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Abstract— Determining the ultimate classical information car-
rying capacity of electromagnetic waves requires quantum-
mechanical analysis to properly account for the bosonic nature
of these waves. Recent work has established capacity theorems
for bosonic single-user and broadcast channels, under the pre-
sumption of two minimum output entropy conjectures. Despite
considerable accumulated evidence that supports the validity of
these conjectures, they have yet to be proven. In this paper,it is
shown that the second conjecture suffices to prove the classical
capacity of the bosonic wiretap channel, which in turn would
also prove the quantum capacity of the lossy bosonic channel.
The preceding minimum output entropy conjectures are then
shown to be simple consequences of an Entropy Photon-Number
Inequality (EPnI), which is a conjectured quantum-mechanical
analog of the Entropy Power Inequality (EPI) form classical
information theory.

I. M OTIVATION AND HISTORY

The performance of communication systems that rely
on electromagnetic wave propagation are ultimately limited
by noise of quantum-mechanical origin. Moreover, high-
sensitivity photodetection systems have long been close to
this noise limit. Hence determining the ultimate capacities of
lasercom channels is of immediate relevance. The most famous
channel capacity formula is Shannon’s result for the classical
additive white Gaussian noise channel. For a complex-valued
channel model in which we transmita and receivec =

√
η a+√

1− η b, where0 < η < 1 is the channel’s transmissivity and
b is a zero-mean, isotropic, complex-valued Gaussian random
variable that is independent ofa, Shannon’s capacity is

Cclassical = ln[1 + ηN̄/(1− η)N ] nats/use, (1)

with E(|a|2) ≤ N̄ and E(|b|2) = N . In the quantum
version of this channel model, we control the state of an
electromagnetic mode with photon annihilation operatorâ
at the transmitter, and receive another mode with photon
annihilation operator̂c =

√
η â +

√
1− η b̂, where b̂ is the

annihilation operator of a noise mode that is in a zero-mean,
isotropic, complex-valued Gaussian state. For lasercom, if
quantum measurements corresponding to ideal optical homo-
dyne or heterodyne detection are employed at the receiver,
this quantum channel reduces to a real-valued (homodyne) or
complex-valued (heterodyne) additive Gaussian noise channel,
from which the following capacity formulas (in nats/use)

follow:

Chomodyne = 2−1 ln[1 + 4ηN̄/(2(1− η)N + 1)] (2)

Cheterodyne = ln[1 + ηN̄/((1− η)N + 1)]. (3)

The +1 terms in the noise denominators are quantum contri-
butions, so that even when the noise modeb̂ is unexcited these
capacities remain finite, unlike the situation in Eq. (1).

The classical capacity of the pure-loss bosonic channel—
in which the b̂ mode is unexcited (N = 0)—was shown
in [1] to be Cpure−loss = g(ηN̄) nats/use, whereg(x) ≡
(x+1) ln(x+1)−x ln(x) is the Shannon entropy of the Bose-
Einstein probability distribution with meanx. This capacity
exceeds theN = 0 versions of Eqs. (2) and (3), as well
as the best known bound on the capacity of ideal optical
direct detection. The ultimate capacity of the thermal-noise
(N > 0) version of this channel is bounded below as follows,
Cthermal ≥ g(ηN̄ + (1 − η)N) − g((1 − η)N), and this
bound was shown to be the capacity if the thermal channel
obeyed a certain minimum output entropy conjecture [2].
This conjecture states that the von Neumann entropy at the
output of the thermal channel is minimized when theâ mode
is in its vacuum state. Considerable evidence in support of
this conjecture has been accumulated [3], but it has yet to
be proven. Nevertheless, the preceding lower bound already
exceeds Eqs. (2) and (3) as well as the best known bounds on
the capacity of direct detection.

More recently, a capacity analysis of the bosonic broadcast
channel led to an inner bound on the capacity region, which
was shown to be the capacity region under the presumption
of a second minimum output entropy conjecture [4]. Both
conjectures have been proven if the input states are restricted
to be Gaussian, and they have been shown to be equivalent
under this input-state restriction. In this paper, we show that
the second conjecture will establish the privacy capacity of
the lossy bosonic channel, as well as its ultimate quantum
information carrying capacity.

The Entropy Power Inequality (EPI) from classical infor-
mation theory is widely used in coding theorem converse
proofs for Gaussian channels. By analogy with the EPI, we
conjecture its quantum version, viz., the Entropy Photon-
number Inequality (EPnI). In this paper we show that the
two minimum output entropy conjectures cited above are
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simple corollaries of the EPnI. Hence, proving the EPnI would
immediately establish key results for the capacities of bosonic
communication channels.

II. QUANTUM WIRETAP CHANNEL

The term “wiretap channel” was coined by Wyner [5] to
describe a communication system, in which Alice wishes
to communicate classical information to Bob, over a point-
to-point discrete memoryless channel that is subjected to a
wiretap by an eavesdropper Eve. Alice’s goal is to reliably
and securely communicate classical data to Bob, in such a way
that Eve gets no information whatsoever about the message.
Wyner used the conditional entropy rate of the signal received
by Eve, given Alice’s transmitted message, to measure the
secrecy level guaranteed by the system. He gave a single
letter characterization of the rate-equivocation region under
a limiting assumption, that the signal received by Eve is a
degraded version of the one received by Bob. Csiszár and
Körner later generalized Wyner’s results to the case in which
the signal received by Eve is not a degraded version of the one
received by Bob [6]. These classical-channel results were later
extended by Devetak [7] to encompass classical transmission
over a quantum wiretap channel.

A quantum channelNA-B from Alice to Bob is a trace-
preserving completely positive map that transforms Alice’s
single-use density operatorρ̂A to Bob’s,ρ̂B = NA-B(ρ̂A). The
quantum wiretap channelNA-BE is a quantum channel from
Alice to an intended receiver Bob and an eavesdropper Eve .
The quantum channel from Alice to Bob is obtained by tracing
outE from the channel map, i.e.,NA-B ≡ TrE (NA-BE), and
similarly for NA-E . A quantum wiretap channel is degraded
if there exists a degrading channelN deg

B-E such thatNA-E =

N deg
B-E ◦ NA-B.
The wiretap channel describes a physical scenario in which

for each successiven uses ofNA-BE Alice communicates
a randomly generated classical messagem ∈ W to Bob,
wherem is a classical index that is uniformly distributed over
the set,W , of 2nR possibilities. To encode and transmitm,
Alice generates an instantiationk ∈ K of a discrete random
variable, and then preparesn-channel-use states that after
transmission through the channel, result in bipartite conditional
density operators{ρ̂BnEn

m,k }. A (2nR, n, ǫ) code for this channel
consists of an encoder,xn : (W,K) → An, and a positive
operator-valued measure (POVM){ΛBn

m } onBn such that the
following conditions are satisfied for everym ∈ W .1

1) Bob’s probability of decoding error is at mostǫ, i.e.,

Tr
(

ρ̂B
n

m,kΛ
Bn

m

)

> 1− ǫ, ∀k, and (4)

2) For any POVM{ΛEn

m } on En, no more thanǫ bits
of information is revealed about the secret messagem.
Using j ≡ (m, k), this condition can be expressed, in
terms of the Holevo information [8], as follows,

χ
(

pj ,N⊗n
A−E(ρ

An

j )
)

≤ ǫ. (5)

1An, Bn, andEn are then-channel-use alphabets of Alice, Bob and Eve.

Here, χ(pj , σ̂j) ≡ S(
∑

j pj σ̂j) −
∑

j pjS(σ̂j), is the
Holevo information, where{pj} is a probability dis-
tribution associated with the density operatorsσ̂j , and
S(ρ̂) ≡ −Tr(ρ̂ log ρ̂) is the von Neumann entropy of
the density operator̂ρ.2

Because Holevo information may not be additive, the clas-
sical privacy capacityCp of the quantum wiretap channel
must be computed by maximizing over successive uses of the
channel, i.e., forn being the number of uses of the channel,

Cp(NA-BE)

= sup
n

max
pT (i)pA|T (j|i)

[

χ(pT (i),
∑

jpA|T (j|i)ρ̂B
n

j )/n

− χ(pT (i),
∑

jpA|T (j|i)ρ̂E
n

j )/n
]

. (6)

The probabilities{pi} form a distribution over an auxiliary
classical alphabetT , of size|T |. The ultimate privacy capacity
is computed by maximizing the expression specified in (6)
over {pT (i)}, {pA|T (j|i)}, {ρ̂An

j }, andn, subject to a cardi-
nality constraint on|T |. For a degraded wiretap channel, the
auxiliary random variable is unnecessary, and Eq. (6) reduces
to

Cp(NA-BE) = sup
n

max
pA(j)

[χ(pA(j), ρ̂
Bn

j )/n−χ(pA(j), ρ̂E
n

j )/n].

(7)

III. N OISELESSBOSONIC WIRETAP CHANNEL

The noiseless bosonic wiretap channel consists of a collec-
tion of spatial and temporal bosonic modes at the transmitter
that interact with a minimal-quantum-noise environment and
split into two sets of spatio-temporal modes en route to two
independent receivers, one being the intended receiver andthe
other being the eavesdropper. The multi-mode bosonic wiretap
channel is given by

⊗

s NAs-BsEs
, whereNAs-BsEs

is the
wiretap-channel map for thesth mode, which can be obtained
from the Heisenberg evolutions

b̂s =
√
ηs âs +

√

1− ηs f̂s, (8)

ês =
√

1− ηs âs −
√
ηs f̂s, (9)

where the{âs} are Alice’s modal annihilation operators, and
{b̂s}, {ês} are the corresponding modal annihilation operators
for Bob and Eve, respectively. The modal transmissivities{ηs}
satisfy 0 ≤ ηs ≤ 1, and the environment modes{f̂s} are in
their vacuum states. We will limit our treatment here to the
single-mode bosonic wiretap channel, as the privacy capacity
of the multi-mode channel can in principle be obtained by
summing up capacities of all spatio-temporal modes and
maximizing the sum capacity subject to an overall input-power
budget using Lagrange multipliers, cf. [2], where this was done
for the multi-mode single-user lossy bosonic channel.
Theorem — Assuming the truth of minimum output entropy
conjecture 2 (see Sec. V), the ultimate privacy capacity of the

2A density operator is Hermitian, with eigenvalues that forma probability
distribution. Thus, the von Neumann entropy of a density operator ρ̂ is the
Shannon entropy of its eigenvalues.



Fig. 1. Schematic diagram of the single-mode bosonic wiretap channel. The
transmitter Alice (A) encodes her messages to Bob (B) in a classical index
j, and overn successive uses of the channel, thus preparing a bipartite state
ρ̂B

nEn

j whereEn representsn channel uses of an eavesdropper Eve (E).
For η > 1/2, this channel is degraded, as Eve’s state can be recreated by
passing Bob’s state through a beamsplitter of transmissivity (1− η)/η.

single-mode noiseless bosonic wiretap channel (see Fig. 1)
with mean input photon-number constraint〈â†â〉 ≤ N̄ is

Cp(NA-BE) = g(ηN̄)− g((1− η)N̄) nats/use, (10)

for η > 1/2 and Cp = 0 for η ≤ 1/2. This capacity is
additive and achievable with single-channel-use coherent-
state encoding with a zero-mean isotropic Gaussian prior
distributionpA(α) = exp(−|α|2/N̄)/πN̄ .

Proof — Devetak’s result for the privacy capacity of the
degraded quantum wiretap channel in Eq. (7) requires finite-
dimensional Hilbert spaces. Nevertheless, we will use this
result for the bosonic wiretap channel, which has an infinite-
dimensional state space, by extending it to infinite-dimensional
state spaces through a limiting argument.3 Furthermore, it was
recently shown that the privacy capacity of a degraded wiretap
channel is additive, and equal to the single-letter quantum
capacity of the channel from Alice to Bob [9], i.e.,

Cp(NA-BE) = C(1)
p (NA-BE) = Q(1)(NA-B), (11)

where the superscript(1) denotes single-letter capacity. It is
straightforward to show that ifη > 1/2, the bosonic wiretap
channel is a degraded channel, in which Bob’s is the less-noisy
receiver and Eve’s is the more-noisy receiver. The degraded
nature of the bosonic wiretap channel has been depicted in

3When |T | and |A| are finite and we are using coherent states in Eq. (7),
there will be a finite number of possible transmitted states,leading to a
finite number of possible states received by Bob and Eve. Suppose we
limit the auxiliary-input alphabet (T )—and hence the input (A) and the
output alphabets (B andE)—to truncated coherent states within the finite-
dimensional Hilbert space spanned by the Fock states{ |m〉 : 0 ≤ m ≤ M },
whereM ≫ N̄ . Applying Devetak’s theorem to the Hilbert space spanned
by these truncated coherent states then gives us a lower bound on the privacy
capacity of the bosonic wiretap channel when the entire, infinite-dimensional
Hilbert space is employed. By takingM sufficiently large, while maintaining
the cardinality condition forT , the rate-region expressions given by Devetak’s
theorem will converge to Eq. (10).

Fig. 1, where the quantum statesρ̂E
′

of the constructed system
E′ are identical to the quantum statesρ̂E for a given input
quantum statêρA. Using Eq. (11) for the bosonic wiretap
channel, we have

Cp(NA-BE) = max
〈â†â〉≤N̄

[

S
(

ρ̂B
)

− S
(

ρ̂E
)]

= max
〈â†â〉≤N̄

[S(ρ̂B)− S(ρ̂E
′

)]

= max
0≤K≤g(ηN̄)

{max〈â†â〉≤N̄,S(ρ̂B)=K [S(ρ̂B)− S(ρ̂E
′

)]}

= max
0≤K≤g(ηN̄)

{K −min〈â†â〉≤N̄,S(ρ̂B)=K [S(ρ̂E
′

)]}

= max
0≤K≤g(ηN̄)

{K − g[(1− η)g−1(K)/η]}

= g(ηN̄)− g((1− η)N̄) nats/use

= Q(1)(NA-B). (12)

The first equality above follows from Lemma 3 of [9].
The second equality follows fromNA-BE being a degraded
channel. The restriction to0 ≤ K ≤ g(ηN̄) in the third
equality is permissible becausemax〈â†â〉≤N̄ S(ρ̂B) = g(ηN̄).
The fifth equality follows4 from minimum output entropy
conjecture 2 (see Sec. V). ThêρB that achieves this equality
is a thermal state, which is realized when Alice employs
coherent-state encoding with a zero-mean isotropic Gaussian
prior distributionpA(α) = (1/πK) exp(−|α|2/K). The sixth
equality now follows fromg(x)−g(cx) being a monotonically
increasing function ofx ≥ 0, for c a constant satisfying
0 ≤ c < 1, and the equality to the single-letter quantum
capacity follows from Eq. (11). Note that the privacy capacity
of this channel is zero whenη ≤ 1/2. It is straightforward to
show that in the limit of high input photon number̄N ,

Cp(NA-BE) = Q(1)(NA-B) = max {0, ln(η)− ln(1− η)} ,

a result that Wolf et. al. [10] independently derived by a
different approach without use of an unproven output entropy
conjecture.

IV. T HE ENTROPY PHOTON-NUMBER INEQUALITY (EPNI)

A. The Entropy Power Inequality

Let X andY be statistically independent,n-dimensional,
real-valued random vectors that possess differential (Shannon)
entropiesh(X) andh(Y) respectively. Because a real-valued,
zero-mean Gaussian random variableU has differential en-
tropy given byh(U) = ln(2πe〈U2〉), where the mean-squared
value,〈U2〉, is considered to be thepower of U , the entropy
powers ofX andY are taken to be

P (X) ≡ eh(X)/n

2πe
and P (Y) ≡ eh(Y)/n

2πe
. (13)

4Here, g−1(S) is the inverse of the functiong(N). Becauseg(N) for
N ≥ 0 is a non-negative, monotonically increasing, concave function of N ,
it has an inverse,g−1(S) for S ≥ 0, that is non-negative, monotonically
increasing, and convex.



In this way, ann-dimensional, real-valued, random vectorX̃

comprised of independent, identically distributed (i.i.d.), real-
valued, zero-mean, variance-P (X), Gaussian random variables
has differential entropyh(X̃) = h(X). We can similarly define
an i.i.d. Gaussian random vector̃Y with differential entropy
h(Ỹ) = h(Y). We define a new random vector by the convex
combination

Z ≡ √
ηX+

√

1− ηY, (14)

where 0 ≤ η ≤ 1. This random vector has differential
entropyh(Z) and entropy powerP (Z). Furthermore, let̃Z ≡√
η X̃ +

√
1− η Ỹ. Three equivalent forms of the Entropy

Power Inequality (EPI), see, e.g., [11], are then:

P (Z) ≥ ηP (X) + (1− η)P (Y) (15)

h(Z) ≥ h(Z̃) (16)

h(Z) ≥ ηh(X) + (1− η)h(Y). (17)

B. The Entropy Photon-Number Inequality

Let â = [ â1 â2 · · · ân ] and b̂ =

[ b̂1 b̂2 · · · b̂n ] be vectors of photon annihilation
operators for a collection of 2n different electromagnetic
field modes of frequencyω [12]. The joint state of the modes
associated witĥa and b̂ is given by the product-state density
operatorρ̂ab = ρ̂a ⊗ ρ̂b, where ρ̂a and ρ̂b are the density
operators associated with thêa and b̂ modes, respectively.
The von Neumann entropies of thêa and b̂ modes are
S(ρ̂a) = −tr[ρ̂a ln(ρ̂a)] andS(ρ̂b) = −tr[ρ̂b ln(ρ̂b)].

The thermal state of a mode with annihilation operatorâ
has two equivalent definitions:

ρ̂T =

∫

d2α
e−|α|2/N

πN
|α〉〈α|, (18)

and

ρ̂T =

∞
∑

i=0

N i

(N + 1)i+1
|i〉〈i|, (19)

whereN = 〈â†â〉 is the average photon number. In Eq. (18),
|α〉 is the coherent state of amplitudeα, i.e., it satisfieŝa|α〉 =
α|α〉, for α a complex number. In Eq. (19),|i〉 is thei-photon
state, i.e., it satisfieŝN |i〉 = i|i〉, for i = 0, 1, 2, . . ., with N̂ ≡
â†â being the photon number operator. Physically, Eq. (18)
says that the thermal state is an isotropic Gaussian mixture
of coherent states. Equation (19), on the other hand, says that
the thermal state is a Bose-Einstein mixture of number states.
From Eq. (19) we immediately have thatS(ρ̂T ) = g(N),
because the photon-number states are orthonormal.5

The entropy photon-numbers of the density operatorsρ̂a
and ρ̂b are defined as follows:

N(ρ̂a) ≡ g−1(S(ρ̂a)/n) and N(ρ̂b) ≡ g−1(S(ρ̂b)/n).
(20)

Thus, if ρ̂ã ≡ ⊗n
i=1 ρ̂Tai

and ρ̂
b̃
≡ ⊗n

i=1 ρ̂Tbi
, where ρ̂Tai

is the thermal state of average photon numberN(ρ̂a) for

5The coherent states,{|α〉}, arenot orthonormal, but rather overcomplete.

the âi mode andρ̂Tbi
is the thermal state of average photon

numberN(ρ̂b) for the b̂i mode, then we haveS(ρ̂ã) = S(ρ̂a)
and S(ρ̂

b̃
) = S(ρ̂b). We define a new vector of photon

annihilation operators,̂c = [ ĉ1 ĉ2 · · · ĉn ], by the
convex combination

ĉ ≡ √
η â+

√

1− η b̂, for 0 ≤ η ≤ 1, (21)

and usêρc to denote its density operator. This is equivalent to
saying that̂ci is the output of a lossless beam splitter whose
inputs, âi and b̂i, couple to that output with transmissivityη
and reflectivity1− η, respectively.

We can now state two equivalent forms of our conjectured
Entropy Photon-Number Inequality (EPnI) [13]:

N(ρ̂c) ≥ ηN(ρ̂a) + (1− η)N(ρ̂b) (22)

S(ρ̂c) ≥ S(ρ̂c̃), (23)

where ρ̂c̃ ≡ ⊗n
i=1 ρ̂Tci

with ρ̂Tci
being the thermal state of

average photon numberηN(ρ̂a) + (1 − η)N(ρ̂b) for ĉi.

V. M INIMUM OUTPUT ENTROPY CONJECTURES

By analogy with the classical EPI, we might expect there
to be a third equivalent form of the quantum EPnI, viz.,

S(ρ̂c) ≥ ηS(ρ̂a) + (1− η)S(ρ̂b). (24)

It is easily shown that (22) implies (24) [14], but we have not
been able to prove the converse. Indeed, we suspect that the
converse might be false. More important than whether or not
(24) is equivalent to (22) and (23), is the role of the EPnI
in proving classical information capacity results for bosonic
channels. In particular, the EPnI provides simple proofs of
the following two minimum output entropy conjectures. These
conjectures are important because proving minimum output
entropy conjecture 1 also proves the conjectured capacity of
the thermal-noise channel [2], and proving minimum output
entropy conjecture 2 also proves the conjectured capacity
region of the bosonic broadcast channel [4]. Furthermore,
as we have shown above, proving minimum output entropy
conjecture 2 also establishes the privacy capacity of the
bosonic wiretap channel and the single-letter quantum capacity
of the lossy bosonic channel.

Minimum Output Entropy Conjecture 1 — Let a and
b be n-dimensional vectors of annihilation operators, with
joint density operator̂ρab = (|ψ〉aa〈ψ|) ⊗ ρ̂b, where |ψ〉a
is an arbitrary zero-mean-field pure state of thea modes
and ρ̂b =

⊗n
i=1 ρ̂Tbi

with ρ̂Tbi
being theb̂i mode’s thermal

state of average photon numberK. Define a new vector of
photon annihilation operators,̂c = [ ĉ1 ĉ2 · · · ĉn ], by
the convex combination (21) and useρ̂c to denote its density
operator andS(ρ̂c) to denote its von Neumann entropy. Then
choosing |ψ〉a to be then-mode vacuum state minimizes
S(ρ̂c).

Minimum Output Entropy Conjecture 2 — Let a andb
be n-dimensional vectors of annihilation operators with joint
density operatorρ̂ab = (|ψ〉aa〈ψ|) ⊗ ρ̂b, where |ψ〉a =
⊗n

i=1 |0〉ai
is the n-mode vacuum state and̂ρb has von



Neumann entropyS(ρ̂b) = ng(K) for some K ≥ 0.
Define a new vector of photon annihilation operators,ĉ =
[ ĉ1 ĉ2 · · · ĉn ], by the convex combination (21) and use
ρ̂c to denote its density operator andS(ρ̂c) to denote its von
Neumann entropy. Then choosinĝρb =

⊗n
i=1 ρ̂Tbi

with ρ̂Tbi

being theb̂i mode’s thermal state of average photon number
K minimizesS(ρ̂c).

To see that the EPnI encompasses both of the preceding
minimum output entropy conjectures is our final task in this
paper. We begin by using the premise of conjecture 1 in (22).
Because thêa modes are in a pure state, we getS(ρ̂a) = 0
and hence the EPnI tells us that

N(ρ̂c) ≥ (1− η)N(ρ̂b) = (1− η)K. (25)

Takingg(·) on both sides of this inequality, we getS(ρ̂c)/n ≥
g[(1 − η)K]. But, if |ψ〉a is the n-mode vacuum state, we
can easily show that̂ρc =

⊗n
i=1 ρ̂Tci

, with ρ̂Tci
being the

ĉi mode’s thermal state of average photon number(1− η)K.
Thus, when|ψ〉a is then-mode vacuum state we getS(ρ̂c) =
ng[(1− η)K], which completes the proof.

Next, we apply the premise of conjecture 2 in (22). Once
again, theâ modes are in a pure state, so we get

N(ρ̂c) ≥ (1− η)N(ρ̂b) = (1− η)K, (26)

and henceS(ρ̂c)/n ≥ g[(1 − η)K]. But, taking ρ̂b =
⊗n

i=1 ρ̂Tbi
, with ρ̂Tbi

being the b̂i mode’s thermal state of
average photon numberK, satisfies the premise of minimum
output entropy conjecture 2 and implies thatρ̂c =

⊗n
i=1 ρ̂Tci

,
with ρ̂Tci

being theĉi mode’s thermal state of average photon
number(1−η)K. In this case we haveS(ρ̂c) = ng[(1−η)K],
which completes the proof.

VI. CONCLUSION

We conjectured a quantum version of the classical entropy
power inequality, which subsumes two minimum output en-
tropy conjectures that prior work has shown to be sufficient
to prove the capacity of the point-to-point thermal-noise
lossy bosonic channel, and the bosonic broadcast channel
respectively [2], [4]. Even though proving this more general
inequality—the Entropy Photon-number Inequality (EPnI)—
might seem harder than the two minimum output entropy
conjectures, there is a possibility of drawing parallels from
the proofs of the classical entropy power inequality [11]. In
this paper, we have also shown that the EPnI also implies
the proof of the privacy capacity of the bosonic wiretap
channel. Furthermore, using a result from [9], we have that the
degraded nature of the bosonic wiretap channel implies that
its privacy capacity equals the single-letterquantum capacity of
the lossy bosonic channel. Moreover. both of these capacities
are achieved by coherent-state encoding using an isotropic
Gaussian prior.
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