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Abstract— Determining the ultimate classical information car-  follow:
rying capacity of electromagnetic waves requires quantum-

mechanical analysis to properly account for the bosonic naire Chomodyne = 2 'In[l +4nN/(2(1—n)N +1)] (2)
of these waves. Recent work has established capacity theors _
for bosonic single-user and broadcast channels, under therg- Cheterodyne = In[1+nN/((1—n)N +1)]. 3)

sumption of two minimum output entropy conjectures. Despie ] . ) .
considerable accumulated evidence that supports the valiy of The +1 terms in the noise denominators are quantum contri-

these conjectures, they have yet to be proven. In this papeitis  butions, so that even when the noise méde unexcited these
ShOW”,ttha; tt';]e Sbecond cor)jetcturehsuffic?s t(r)].pr:oye tthe C'“‘T('j capacities remain finite, unlike the situation in Hg. (1).

capacity of the bosonic wiretap channel, which in turn wou : . X

als% pr}(;ve the quantum capac?[y of the lossy bosonic channel The_ Class'ci’j‘l capac!ty of the_ pure-loss bosonic channel—
The preceding minimum output entropy conjectures are then IN Which the b mode is unexcited ' = 0)—was shown
shown to be simple consequences of an Entropy Photon-Numberin [1] t0 be Cpure—10ss = ¢g(nN) nats/use, wherg(z) =
Inequality (EPnl), which is a conjectured quantum-mechancal (r+1)In(x+1) -2 In(x) is the Shannon entropy of the Bose-
analog of the Entropy Power Inequality (EPI) form classical Ejnstein probability distribution with mean. This capacity
information theory. exceeds theV = 0 versions of Egs.[{2) and](3), as well
as the best known bound on the capacity of ideal optical
direct detection. The ultimate capacity of the thermalkgoi

The performance of communication systems that rifé\r > 0) version of this channel is bounded below as foII_ows,
on electromagnetic wave propagation are ultimately lichite~thermal = 9N + (1 = n)N) = g((1 —n)N), and this
by noise of quantum-mechanical origin. Moreover, higrpound was shown to_ k_Je the capacity if the thermal channel
sensitivity photodetection systems have long been close QB€yed @ certain minimum output entropy conjecture [2].
this noise limit. Hence determining the ultimate capasiog 1S conjecture states that the von Neumann entropy at the
lasercom channels is of immediate relevance. The most fam@4tPut of the thermal channel is minimized when thenode
channel capacity formula is Shannon’s result for the otassi 'S I its vacuum state. Considerable evidence in support of
additive white Gaussian noise channel. For a complex-daluf!iS conjecture has been accumulated [3], but it has yet to
channel model in which we transmitand receive: = /7 a+ be proven. Nevertheless, the preceding lower bound already
A =7 b, where0 < 1 < 1 is the channel’s transmissivity andexceeds E_qs[KZ)_ andl (3) as_well as the best known bounds on
b is a zero-mean, isotropic, complex-valued Gaussian randdif capacity of direct detection. _
variable that is independent af Shannon’s capacity is More recently, a.capacny analysis of the bgsonlc_broadqast
channel led to an inner bound on the capacity region, which
Celassical = In[1 + 7N /(1 — ) N] nats/use (1) was shown to be the capacity region under the presumption
of a second minimum output entropy conjecture [4]. Both
with E(la|?) < N and E(|b|>) = N. In the quantum conjectures have been proven if the input states are restric
version of this channel model, we control the state of d&o be Gaussian, and they have been shown to be equivalent
electromagnetic mode with photon annihilation operaior under this input-state restriction. In this paper, we shbat t
at the transmitter, and receive another mode with phottire second conjecture will establish the privacy capacity o
annihilation operator: = \/7a + /T — b, whereb is the the lossy bosonic channel, as well as its ultimate quantum
annihilation operator of a noise mode that is in a zero-mednformation carrying capacity.
isotropic, complex-valued Gaussian state. For lasercdm, i The Entropy Power Inequality (EPI) from classical infor-
guantum measurements corresponding to ideal optical homaation theory is widely used in coding theorem converse
dyne or heterodyne detection are employed at the receiyanpofs for Gaussian channels. By analogy with the EPI, we
this quantum channel reduces to a real-valued (homodyne)conjecture its quantum version, viz., the Entropy Photon-
complex-valued (heterodyne) additive Gaussian noiserelan number Inequality (EPnl). In this paper we show that the
from which the following capacity formulas (in nats/usejwo minimum output entropy conjectures cited above are

I. MOTIVATION AND HISTORY
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simple corollaries of the EPnl. Hence, proving the EPnl wloul Here, x(p;,6;) = SO ;pi65) — >, p;5(65), is the

immediately establish key results for the capacities obbas Holevo information, where{p,} is a probability dis-
communication channels. tribution associated with the density operatérs and
S(p) = —Tr(plogp) is the von Neumann entropy of

II. QUANTUM WIRETAP CHANNEL
The term “wiretap channel” was coined by Wyner [5] to

describe a communication system, in which Alice wishe : ; -
to communicate classical information to Bob, over a poinazaslt Egvgg% capacityCi, of t.h(.a quantum wwetgp channel

. ; . . puted by maximizing over successive uses of the
to-point discrete memoryless channel that is subjected to-Rannel ie.. fom being the number of uses of the channel
wiretap by an eavesdropper Eve. Alice’s goal is to reliably T '
and securely communicate classical data to Bob, insuchaway  C,(Na-pg)
that Eve gets no information whatsoever about the message. i . {1\ AB”
Wyner used the conditional entropy rate of the signal reeiv P PT(i)Igi);(jh) [X(pT(Z)’ 2 par (71045 )/n
by Eve, given Alice’s transmitted message, to measure the _ o\ AT
secrecy level guaranteed by the system. He gave a single X(pr (), 22 pajr (710)5; )/”}' (6)
letter characterization of the rate-equivocation regwmieu_ The probabilities{p;} form a distribution over an auxiliary

a limiting assu_mption, that the signal received by I_EV(? S Jassical alphabef, of size|T|. The ultimate privacy capacity
d?graded version of the one r,ece|ved by Bob. C5|§zar ‘?‘igdcomputed by maximizing the expression specifiedin (6)
Kdrner later generalized Wyner’s results to the case 'mWh'over {(pr(i)}h, {par(li)} (5"}, andn, subject to a cardi-
the signal received by Eve is not a degraded version of the Or%ity constraint onT|. For ; degraded wiretap channel, the

received by Bob [6]. These classical-channel r_esults mef' auxiliary random variable is unnecessary, and EL. (6) resluc
extended by Devetak [7] to encompass classical transmissjg

over a quantum wiretap channel.
A quantum channelN,-p from Alice to Bob is a trace- C,(Na-pg) = sup max[x(pa(j), oY )/n—x(pa(4),pY " )/n].

the density operatqﬁﬁ
Because Holevo information may not be additive, the clas-

preserving completely positive map that transforms Afice’ n Pa(d) @)
single-use density operatpf to Bob's, 5 = N4-5(p*). The
guantum wiretap channél’4-gg is a quantum channel from I1l. NOISELESSBOSONICWIRETAP CHANNEL

Alice to an intended receiver Bob and an eavesdropper Eve

Th t h It Alice to Bob is obtained by traci The noiseless bosonic wiretap channel consists of a collec-
€ quantum channel from AliCe 10 Bob IS obtaned by racing, , spatial and temporal bosonic modes at the transmitte

out & from the channel map, "eN*f"B =Trg (NA'_BE)’ and 4ot interact with a minimal-quantum-noise environmerd an
§|m|IarIy fqr Na-g- A qu_antum eregggp channel is degradegg;olit into two sets of spatio-temporal modes en route to two
i 'Elhire exists a degrading channkl_; such that\a- = independent receivers, one being the intended receivethand
N5 ONA'B- , ) . .other being the eavesdropper. The multi-mode bosonic agret
The wiretap channel describes a physical scenario in Wh'Ehannel is given by®, Na.-p. ., whereNs.-p. . is the

for each successive uses Of.NA'BE Alice communicates wiretap-channel map for theéh mode, which can be obtained
a randomly generated classical messagec W to Bob, from the Heisenberg evolutions

wherem is a classical index that is uniformly distributed over

the set, W, of 2" possibilities. To encode and transmit, by = Vs s + /1 —1s s (8)
Alice generates an instantiatiohe K of a discrete random be = /1—1nsis— \/@fs 9)

variable, and then prepareschannel-use states that after

transmission through the channel, result in bipartite @¢mhl  where the{a,} are Alice’s modal annihilation operators, and
density operator§p2"F"}. A (2", n, €) code for this channel {bs}, {¢,} are the corresponding modal annihilation operators
consists of an encodex™ : (W,K) — A", and a positive for Bob and Eve, respectively. The modal transmissivifies
operator-valued measure (POVNIAZ"} on B™ such that the satisfy 0 < n, < 1, and the environment mod€s,} are in

following conditions are satisfied for every € W[} their vacuum states. We will limit our treatment here to the
1) Bob’s probability of decoding error is at mosti.e.,  Single-mode bosonic wiretap channel, as the privacy cgpaci
- of the multi-mode channel can in principle be obtained by

Tr(ﬁm,kAm ) >1—e€ Vk, and (4) summing up capacities of all spatio-temporal modes and

maximizing the sum capacity subject to an overall input-eow

E™ n H
2) For any POVM{A,;, } on £", no more thane bits y,,qget using Lagrange multipliers, cf. [2], where this waael
of information is revealed about the secret message o the multi-mode single-user lossy bosonic channel.

Using j = (m, k), this condition can be expressed, ifrhaorem — Assuming the truth of minimum output entropy
terms of the Holevo information [8], as follows, conjecture 2 (see Sec. V), the ultimate privacy capacithef t
X(pj,N,?fE(pj-‘n)) <e (5)

2A density operator is Hermitian, with eigenvalues that farprobability
distribution. Thus, the von Neumann entropy of a densityrafoe  is the
1A™, B™, andE™ are then-channel-use alphabets of Alice, Bob and EveShannon entropy of its eigenvalues.



Edld <N  f:]0) Fig.[d, where the quantum stat@@ of the constructed system

Alice : A L Bob: B E’ are identical to the quantum statg§ for a given input
a—>N\—>b=ma++/1-nf quantum state)”. Using Eq. [(IlL) for the bosonic wiretap
L ey channel, we have
Eve: E A _ ~B ~E
é=+/1—na—if Cp(Na-Br) = X [S(p7) =S (p")]
g:10 = max [S(pB) — S(pF
i 10) ohax [9(7) = S(7)]
!
Bob: B B e . _ _ S(pB) — S(pF
>\ ¢ = Vn'b+V1-7§ = max _ {maXgiay<n,s(38)=k 5(P") (P~}
l - 0<K<g(nN)
=—1 ) B
n = max {K —mingiay<n s35)=x 50" )]}
0<K<g(nN)

Fig. 1. Schematic diagram of the single-mode bosonic wireteannel. The = max _ {K — g[(l - n)gfl(K)/n]}
transmitter Alice @) encodes her messages to Ba) (in a classical index 0<K<g(nN)
j, and overn successive uses of the channel, thus preparing a bipasi®e s — —
pB"E™ where E™ represents: channel uses of an eavesdropper E&. = g(nN)—g((1 —n)N) nats/use
Forn > 1/2, this channel is degraded, as Eve’s state can be recreated by (1)
passing Bob’s state through a beamsplitter of transmigsi\ti — 7) /7. = Q (NA-B)- (12)

The first equality above follows from Lemma 3 of [9].
The second equality follows fromV4-pr being a degraded
channel. The restriction t0 < K < g(nN) in the third
equality is permissible becauseax ;i< 5 S(p”) = g(nN).
Cp(Na-pr) = g(nN) — g((1 —n)N) natsluse  (10) The fifth equality followd from minimum output entropy
, .. conjecture 2 (see Sec. V). Thi# that achieves this equality
for n > 1/2-and €}, = 0 for n < 1/2. This capacity i is 5 thermal state, which is realized when Alice employs
additive and achievable with single-channel-use coherepfarent-state encoding with a zero-mean isotropic Gaussi
state er_moding with a zero-mean isotropic Gaussian pri&rior distributionp (a) = (1/7K) exp(—|a?/K). The sixth
distributionp 4 (@) = exp(—|a|?/N)/7N. equality now follows fromy () — g(cz) being a monotonically
. ) increasing function ofr > 0, for ¢ a constant satisfying
Proof — Devetak's result for the privacy capacity of thegy - . _ 1, and the equality to the single-letter quantum

degraded quantum wiretap channel in Ed. (7) requires ﬁ”“@éﬁacity follows from Eq.{I1). Note that the privacy capaci

dimensional Hilbert spaces. Nevertheless, we will use thi$ ihis channel is zero when < 1/2. It is straightforward to
result for the bosonic wiretap channel, which has an infinitg o\ that in the limit of high_input photon numbat

dimensional state space, by extending it to infinite-dincared
state spaces through a limiting argun@furthermore, it was  Cp(Na-pr) = QW (Na-p) = max {0,1n(n) — In(1 — )},
recently shown that the privacy capacity of a degraded ajret result that Wolf et. al. [10] independently derived by a

channel is additive, and equal to the single-letter quantu .
capacity of the channel from Alice to Bob [9], i.e., (%Terent approach without use of an unproven output entrop

conjecture.
. — oW ) — oW }
CpNa-pp) = G (Na-pp) = Q7 (Na-p), (11) IV. THE ENTROPY PHOTON-NUMBER INEQUALITY (EPNI)

where the superscrifl) denotes single-letter capacity. It isp The Entropy Power Inequality
straightforward to show that if > 1/2, the bosonic wiretap Let X and'Y be statistically independent-dimensional,

channelis a degraded channel, in which Bob’s is the lessynoi ) .
receiver and Eve’s is the more-noisy receiver. The degracfeet?l'valued random vectors that possess differentialr(Gie)

nature of the bosonic wiretap channel has been depictedefﬁtmp'em(x) and.h(Y) respectlvgly. Becaus_e a rea_l-valued,
zero-mean Gaussian random variablehas differential en-

P _ 2
3When |7 and|.A| are finite and we are using coherent states in Bg. (7JFOPY gIven b_yh(U) = In(2me(U*)), where the mean-squared
there will be a finite number of possible transmitted stateading to a value, (U?), is considered to be thgower of U, the entropy

finite number of possible states received by Bob and Eve. Ggppve powers ofX andY are taken to be
limit the auxiliary-input alphabetI()—and hence the inputA) and the

single-mode noiseless bosonic wiretap channel (seelFig.
with mean input photon-number constrai@afa) < N is

output alphabetsK and E)—to truncated coherent states within the finite- h(X)/n eh(Y)/n
dimensional Hilbert space spanned by the Fock states) : 0 < m < M }, P(X) = and P(Y) = (13)
where M > N. Applying Devetak’s theorem to the Hilbert space spanned 21e 2me

by these truncated coherent states then gives us a lowed muthe privacy

capacity of the bosonic wiretap channel when the entirenitefidimensional “Here, g~ 1(S) is the inverse of the functio (V). Becauseg(N) for
Hilbert space is employed. By takiny/ sufficiently large, while maintaining N > 0 is a non-negative, monotonically increasing, concave tfancof IV,
the cardinality condition foff, the rate-region expressions given by Devetak’st has an inverseg—'(S) for S > 0, that is non-negative, monotonically
theorem will converge to Eg[_(10). increasing, and convex.



In this way, ann-dimensional, real-valued, random vecr the @, mode andor, is the thermal state of average photon

comprised of independent, identically distributed (i)i.deal- numberN () for the b; mode, then we havé(pa) = S(ja)
valued, zero-mean, variandetX), Gaussian random variablesand S(pg) = S(ps). We define a new vector of photon
has differential entropy(X) = 1(X). We can similarly define annihilation operatorsg = [é1 é -+ &, ], by the
an i.i.d. Gaussian random vectdf with differential entropy convex combination

h(Y) = h(Y). We define a new random vector by the convex

combination ¢c=yna+/1-nb, for0<n<l, (21)
Z=\nX++1-7nY, (14)  and usep. to denote its density operator. This is equivalent to

where0 < 7 < 1. This random vector has diﬁerentialsaying thate; is the output of a lossless beam splitter whose
entropyh(i) and_entropy poweP(Z). Furthermore, le? = inputs, a; andb;, couple to that output with transmissivity

X + /1 —nY. Three equivalent forms of the Entro nd reflectivityl — , respectively.
E’/gwerﬁnequalﬁy (EPI) seeqe 9., [11], are then: pya We can now state two equivalent forms of our conjectured

Entropy Photon-Number Inequality (EPnI) [13]:

Pz e (@9 NGl 2 NG +(A-mNG)  (@2)
e = M) 4o S(e) = S(se), 23)
hZ) = nh(X)+ (1-n)h(Y). (17) wherep: = ®;_, pr., with pr, being the thermal state of
B. The Entropy Photon-Number |nequality average photon numbem (pa) + (1 —n)N(ps) for &;.
Let & = [G1 ao --- @, ] and b - V. MINIMUM OUTPUT ENTROPY CONJECTURES
[ by by --- b, ] be vectors of photon annihilation By analogy with the classical EPI, we might expect there

operators for a collection of /2 different electromagnetic to be a third equivalent form of the quantum EPnl, viz.,

field modes of frequency [12]. The joint state of the modes S(5.)> nS(s 1= mS(s (24)
associated witla andb is given by the product-state density (pe) = nS(pa) + (1 =n)S(pp).

operatorpap = pa ® pb, Where p, and pp are the density It is easily shown thal(22) implie§_(P4) [14], but we have not
operators associated with the and b modes, respectively. been able to prove the converse. Indeed, we suspect that the
The von Neumann entropies of the and b modes are converse might be false. More important than whether or not

S(pa) = —tr[pa In(pe)] and S(pp) = —tr[pp In(pp)]. (24) is equivalent to[(22) and(R3), is the role of the EPnI
The thermal state of a mode with annihilation operdtor in proving classical information capacity results for boiso
has two equivalent definitions: channels. In particular, the EPnl provides simple proofs of
o—lal?/N the following two minimum output entropy conjectures. Tées
pr = /d2a7 la){al, (18) conjectures are important because proving minimum output
N entropy conjecture 1 also proves the conjectured capatity o
and - , the thermal-noise channel [2], and proving minimum output
pr = Z N 10\, (19) entropy conjecture 2 also proves the conjectured capacity
= (N + 1)t region of the bosonic broadcast channel [4]. Furthermore,

Ay as we have shown above, proving minimum output entropy
where N = (a'a) is the average photon number. In EQ.I(18)gnjecture 2 also establishes the privacy capacity of the

|) is the coherent state of amplitudei.e., it satisfiesi|a) = posonic wiretap channel and the single-letter quantumaigpa

ala), for o a complex number. In EJ._(1L9);) is thei-photon ¢ the lossy bosonic channel.

iz%te, i.e., it satisfied/|i) = i|i), fori =0,1,2, .. with N = Minimum Output Entropy Conjecture 1 — Let a and

a'a being the photon number operator. Physically, Eql (1§) pe 5,-dimensional vectors of annihilation operators, with

says that the thermal state is an isotropic Gaussian mixtye. density operatopas = (|#)aq(t|) ® fb, Where|v)q

of coherent states. Equatidn[19), on the other hand, says 8 an arbitrary zero-mean-field pure state of #aemodes

the thermal state is a Bose-Einstein mixture of number statg,q p = @, pr, With pg, being theb; mode’s thermal
= b; b;

From Eq. [18) we immediately have thal(pr) = g(N), state of average photon numbér. Define a new vector of
because the photon-number states are orthongrmal. photon annihilation operatorg, = [ ¢1 é -+ &, |, by

ThAe entropy photon-numb.ers of the density operafrs the convex combinatioi{21) and ugg to denote its density
and p, are defined as follows: operator andS(,) to denote its von Neumann entropy. Then

N(pa) = g7 1(S(pa)/n) and N(ps) = g~ 1(S(pb)/n). choosing|¢), to be then-mode vacuum state minimizes
20) S(Pe)-
Thus, if pa = @', pr, andpy = Q7 pr, . where;’(jT .) Minimum Output Entropy Conjecture 2 — Let a andb

is the thermal state of average photon numbéfp,) for be n—_dimensionaIAvectors of annihilatiop operators with joint
density operatonia, = ([¢)aa(t]) ® o, Where p)a —
5The coherent stateg|)}, arenot orthonormal, but rather overcomplete. @)."_, [0),, iS the n-mode vacuum state anf, has von
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average photon numbéf, satisfies the premise of minimum(13] To show that[(2R) implied(23), assuniel(22) is true:

output entropy conjecture 2 and implies tiiat= ;" , ir.,, N(Ge) > nN(pa)+(1—n)N(ss) @7)
with oz being the¢; mode’s thermal state of average photon
number(1—n)K. In this case we havé(j.) = ng[(1—n) K], = 1nN(pa)+ (1 —n)N(p;) (28)

which completes the pI‘OOf. Now, if ps; = pa ® pg is the joint density operator of thé and

b modes, we find that the state of tiiemodes ispz = R, AT,
where ﬁTci is a thermal state with average photon number gi\}en by
i i i N(pz) =nN(pa)+(1—n)N(py), so thatS(pz) = ng[N(pe)]- Thus,
We gonjectu_red a quantum version of thel classical entropy from (Z8) we getN (pe) = N(ppé) = o 1(S(52)/m). Taking () of
power me_quallty, which §Ub3ume$ two minimum output en- oy sides of this inequality completes the proof.
tropy conjectures that prior work has shown to be sufficient To show that[[2B) implied(22), assuniel(23) is true:
to prove the capacity of the point-to-point thermal-noise N —1/q(A
K . N(pe) g~ (S(pe)/m)
lossy bosonic channel, and the bosonic broadcast channel
respectively [2], [4]. Even though proving this more getera
inequality—the Entropy Photon-number Inequality (EPnl)—
might seem harder than the two minimum output entropy = nN(pa)+ (1 —n)N(pg)
conjectures, there is a possibility of drawing paralleksnir = aN(p) + (1— )N () 29)
the proofs of the classical entropy power inequality [11]. | = e M),
this paper, we have also shown that the EPnl also implies ¥Vher¢ thefigequad"t{] is dueffgfl(s) lbeing a monotonically increasing
. . . . unction of S, and the proof is complete.
the proof of the privacy capacity of the bosonic wireta 4] Assume thatl{22) is true. We then have thétpe) > nN(ja) + (1 —
channel. Furthermore, using a result from [9], we have thatt “#)N(3,), so that

degraded nature of the bosonic wiretap channel implies that

VI. CONCLUSION

Y

9~ (S(pa)/n) = g~ Hg(nN(pa) + (1 — n)N(p5))]

) i . . : S(pe) = ng[N(pc)] =2 ng[nN(pa) + (1 —n)N(ps)] (30)
its privacy capacity equals the single-letterquantum ciyaf
the lossy bosonic channel. Moreover. both of these capaciti > mngIN(pa)] + (1 — n)ng[N(pp)] (31)
are achieved by coherent-state encoding using an isotropic
Gaussian prior. = 18(pa) + (1 —n)S(s), (32
where the second inequality follows frog{/V') being concave, and the
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