignment. Solving(O1) may be computationally expensive, and thereby limit the practicality of

∆∗(V ). In the following discussion, we focus on(O1) and derive certain properties of the optimal

solution and using these propose an algorithm that obtains optimal rate allocation with polynomial

complexity.

Since the communication on each of the sub-bands is independent, to solve(O1), it suffices to

solve separately for everym

Optimization (O2) - Minimize: F (~Rm(t))

Subject to: Rk,m(t) ≥ 0 for everyk.
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Moreover, since the nature of optimization (objective function and constraints) is identical for every

m, an algorithm to solve(O2) for a givenm can be utilized for allm’s. So, we fixm and t and

focus on(O2).

In the following discussion, for notational brevity, we omit m andt. Also, without loss of generality,

let πm
k = k. With this simplified notation(O2) becomes

Minimize: F (~R) =
∑N

k=1
V N0

dk

[
eRk − 1

]
e

P

i<k
Ri −

∑N
k=1QkRk

Subject to: Rk ≥ 0 for everyk.

Note that(O2) is strictly convex (see Appendix I). This can be verified by checking that the Hessian

is positive definite in the positive half plane [13]. For convex optimization, polynomial complexity

algorithms using the interior point method have been proposed [14]. These algorithms obtain a solution

within δ > 0 neighborhood of the optimal value. The computational complexity of these algorithms is

O(N3) per accuracy digit [14]. We, however, propose theO(N2) complexity algorithm that computes

the exact optimal solution.

We start by looking at the Lagrange relaxation of(O2).

Minimize: F (~R,~λ) =
∑N

k=1
V N0

dk

[
eRk − 1

]
e

P

i<k
Ri −

∑N
k=1(Qk + λk)Rk,

where~λ = {λ1, . . . , λN} are Lagrange multipliers. Now, for everyk

∂F (~R,~λ)

∂Rk

=
N∑

i=k+1

V N0

di

(
eRi − 1

)
e

P

i−1

u=1
Ru +

V N0

dk
e

P

k

i=1
Ri − (Qk + λk). (2)

Lemma 1:The following relations satisfy∂F (~R,~λ)
∂Rk

= 0 for everyk.

Rk = log



[(Qk + λk)− (Qk+1 + λk+1)]

[
1

dk−1
− 1

dk

]

[(Qk−1 + λk−1)− (Qk + λk)]
[

1
dk

− 1
dk+1

]


 for k > 1 (3)

R1 = log


(Q1 + λ1)− (Q2 + λ2)

V N0

[
1
d1

− 1
d2

]


 , (4)

by definingdN+1 = ∞ andQN+1 = λN+1 = 0.

Proof: We show the required by proving that for everyk, ∂F (~R,~λ)
∂Rk

= 0 implies

e
P

u≤k
Ru =

(Qk + λk)− (Qk+1 + λk+1)

V N0

[
1
dk

− 1
dk+1

] . (5)

We prove the above using induction onk.

As a base case we show (5) fork = N . Note that substitutingk = N in (2) and equating it to 0,

we obtain (5). Thus, (5) holds fork = N . Now, for induction, we assume that (5) holds for every

k ≥ s+ 1 and verify it for k = s.
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Consider the second term in (2) withk = s.
N∑

i=s+1

V N0

di

(
eRi − 1

)
e

P

i−1

u=1
Ru

=
N∑

i=s+1

V N0

di
e

P

i

u=1
Ru −

N∑

i=s+1

V N0

di
e

P

i−1

u=1
Ru

=

N−1∑

i=s+1

V N0

[
1

di
−

1

di+1

]
e

P

i

u=1
Ru +

V N0

dN
e

P

N

u=1
Ru −

V N0

ds+1
e

P

s

u=1
Ru

= (Qs+1 + λs+1)−
V N0

ds+1
e

P

s

u=1
Ru .

Last equality follows from (5) and the induction hypothesis. Now, substituting the above in (2), we

obtain the desired.

Finally, (3) follows by observingRk = log

(
e

Pk
u=1Ru

e
Pk−1

u=1Ru

)
and (4) is obtained directly from (5) with

k = 1.

Definition 6 (From [15], pp. 328):The vectors~R′ and~λ′ are said to satisfy Karush-Kuhn-Tucker

(KKT) conditions if they satisfy the following relations.

∂F (~R,~λ)

∂Rk

∣∣∣∣∣
~R=~R′

= 0 for everyk (6)

~R′ ≥ ~0 (7)

~λ′ ≥ ~0 (8)

R′kλ
′
k = 0 for everyk. (9)

Since(O2) is strictly convex in the feasible region, we conclude the following [15].

1) The optimal solution is unique.

2) The rate allocation~R′ is optimaliff there exists~λ′ such that~R′ and~λ′ satisfy the KKT conditions.

Also, such~λ′ is unique since linear independence constraint qualification holds.

In Figure 1, we propose a general procedure for obtaining a rate allocation ~R and Lagrange

multipliers~λ that satisfy the KKT conditions for any given~Q and ~d. We first intuitively describe the

proposed algorithm and subsequently prove that the algorithm optimally solves(O2).

The main procedure Computationof Optimal Rates takes current queue length vector~Q and the

channel gains~d as input and outputs the optimal rate allocation~R. In this procedure, we define two

setsA andE that partition the set of all users. The setA (E , resp.) denotes the set of active (inactive,

resp.) users. A userk is said to be active ifRk > 0, i.e., it is served at positive rate;k is inactive

otherwise. Initially, all the users are assumed to be active(Line 1). Next, the algorithm iterates and

in each iteration determines an inactive user using (10) and(11) (Line 2). Once the inactive user is

determined the setsA andE are updated (Lines 3 and 4), and subsequently the Lagrange multipliers

DRAFT



8

Computationof Optimal Rates(~Q,~d)
begin
1: Initialize A ← {1, . . . , N}, E ← φ and~λ← ~0

2: while There existsk ∈ A such that

Qk <
(Qk−1 + λk−1)

h

1

dk
− 1

dk+1

i

+ (Qk+1 + λk+1)
h

1

dk−1
− 1

dk

i

h

1

dk−1
− 1

dk+1

i for k > 1 (10)

Q1 < V N0

»

1

d1
−

1

d2

–

+ (Q2 + λ2) (11)

do

3: E ← E ∪ {k}

4: A ← A− {k}

5: UpdateLagrangeMultipliers(A, E)

{/* Optimal Rate computation */}

6: Rk ← 0 for everyk ∈ E

7: ComputeRk for everyk ∈ A using (3) and (4)

end

UpdateLagrangeMultipliers(A, E)
begin
1: λk ← 0 for everyk ∈ E

2: if {1, . . . , u− 1} ⊆ E andu ∈ A then

3: for everym ∈ {1, . . . , u− 1}

λm ← V N0

»

1

dm
−

1

du

–

+ (Qu −Qm). (12)

4: if {v + 1, . . . , u− 1} ⊆ A and{v, u} ⊆ E then

5: for everym ∈ {v + 1, . . . , u− 1}

λm ←
Qv

h

1

dm
− 1

du

i

+Qu

h

1

dv
− 1

dm

i

h

1

dv
− 1

du

i −Qm. (13)

end

Fig. 1. Figure shows the pseudo code of an algorithm that computes the optimal rate allocation in a given slot

are also updated (Line 5). If no user inA satisfy (10) and (11), then the algorithm terminates after

computing the rate allocation using (3) and (4) (Lines 6 and 7). This ensures that (6) is satisfied for

all k ∈ E . Now, we explain why a user satisfying (10) or (11) should be inactive. Note that (10)

and (11) are equivalent toRk < 0 in (3) and (4), respectively. Since the assigned rates can only be

non-negative, we put such a userk in E and update correspondingλk so as to ensureRk = 0.

Now, we briefly explain how the procedure UpdateLagrangeMultipliers computes Lagrange mul-

tipliers in each iteration. Note that for every active userk, λk must be zero in order to satisfy the

KKT condition (9). Thus in the first step, the procedure assigns λk = 0 for everyk ∈ A (Line 1).
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Next, for everyk ∈ E , it computesλk so thatRk in (3) or (4) equals zero (Lines 2 to 5). This ensures

that (6), (7) and (9) hold for everyk ∈ A. We need to recompute all the Lagrange multipliers in

every iteration because the value ofλk is a function ofλk−1 andλk+1 as can be seen from (3) and

(4).

Even though the algorithm is straightforward, mainly, two questions are unanswered. First, whether

λk is non-negative for everyk ∈ E . Second, since theλk’s for many users (not only the recently

added user) inE are updated, how is it ensured that an inactive user does not become active in the

subsequent iterations. We formally address these questions and prove the optimality of the proposed

algorithm.

For analysis, we introduce the following additional notation. Let ~R∗ and~λ∗ denote the rate vector

and Lagrange multipliers computed by the algorithm at termination. Also, letA∗ andE∗ denote the

setsA and E , respectively, when the algorithm terminates. Next, we distinguish between the value

of ~λ, A and E computed by the algorithms in every iteration. Let~λi, Ai and E i denote~λ, A and

E , respectively, computed by the algorithm inith iteration. Because of the initialization in Line 1 of

procedure Computationof Optimal Rates,~λ0 = ~0, A0 = {1, . . . , N} andE0 = φ. Let the algorithm

terminate inI iterations. Then, clearly,I ≤ N and~λI = ~λ∗, AI = A∗ andEI = E∗. Now, we show

the following result.

Lemma 2: If ~λ∗ ≥ ~0, then ~R∗ and~λ∗ satisfy the KKT conditions.

Proof: Note that for everyk ∈ A∗, R∗k is computed using (3) and (4). Thus by Lemma 1,

clearly, (6) is satisfied for everyk ∈ A∗. Now, we show that (6) also holds for everyk ∈ E∗. Note

that R∗k = 0 for everyk ∈ E∗. Thus, it suffices to show that when the chosen~λ∗ is substituted in

(3) and (4) yieldsR∗k = 0 for every k ∈ E∗. The required can be easily verified using elementary

algebra. Thus (6) holds for everyk.

Now, we show that~λ∗ satisfy (7). Since,R∗k = 0 for every k ∈ E∗, (7) clearly holds for every

k ∈ E∗. Now, we show (7) for everyk ∈ A∗. We show the required using contradiction. Let there

be k ∈ A∗ such thatR∗k < 0. But then from (3) and (4) it implies that

Qk <
(Qk−1 + λ∗k−1)

[
1
dk

− 1
dk+1

]
+ (Qk+1 + λ∗k+1)

[
1

dk−1
− 1

dk

]

[
1

dk−1
− 1

dk+1

] if k > 1

Qk < VN0

[
1

dk
−

1

dk+1

]
+ (Qk+1 + λ∗k+1) if k = 1.

Now, from (10) and (11), we conclude that the algorithm will not terminate, but instead addk to E

and continue. Thus, no such index exists. So,~λ∗ and ~R∗ satisfy (7).

The vectors~λ∗ and ~R∗ satisfy (8) because of the supposition in the lemma. Moreover, the vectors

satisfy (9) becauseR∗k = 0 for everyk ∈ E∗, while λ∗k = 0 for everyk ∈ A∗.
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In the following theorem, we show that~λ∗ is non-negative.

Theorem 4:For everyi < I, ~λi ≤ ~λi+1.

Note that since~λ0 = ~0, Theorem 4 implies that~λ∗ ≥ ~0. We prove the above theorem by showing

the required in each of the cases that may be arise in the execution of the algorithm. The proofs use

elementary algebra. For better readability, proofs for allthe cases are given in Appendix II.

Finally, we prove the optimality of the proposed algorithm.

Theorem 5:The rate allocation~R∗ is the unique optimal solution of(O2).

Proof: The result follows immediately from the strict convexity of(O2), Lemma 2 and Theo-

rem 4.

V. CONCLUSION

We have considered a multi-access channel withN -users. We have proposed a parametrized

scheduling policy∆∗(V ) which is ǫ-optimal for everyǫ > 0 for appropriate choice of the parameter

V even among the offline strategies in spite of considering only the current queue lengths and channel

gains in its decision process. Moreover, the optimization is over the joint space of coding and rate

allocation strategies. The policy∆∗(V ) needs to solve a convex optimization in every slot to obtain the

optimal rate allocation. We have proposed aO(N2) algorithm that accurately solves the optimization.

All the results extend in straightforward fashion to broadcast case because of uplink-downlink duality.
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APPENDIX I

CONVEXITY OF OPTIMIZATION (O2)

The second partial derivative ofF (~R) is as follows.

∂2F (~R)

∂Rk∂Rj

=





∑N
i=k+1

V N0

di

(
eRi − 1

)
e

P

i−1

u=1
Ru + V N0

dk
e

P

k

i=1
Ri : j ≤ k

V N0

dj
e

P

j

u=1
Ru +

∑N
i=j+1

V N0

di

(
eRi − 1

)
e

P

i−1

u=1
Ru : j > k.

Note that for every~R ∈ [0,∞)N , ∂2F (~R)
∂Rk∂Rj

> 0 for any k and j. This shows that the Hessian of

F (~R) is positive definite. Also, it is clear that the feasible region [0,∞)N is a convex set. Thus,(O2)

is an instance of convex optimization.

APPENDIX II

SUPPORTINGLEMMAS FOR PROVING THEOREM 4

Lemma 3:Let indexk be added to the setE i−1 in the ith iteration. Then for all usersu such that

there existsv ∈ Ai betweenk andu, λi
u = λi−1

u .

Proof: The proof follows immediately from the procedure UpdateLagrangeMultipliers in Fig-

ure 1.

Lemma 4:Let indexk be added to the setE i−1 in the ith iteration. Also, let{k−1, k+1} ∈ Ai−1.

Then,λi
n − λi−1

n ≥ 0 for everyn.

Proof: Since indexk is added toE i−1 in theith iteration, we know the following. First,λi−1
k = 0.

Second, from (10)

Qk <
(Qk−1 + λi−1

k−1)
[

1
dk

− 1
dk+1

]
+ (Qk+1 + λi−1

k+1))
[

1
dk−1

− 1
dk

]

[
1

dk−1
− 1

dk+1

] . (14)

Note thatλi−1
k−1 = λi−1

k+1 = 0. Thus the result follows from (13), (14) and Lemma 3.

Lemma 5:Let index 1 be added to the setE i−1 in theith iteration. Also, let{2, . . . ,m−1} ⊆ E i−1

andm 6∈ E i−1. Then,λi
n − λi−1

n ≥ 0 for everyn.
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Proof: Since index 1 is added toE i−1 in theith iteration, we know the following. First,λi−1
1 = 0.

Second, from (11)

Q1 < V N0

[
1

d1
−

1

d2

]
+ (Q2 + λi−1

2 ). (15)

Moreover, since{2, . . . ,m−1} ⊆ E i−1 andm 6∈ E i−1, we also know that for everyn ∈ {2, . . . ,m−

1},

λi−1
n =

Q1

[
1
dn

− 1
dm

]
+Qm

[
1
d1

− 1
dn

]

[
1
d1

− 1
dm

] −Qn. (16)

Now, substitutingλi−1
2 from (16) in (15), we obtain

Q1 < VN0

[
1

d1
−

1

d2

]
+

Q1

[
1
d2

− 1
dm

]
+Qm

[
1
d1

− 1
d2

]

[
1
d1

− 1
dm

]

=⇒ Q1 < VN0

[
1

d1
−

1

dm

]
+Qm. (17)

Now, note that from (12), for everyn = 1, . . . ,m− 1

λi
n = V N0

[
1

dn
−

1

dm

]
+ (Qm −Qn). (18)

From (17), clearly,λi
1 > 0. Now, from (16) and (18), it follows that for everyn = 2, . . . ,m− 1

λi
n − λi−1

n = V N0

[
1

dn
−

1

dm

]
+ (Qm −Qn)−

Q1

[
1
dn

− 1
dm

]
+Qm

[
1
d1

− 1
dn

]

[
1
d1

− 1
dm

] +Qn

=

[
1
dn

− 1
dm

]

[
1
d1

− 1
dm

]λi
1 ≥ 0.

The last inequality follows from the fact thatdk ≤ dk+1 for everyk andλi
1 > 0. Furthermore, by

Lemma 3, forn 6∈ {1, . . . ,m− 1}, λi−1
n = λi

n. Thus, the result follows.

Lemma 6:Let indexk > 1 be added to the setE i−1 in theith iteration. Also, let{v+1, . . . , k−1} ⊆

E i−1 and{v, k + 1} ⊆ Ai. Then,λi
n − λi−1

n ≥ 0 for everyn.

Proof: Since indexk is added toE i−1 in theith iteration, we know the following. First,λi−1
k = 0.

Second, from (10)

Qk <
(Qk−1 + λi−1

k−1)
[

1
dk

− 1
dk+1

]
+ (Qk+1 + λi−1

k+1))
[

1
dk−1

− 1
dk

]

[
1

dk−1
− 1

dk+1

] . (19)

Moreover, since{v+1, . . . , k− 1} ⊆ E i−1 and{v, k, k+1} ⊆ Ai−1, we also know that for every

n ∈ {v + 1, . . . , k − 1},

λi−1
n =

Qv

[
1
dn

− 1
dk

]
+Qk

[
1
dv

− 1
dn

]

[
1
dv

− 1
dk

] −Qn. (20)
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Now, substitutingλi−1
k+1 = 0 andλi−1

k−1 from (20) in (19), we obtain

Qk <

Qv

»

1

dk−1
− 1

dk

–

+Qk

»

1

dv
− 1

dk−1

–

h

1

dv
− 1

dk

i

[
1
dk

− 1
dk+1

]
+ (Qk+1 + λi−1

k+1))
[

1
dk−1

− 1
dk

]

[
1

dk−1
− 1

dk+1

]

=⇒ Qk <
Qv

[
1
dk

− 1
dk+1

]
+Qk+1

[
1
dv

− 1
dk

]

[
1
dv

− 1
dk+1

] . (21)

Now, note that from (13), for everyn = v + 1, . . . , k

λi
n =

Qv

[
1
dn

− 1
dk+1

]
+Qk+1

[
1
dv

− 1
dn

]

[
1
dv

− 1
dk+1

] −Qn. (22)

From (21) and (22), clearly,λi
k > 0. Now, from (20) and (22), it follows that for everyn = v +

1, . . . , k − 1

λi
n − λi−1

n =
Qv

[
1
dn

− 1
dk+1

]
+Qk+1

[
1
dv

− 1
dn

]

[
1
dv

− 1
dk+1

] −
Qv

[
1
dn

− 1
dk

]
+Qk

[
1
dv

− 1
dn

]

[
1
dv

− 1
dk

]

=

[
1
dv

− 1
dn

]

[
1
dv

− 1
dk

]λi
k ≥ 0.

The last inequality follows from the fact thatdn ≤ dn+1 for everyn andλi
k > 0. Furthermore, by

Lemma 3, forn 6∈ {v + 1, . . . , k}, λi−1
n = λi

n. Thus, the result follows.

Lemma 7:Let indexk > 1 be added to the setE i−1 in the ith iteration. Also, let{1, . . . , k−1} ⊆

E i−1 andk + 1 ∈ Ai. Then,λi
n − λi−1

n ≥ 0 for everyn.

Proof: Since indexk is added toE i−1 in theith iteration, we know the following. First,λi−1
k = 0.

Second, from (10)

Qk <
(Qk−1 + λi−1

k−1)
[

1
dk

− 1
dk+1

]
+ (Qk+1 + λi−1

k+1))
[

1
dk−1

− 1
dk

]

[
1

dk−1
− 1

dk+1

] . (23)

Moreover, since{1, . . . , k−1} ⊆ E i−1 andk ∈ Ai−1, we also know that for everyn ∈ {1, . . . , k−

1},

λi−1
n = V N0

[
1

dn
−

1

dk

]
+ (Qk −Qn). (24)

Now, substitutingλi−1
k+1 = 0 andλi−1

k−1 from (24) in (23), we obtain

Qk <

(
V N0

[
1

dk−1
− 1

dk

]
+Qk

) [
1
dk

− 1
dk+1

]
+Qk+1

[
1

dk−1
− 1

dk

]

[
1

dk−1
− 1

dk+1

] (25)

=⇒ Qk < VN0

[
1

dk
−

1

dk+1

]
+Qk+1. (26)
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Now, note that from (13), for everyn = 1, . . . , k

λi
n = V N0

[
1

dn
−

1

dk+1

]
+ (Qk+1 −Qn). (27)

From (26) and (27), clearly,λi
k > 0. Now, from (24) and (27), it follows that for everyn = 1, . . . , k−1

λi
n − λi−1

n = V N0

[
1

dk
−

1

dk+1

]
+ (Qk+1 −Qk)

= λi
k ≥ 0.

Furthermore, by Lemma 3, forn 6∈ {1, . . . , k}, λi−1
n = λi

n. Thus, the result follows.

Lemma 8:Let indexk > 1 be added to the setE i−1 in theith iteration. Also, let{k+1, . . . , u−1} ⊆

E i−1 and{k − 1, u} ⊆ Ai. Then,λi
n − λi−1

n ≥ 0 for everyn.

Proof: Since indexk is added toE i−1 in theith iteration, we know the following. First,λi−1
k = 0.

Second, from (10)

Qk <
(Qk−1 + λi−1

k−1)
[

1
dk

− 1
dk+1

]
+ (Qk+1 + λi−1

k+1))
[

1
dk−1

− 1
dk

]

[
1

dk−1
− 1

dk+1

] . (28)

Moreover, since{k+1, . . . , u− 1} ⊆ E i−1 and{k− 1, k, u} ⊆ Ai−1, we also know that for every

n ∈ {k + 1, . . . , u− 1},

λi−1
n =

Qk

[
1
dn

− 1
du

]
+Qu

[
1
dk

− 1
dn

]

[
1
dk

− 1
du

] −Qn. (29)

Now, substitutingλi−1
k−1 = 0 andλi−1

k+1 from (29) in (28), we obtain

Qk <

Qk−1

[
1
dk

− 1
dk+1

]
+

Qk

»

1

dk+1
− 1

du

–

+Qu

»

1

dk
− 1

dk+1

–

h

1

dk
− 1

du

i

[
1

dk−1
− 1

dk

]

[
1

dk−1
− 1

dk+1

]

=⇒ Qk <
Qk−1

[
1
dk

− 1
du

]
+Qu

[
1

dk−1
− 1

dk

]

[
1

dk−1
− 1

du

] . (30)

Now, note that from (13), for everyn = k, . . . , u− 1

λi
n =

Qk−1

[
1
dn

− 1
du

]
+Qu

[
1

dk−1
− 1

dn

]

[
1

dk−1
− 1

du

] −Qn. (31)

From (30) and (31), clearly,λi
k > 0. Now, from (29) and (31), it follows that for everyn = k +

1, . . . , u− 1

λi
n − λi−1

n =
Qk−1

[
1
dn

− 1
du

]
+Qu

[
1

dk−1
− 1

dn

]

[
1

dk−1
− 1

du

] −
Qk

[
1
dn

− 1
du

]
+Qu

[
1
dk

− 1
dn

]

[
1
dk

− 1
du

]

=

[
1
dn

− 1
du

]

[
1
dk

− 1
du

]λi
k ≥ 0.
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The last inequality follows from the fact thatdn ≤ dn+1 for everyn andλi
k > 0. Furthermore, by

Lemma 3, forn 6∈ {k, . . . , u− 1}, λi−1
n = λi

n. Thus, the result follows.

Lemma 9:Let indexk > 1 be added to the setE i−1 in the ith iteration. Also, let{v +1, . . . , k−

1} ∪ {k + 1, . . . , u− 1} ⊆ E i−1 and{v, u} ⊆ Ai. Then,λi
n − λi−1

n ≥ 0 for everyn.

Proof: Since indexk is added toE i−1 in theith iteration, we know the following. First,λi−1
k = 0.

Second, from (10)

Qk <
(Qk−1 + λi−1

k−1)
[

1
dk

− 1
dk+1

]
+ (Qk+1 + λi−1

k+1))
[

1
dk−1

− 1
dk

]

[
1

dk−1
− 1

dk+1

] . (32)

Moreover, since{v + 1, . . . , k − 1} ∪ {k + 1, . . . , u − 1} ⊆ E i−1 and {v, k, u} ⊆ Ai−1, we also

know that for everyn ∈ {v + 1, . . . , k − 1},

λi−1
n =

Qv

[
1
dn

− 1
dk

]
+Qk

[
1
dv

− 1
dn

]

[
1
dv

− 1
dk

] −Qn, (33)

and for everyn ∈ {k + 1, . . . , u− 1},

λi−1
n =

Qk

[
1
dn

− 1
du

]
+Qu

[
1
dk

− 1
dn

]

[
1
dk

− 1
du

] −Qn. (34)

Now, substitutingλi−1
k−1 andλi−1

k+1 from (33) and (34), respectively, in (32), we obtain

Qk <

Qv

»

1

dk−1
− 1

dk

–

+Qk

»

1

dv
− 1

dk−1

–

h

1

dv
− 1

dk

i

[
1
dk

− 1
dk+1

]
+

Qk

»

1

dk+1
− 1

du

–

+Qu

»

1

dk
− 1

dk+1

–

h

1

dk
− 1

du

i

[
1

dk−1
− 1

dk

]

[
1

dk−1
− 1

dk+1

]

=⇒ Qk <
Qv

[
1
dk

− 1
du

]
+Qu

[
1
dv

− 1
dk

]

[
1
dv

− 1
du

] . (35)

Now, note that from (13), for everyn = v + 1, . . . , u− 1

λi
n =

Qv

[
1
dn

− 1
du

]
+Qu

[
1
dv

− 1
dn

]

[
1
dv

− 1
du

] −Qn. (36)

From (35) and (36), clearly,λi
k > 0. Now, from (33) and (36), it follows that for everyn = v +

1, . . . , k − 1

λi
n − λi−1

n =
Qv

[
1
dn

− 1
du

]
+Qu

[
1
dv

− 1
dn

]

[
1
dv

− 1
du

] −
Qv

[
1
dn

− 1
dk

]
+Qk

[
1
dv

− 1
dn

]

[
1
dv

− 1
dk

]

=

[
1
dv

− 1
dn

]

[
1
dv

− 1
dk

]λi
k ≥ 0.
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The last inequality follows from the fact thatdn ≤ dn+1 for everyn andλi
k > 0. Moreover, from

(34) and (36), it follows that for everyn = k + 1, . . . , u− 1

λi
n − λi−1

n =
Qv

[
1
dn

− 1
du

]
+Qu

[
1
dv

− 1
dn

]

[
1
dv

− 1
du

] −
Qk

[
1
dn

− 1
du

]
+Qu

[
1
dk

− 1
dn

]

[
1
dk

− 1
du

]

=

[
1
dn

− 1
du

]

[
1
dk

− 1
du

]λi
k ≥ 0.

Furthermore, by Lemma 3, forn 6∈ {v + 1, . . . , u− 1}, λi−1
n = λi

n. Thus, the result follows.

Lemma 10:Let index k > 1 be added to the setE i−1 in the ith iteration. Also, let{1, . . . , k −

1} ∪ {k + 1, . . . , u− 1} ⊆ E i−1 andu ∈ Ai. Then,λi
n − λi−1

n ≥ 0 for everyn.

Proof: Since indexk is added toE i−1 in theith iteration, we know the following. First,λi−1
k = 0.

Second, from (10)

Qk <
(Qk−1 + λi−1

k−1)
[

1
dk

− 1
dk+1

]
+ (Qk+1 + λi−1

k+1))
[

1
dk−1

− 1
dk

]

[
1

dk−1
− 1

dk+1

] . (37)

Moreover, since{1, . . . , k − 1} ∪ {k + 1, . . . , u − 1} ⊆ E i−1 and {k, u} ⊆ Ai−1, we also know

that for everyn ∈ {1, . . . , k − 1},

λi−1
n = V N0

[
1

dn
−

1

dk

]
+ (Qk −Qn), (38)

and for everyn ∈ {k + 1, . . . , u− 1},

λi−1
n =

Qk

[
1
dn

− 1
du

]
+Qu

[
1
dk

− 1
dn

]

[
1
dk

− 1
du

] −Qn. (39)

Now, substitutingλi−1
k−1 andλi−1

k+1 from (38) and (39), respectively, in (37), we obtain

Qk <

[
V N0

[
1

dk−1
− 1

dk

]
+Qk

] [
1
dk

− 1
dk+1

]
+

Qk

»

1

dk+1
− 1

du

–

+Qu

»

1

dk
− 1

dk+1

–

h

1

dk
− 1

du

i

[
1

dk−1
− 1

dk

]

[
1

dk−1
− 1

dk+1

]

=⇒ Qk < VN0

[
1

dk
−

1

du

]
+Qu. (40)

Now, note that from (13), for everyn = 1, . . . , u− 1

λi
n = V N0

[
1

dn
−

1

du

]
+ (Qu −Qn). (41)

From (40) and (41), clearly,λi
k > 0. Now, from (38) and (41), it follows that for everyn = 1, . . . , k−1

λi
n − λi−1

n = V N0

[
1

dn
−

1

du

]
+ (Qu −Qn)− V N0

[
1

dn
−

1

dk

]
− (Qk −Qn)

= λi
k ≥ 0.
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The last inequality follows from the fact that andλi
k > 0. Moreover, from (39) and (41), it follows

that for everyn = k + 1, . . . , u− 1

λi
n − λi−1

n = V N0

[
1

dn
−

1

du

]
+Qu −

Qk

[
1
dn

− 1
du

]
+Qu

[
1
dk

− 1
dn

]

[
1
dk

− 1
du

]

=

[
1

dn
−

1

du

]
λi
k ≥ 0.

Furthermore, by Lemma 3, forn 6∈ {1, . . . , u− 1}, λi−1
n = λi

n. Thus, the result follows.
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