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Abstract—In this paper, we first introduce a smooth parametric
family of Bregman-Csiszár quantum entropies including the
von Neumann and Burg quantum entropies. We then describe
the dualistic nature of Voronoi diagrams for 1-qubit quantum
states inside the 3D Bloch ball representation. We show that
these diagrams can be computed as Bregman Voronoi diagrams
for the corresponding Bregman generator acting on Hermitian
density matrices. This implies that these dual diagrams can be
derived from power diagrams of balls in the Laguerre geometry,
and allows one to prove by equivalence that the von Neumann
quantum Voronoi diagram on the degenerated Bloch sphere
of pure quantum states coincides with the ordinary Euclidean
Voronoi diagram, bypassing the fact that the quantum divergence
is not defined there. We then show how to compute the Holevo
channel capacity of 1-qubit quantum states, and provide a
practical approximation algorithm based on Bregman core-sets.
Finally, we define the quantum sided centroids that yield practical
upper bounds on the Holevo capacity in linear time.

I. INTRODUCTION AND PRELIMINARIES
The 21st century attests the accelerated rise of the deploy-

ment of quantum mechanics into various industrial prototypes
like the prominent quantum cryptographic systems. Recent
breakthroughs in experimental physics bridged the gap be-
tween mathematical theory and practice, and the analysis of
quantum channel characteristics such as its capacity become a
fundamental problem associated with related open problems.1
In quantum information theory [1], particle state distri-

butions are analyzed probabilistically by means of density
matrices X. A d-level system is characterized by a d × d

matrix X ∈ Cd×d with complex coefficients that satisfies the
following three properties:
1) X is Hermitian. That is, X is equal to its conjugate
transpose: X = X∗T ,

2) X has unit trace. That is, the sum of diagonal elements
sums up to one and has no imaginary part:
Tr(X) =

∑d

i=1 Xi,i = 1,
3) X is semi-positive definite. That is, X belongs to the
positive cone: xT Xx ≥ 0 ∀x �= 0. This condition
implies positive determinant: detX ≥ 0.

Let S(Cd) denote the space of such semi-positive definite
density square matrices of size d× d. One qubit (quantum bit

1See the quantum information problems list at:
http://www.imaph.tu-bs.de/qi/problems/

for short) systems2 are the simplest fundamental case, obtained
for d = 2. The above three conditions imply the following
characterization of the family of 2× 2 complex matrices [2]:

X =

{
1

2

[
1 + z x− iy

x + iy 1− z

] ∣∣ x2 + y2 + z2 ≤ 1

}
, (1)

where i denotes the imaginary number i2 = −1. The condition
x2+y2+z2 ≤ 1 is derived from the semi-positive definiteness
assumption (detX ≥ 0). Thus 1-qubit states X can be
represented equivalently by a x = (x, y, z) triple of reals, a 3D
point x ∈ R3, and the set S(C2) of 1-qubits is refered to as the
Bloch ball3. We distinguish between pure states which have
degenerated density matrices of rank 1 (noninvertible matrix),
and mixed states of full rank 2. The pure state condition
is geometrically visualized by density matrices lying on the
boundary of the Bloch ball: The Bloch sphere. The state X

of a 1-qubit is expressed using three reals x = (x, y, z) that
can be reinterpreted in spherical coordinates as x = (r, θ, φ)
where r denotes the radius of the state to the origin, and
θ and φ encode the latitude and longitude rotation angles:
(r, θ, φ) ↔ (x = r sin θ cosφ, y = r sinφ, z = r cos θ cosφ).
In order to define the quantum divergence that is the gener-
alization of the Kullback-Leibler divergence (better known as
relative entropy [1]) to density matrices, we first define the
logarithm of a density matrix using its spectral decomposi-
tion. Consider the singular value decomposition (SVD) of a
Hermitian matrix X: X = V Diag(λ) V∗, with both V and
V∗ = VT unitary orthonormal matrices, and all eigenvalues
λi ≥ 0 real and positive. The diagonal matrix represents the
eigenspectra and the complex orthonormal rotation matrix V

the associated eigenspace. Using the spectrum decomposition
of a matrix X, we define the logarithm of a density matrix
as: logX = V Diag(log λ1, ..., log λd) V∗. The quantum von
Neuman entropy H(X) (matrix entropy) is a generalization of
the classical Shannon entropy4 to density matrices:

2In general, n-qubit systems require dimension d = 2n.
3Named after physicist Felix Bloch, first director of the CERN institute.
4The Shannon entropy of a discrete d-dimensional distribution p is defined

as H(p) =
∑d

i=1
pi log 1

pi

= −
∑d

i=1
pi log pi. The distance between

“classical bits“ is the Hamming distance.
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H(X) = −Tr(X log X). (2)

It can be shown that the quantum entropy is equal to the
Shannon entropy for the eigenvalue distribution:

H(X) = H(λ) = −
d∑

i=1

λi log λi. (3)

The quantum information divergence I (matrix relative en-
tropy) generalizes the Kullback-Leibler divergence [18] (KL)
by considering the following distortion measure:

I(P||Q) = Tr (P(logP− logQ)) ≥ 0. (4)

This divergence is not symmetric nor does it satisfy the
triangle inequality. It is therefore not a metric. Note that the
quantum divergence is defined for P → 0 by taking the
limit: limX→0 Tr(X logX) = 0 (since limx→0 x log x = 0).
However, the divergence is not properly defined whenQ is not
full rank (i.e.,Q encodes a pure state) because of the undefined
logarithm. The quantum information divergence is reflexive:
I(P||Q) = 0 ⇔ P = Q. We further have the following
quantum/classical information inequality:

I(P||Q) ≥ KL(λP||λQ) ≥ 0, (5)

where λP and λP are the eigenvalue distributions of the spec-
tral decomposition of the density matrices P and Q, respec-
tively. The inequality is strict if and only if the eigenspaces
of P and Q differ. Interestingly, this von Neumann quantum
information divergence belongs to a broader class of para-
metric divergences called Bregman divergences [3]. Bregman
divergences are parameterized families of distortion measures
induced by a strictly convex and differentiable convex function
F : S(Cd)→ R such that:

DF (P||Q) = F (P) − F (Q)− 〈P−Q, ∇F (Q)〉 (6)

where the real inner product is defined as: 〈P,Q〉 =
Tr(PQ∗), and ∇F (·) is the Gâteaux derivative: Namely,
the gradient. We have DF (P||Q) = 0 if and only if P =
Q (positive-definiteness generalizing Gibb’s inequality [1],
[8]). Bregman divergences can also be interpreted locally
as quadratic distance measures by considering the Taylor
expansion of F with an exact remainder term: DF (P||Q) =

(P−Q)∗ ∇F 2(ε)
2 (P−Q), where ε depends on both P and Q.

The quantum information divergence is a Bregman divergence
obtained for the Bregman generator F (X) = Tr(X logX).
Dhillon and Tropp [4] thoroughly investigated Bregman matrix
distortion measures for “matrix nearness” decompositions with
a special care given to the squared Fröbenius, von Neumann
information and the log det divergences obtained respectively
for the generators F (X) = 1

2 ||X||2, F (X) = Tr(X log X)
and F (X) = − log detX. It follows that the quantum relative
entropy I = DF (von Neumann Bregman divergence) has
thus a neat axiomatic characterization [5], and can further

be extended following Csiszár least square projection char-
acterization [5], by using for the Bregman generator the
extended negative entropy F (X) = Tr(X log X − X). The
gradient of F (X) is ∇F (X) = logX, the quantum Burg
entropy. In summary, the extended von Neumann quantum
divergence is a Bregman divergence in disguise for generator
F (X) = Tr(X logX−X):

I(P||Q) = DF (P||Q) = Tr (P(logP− logQ)−P + Q) .

(7)
Bregman divergences are invariant by affine terms and

enjoy a remarkable bijection with probability distributions
of the statistical exponential families [6]. Carrying out the
calculations for the 3D Bloch ball of 1-qubits P and Q (with
rP and rQ denoting the respective radii in the 3D Bloch ball
representation), we obtain [8]:

I(P||Q) =
1 + rP

2
log

1 + rP

2
+

1− rP

2
log

1− rP

2

−1

2
log

1− r2
Q

4
− < p,q >

2rQ

log
1 + rQ

1− rQ

(8)

def
= a(rP ) + b(rQ)− c(rQ) < p,q > . (9)

II. QUANTUM BREGMAN-CSISZÁR DIVERGENCES

The choice of the proper quantum divergence may depend
upon the situation implied by the underlying study or appli-
cation needs [1]. It is therefore interesting to design a flexible
generic quantum divergence by generalizing parametric diver-
gences proposed in classical information theory. We propose to
extend the von Neumann quantum/Log det divergences [4] to
the class of quantum Bregman-Csiszár divergences for density
matrices. First, define the smooth family of strictly convex and
differentiable Bregman generators Fα on density matrices for
a single parameter α ∈ [0, 1] as:

Fα(X) =
1

α(1 − α)
Tr (−Xα + αX− αI + I) , (10)

where I denotes the identity matrix, and Xα is defined from
the spectral decomposition of X = V Diag(λ) V∗ as
Xα = V Diag(λα

1 , ..., λα
d ) V∗. From the Bregman divergence

of Eq. 6, it follows the α-quantum Bregman divergence:

Dα(P||Q) =
1

α(1 − α)
Tr

(
Qα −Pα + αQα−1(P−Q)

)
.

(11)
Note that since Bregman generators are equivalent up to

affine terms [10], we find that F0 is the quantum Burg
entropy and F1 is the usual von Neumann entropy. Observe
that we have in the limit case limα→1 Fα(X) = F (X) =
Tr(X log X −X) and limα→1 ∇Fα(X) = limα→1

1
1−α

(I −
Xα−1) = logX.
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Fig. 1. Quantum Voronoi diagram of 1-qubit pure states: Voronoi cells
annotated with density matrices on the latitude-longitude map (left) and
Voronoi cells visualized on the 3D Bloch sphere (right). Zoom in pdf please.

III. QUANTUM VORONOI DIAGRAMS
Kato et al. [7], [8] studied the Voronoi diagram for 1-

qubit systems with respect to the Fubini-Study DFS and
Bures DB metric distances [9] for pure states. Let P and
Q denote two pure state density matrices represented on the
Bloch sphere by 3D points p and q, respectively. We have
DFS(P,Q) = arccos

√
Tr(PQ) = arccos

√
1+<p,q>

2 and
DB(P,Q) =

√
1− Tr(PQ) = 1√

2
||p− q||. Observe that we

just need the diagonal elements5 selected by the trace operator
for computing these quantum distances. They thus show that
for the case of pure state 1-qubits, these Voronoi diagrams
are equivalent to the ordinary Voronoi diagram on the sphere.
This spherical Voronoi diagram can in turn be simply obtained
as the ordinary 3D Euclidean Voronoi diagram restricted to
the unit (Bloch) sphere. Figure 1 depicts such a quantum
Voronoi diagram under these metrics with density matrix
annotations in each Voronoi cell. Moreover, Kato et al. [7], [8]
investigated the Voronoi diagram with respect to the quantum
information divergence and carried out calculations in the limit
case of Q being a pure state. They deduce that the quantum
Voronoi diagram of pure states is identical to the conventional
spherical Voronoi diagram although they differ for mixed
states. We revisit concisely these results under the framework
of Bregman Voronoi diagrams [10] and show how to naturally
extend these diagrams to pure states from corresponding
affine power diagrams fully defined over R

3. Since Bregman
divergences are usually asymmetric [10], we consider the left-
sided and right-sided Bregman Voronoi diagrams of density
matrix set P = {P1, ...,Pn} defined as the cell complex
induced by the left- and right-sided Bregman bisectors. The
Voronoi cells VorF (Pi) = ∩j �=iHF (P,Pj) and Vor′F (Pi) =
∩i�=jH

′
F (P,Pj) are defined respectively using the sided bisec-

tors as follows: HF (P,Q) = {X| DF (X||P) = DF (X||Q)},
and H ′

F (P,Q) = {X | DF (P||X) = DF (Q||X)}.
These bisectors match only for symmetric Bregman di-

vergences that are generalized quadratic distances [10]. Let
X′ = ∇F (X) denote the gradient of Hermitian matrix X.
The left-sided bisector is always a hyperplane [10] whatever
the considered generator F :

HF (P, Q) : 〈X,P
′ −Q

′〉+F (P)−〈P, P
′〉−F (Q)+〈Q, Q

′〉 = 0
(12)

5In general, for computing the quantum divergence between any two d×d
states P and Q, we just need O(d2) operations for computing the matrix
product of density matrices along the diagonal only.

This equation becomes for the case of the extended negative
von Neuman entropy (with P′ = logP), the following
hyperplane equation in dimension d:

HF (P,Q) : {X | Tr (X(logP− logQ)−P + Q) = 0}.
(13)

Using the a, b, c notations of the spherical coordinates of
Eq. 9, it follows that for 1-qubit states on the 3D Bloch ball
we have the bisector plane equation:

HF (p,q) : {x| < x, c(rQ)q−c(rP )p > +b(rP )−b(rQ) = 0}
(14)

Next, we show that the right-type bisector is not linear but
dually linear in the gradient space ∇F (X).

A. Legendre duality, dual divergence and bisector

Since generator F of Eq. 6 is strictly convex and differen-
tiable, we associate to F a unique dual conjugate function F ∗

via the Legendre-Fenchel slope transformation such that:

F ∗(Y) = sup
X∈S(Cd)

{〈Y,X〉 − F (X)}. (15)

The unique supremum is reached at pointY = ∇F (X) = X′.
The Legendre transformation defines a dual quantum Bregman
divergence for the dual generator F ∗(X) = Tr(expX) (expX

is again defined using the spectral decomposition expX =
V Diag(exp λ1, ..., expλd) V∗):

DF (P||Q) = F (P) + F ∗(Q′)− 〈P,Q′〉 = DF∗(Q′||P′)
(16)

Thus although the right-type bisector is not linear, it is
dually linear by considering the associated dual Bregman
generator: H ′

F (P,Q) ≡ HF∗(Q′,P′).
For 1-qubit states represented by a 3D point inside the

Bloch ball, we have the Legendre conjugate explicited using
3D coordinates as [7]:

(x∗, y∗, z∗) = ∇FB(x, y, z) =
1

2r
log

1 + r

1− r
(x, y, z), (17)

where ∇FB is the gradient for the 3D Bloch generator
function, and r is the radius r =

√
x2 + y2 + z2. Observe that

the dual Legendre function FB
∗ does not admit any closed-

form formula although we can easily tabulate it in practice for
fine approximations by using a 1D look-up-table array.

B. Affine and dually affine quantum Voronoi diagrams
Since the left-type Voronoi diagram is affine, we use the

handy universal construction of affine diagram from power
diagram [11] to define quantum Voronoi diagrams as power
diagrams of balls in the Laguerre geometry. We associate to
density matrix Xi the ball with Hermitian matrix center:

∇F (Xi) = logXi = Vi

[
log λi,1 0
0 log λi,2

]
V∗

i (18)
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with Vi = 1√
2

⎡
⎣ xi−iyi√

x2

i
+y2

i

√
ri+zi

ri

xi−iyi√
x2

i
+y2

i

√
ri−zi

ri√
ri−zi

ri

−
√

ri+zi

ri

⎤
⎦ and

squared radius [10]

r2
i = 〈∇F (Xi), ∇F (Xi)〉+ 2(F (Xi)− 〈Xi, ∇F (Xi)〉),

(19)
that is potentially imaginary and infinite for pure states (since
one eigenvalue 1−r

2 is zero [7]). The power bisector of two 3D
Euclidean balls B(p, rP ) and B(q, rQ) centered at 3D points
p and q is the radical hyperplane of equation [10]:

2 < x,q−p > + < p,p > − < q,q > +r2
Q−r2

P = 0. (20)

Since pure states have the same equivalent ball radius (being
infinite in this limit case, see Eq. 19) it follows that the
dual quantum Voronoi diagrams on the Bloch sphere has
in the limit case (proof omitted) matching affine bisectors
which coincides exactly with the bisector equation6 for the
3D ordinary Euclidean Voronoi diagram for 3D points p and
q on the Bloch sphere.
Theorem 3.1: The von Neumann quantum Voronoi dia-

grams are Bregman Voronoi diagrams that can be computed
from equivalent power diagrams. In particular, the quantum
Voronoi diagrams on the Bloch sphere of pure states coincides
with an ordinary Euclidean Voronoi diagram restricted to the
sphere.
This reduction to power diagrams is attractive since power

diagrams are defined on the full Euclidean space E
3 (i.e.,

inside mixed states, on pure states and outside the Bloch
sphere). The 1-qubit quantum Voronoi diagram can be com-
puted easily using 3D power diagrams [11] and X↔∇F (X)
conversions [10]. Although the left-side and right-side quan-
tum Voronoi diagrams on pure states match and coincide with
the Euclidean Voronoi diagram, it is not anymore the case
inside the Bloch ball of mixed states where they provably
differ [10].

IV. HOLEVO CHANNEL CAPACITY
A quantum channel is a linear transform. That is, an affine

map that maps quantum states to other quantum states: T :
S(C2) → S(C2). Geometrically, the effect of a channel is to
map the 3D Bloch ball of pure/mixed states to a deformed 3D
ellipsoid contained inside the Bloch ball (thus T is a particular
affine map). The Holevo capacity [12] of this channel T is
defined as the radius of the smallest enclosing ball of the
ellipsoid:

C(T ) = inf
P∈S(C2)

sup
Q∈S(C2)

I(T (Q)||T (P)). (21)

Kato et al. [7] proposed an approximation algorithm for
computing the Holevo capacity using the farthest quantum
Voronoi diagram as follows:

6Indeed, we have in Euclidean geometry:

||xp|| = ||xq|| ⇔< x− p, x− p >=< x− q,x− q >

(by squaring norms) from which we get the ordinary bisector equation:
2 < x, q− p > + < p, p > − < q,q >= 0.

• Sample uniformly n “points” P (i.e., density matrices)
on the 3D Bloch sphere,

• Map these pure states using the quantum channel (i.e.,
apply the linear transform P �→ T (P)),

• Compute the smallest enclosing ball of T (P) and retrieve
the center (i.e., deduce the capacity as the radius).

The farthest quantum Voronoi diagram as well as k-order
quantum Voronoi diagrams [10] are similarly affine diagrams
that can be derived from power diagrams in the Laguerre
geometry [10]. Further, these diagrams can be computed from
the lower envelopes of hyperplanes in dimension d+1 tangent
to the hypersurface (X, F (X)) derived from the lifting to
the potential function F , as described in [7], [10]. Instead of
computing the full quantum Voronoi diagram, we better use the
linear-time generalization [13] of Welzl’s smallest enclosing
ball algorithm to Bregman divergences to compute exactly the
smallest enclosing ball of the discrete sample point set P . This
fully explains7 why at most d + 1 = 4 points of T (P) (the
deformed ellipsoid) are lying on the smallest enclosing sphere.
The error analysis due to the input sampling has been reported
in Theorem 1 of [8]. Since the quantum circumcenter of
T (P) yields anyway an approximation of the channel capacity,
we rather use a practical approximation algorithm based on
Bregman core-sets [19] for matrix divergences.
The simple iterative algorithm works as follows [19]:

Choose an initial circumcenter seed c1 (i.e., random point of
P or the centroid P̄), find the farthest point f of P wrt. to the
quantum (Bregman) divergence and update the circumcenter
to ci+1 ← ∇F−1(∇F (ci) + 1

i+1∇F (f)) by walking on
the geodesic cif . At the i-th iteration, we get a O(1 +

√
i)-

approximation [19] of the circumcenter. Therefore it takes
O(dn

ε2
) = O( d

ε3
) time to get a (1 + ε)-approximation, by

first sampling n = 1
ε
points [7]. We can further generalize

this method to the improved O(dn
ε

) = O( d
ε2

) algorithm by
generalizing the core-set approach of Panigrahy [14].
Theorem 4.1: A fine approximation of the Holevo capacity

channel of 1-qubit states can be computed in O( 1
ε2

)-time.
The radius (Holevo capacity of the quantum communication

channel) is given by the Jensen-Shannon divergence [15], [19]:

r∗ = min
w

(
H(

∑
i

wiXi)−
∑

i

wiH(Xi)

)
, (22)

where the wi > 0 indicates the states participating to the basis
of the smallest enclosing ball of the ellipsoid. This Holevo
capacity is thus based on Jensen’s remainder, a measure of
the convexity degree [15] of the von Neumann entropy. The
quantum capacity can be extended to the α-entropies defined
in Section II and yields a parametric generalization of Jensen-
Shannon divergences: The Burbea-Rao divergences [16].
Computing experimentally the channel capacity is important

for tackling the conjecture problems of quantum information
theory [7], [8], first raised in 1996: Show that additivity

7In [8], Kato et al. described this as “a mysterious geometric structure of
the space of quantum states.” This propery holds for any Bregman divergence,
including the α-Bregman Csiszár quantum divergences.
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property of quantum channels or provide a counterexample.
The additivity conjecture of the Holevo capacity expresses the
power of entangled states in quantum communication.

V. QUANTUM CENTROIDS AND INFORMATION RADIUS

To get quick upper bounds on the Holevo capacity, we may
reconsider Eq. 22 and fix the weight vectorw. We then need to
find the center X+ by minimizing the average quantum infor-
mation divergence. This MINAVG optimization problem [17]
yields to the notion of sided left- and right-type quantum
centroids that have been investigated recently under the frame-
work of Bregman divergences [17]. It is shown in [17] that
these Bregman centroids are generalized means [17] with
identical information radius r+

F defined as the Burbea-Rao
divergence [16]: r+

F (w) = F (
∑

i wiXi) −
∑

i wiF (Xi). For
uniform weight vector w, we get the sided centroids; For non-
uniform weight vectors w, this yields the notion of barycenter.
Thus the circumcenter is itself the barycenter of the basis
points of the smallest enclosing ball. For sake of simplicity,
we have considered the spaces of density matrices X and its
“dual” gradient space ∇F (X ) sitting in Euclidean geometry
E3. However, the quantum states form a manifold M in
information geometry [18]. Namely, the 1-qubit state space
is a flat manifoldM that admits a dual pair of biorthogonal
coordinate systems [18]: The θ- and η = ∇F (θ)-affine
coordinate systems related to the ∇(m) and ∇(e) mixture
and exponential connections [18]. The Bregman generator
functions are then called potential or contrast functions [18]
and play the role of canonical divergences in these dually
flat manifolds. In that framework, Spellman and Vemuri [20]
called these sided information-theoretic (Kullback-Leibler)
circumcenters the e-center and m-center. They compute these
centers using convex programming but did not notice that
the optimization problem was ill-defined because it is not
differentiable on the furthest Voronoi diagram. Pelletier [21]
studied the sided barycenters in information geometry using
projection and considered interpolation applications of these
barycenters for statistical problems.

VI. CONCLUSION
We have presented a generalization of the quantum Voronoi

diagrams to the family of quantum divergences based on
α-entropic Bregman-Csiszár functions [5]. We showed that
these dual diagrams can be derived equivalently from power
(affine) diagrams. Further, we described a simple and practical
(1 + ε)-approximation O( 1

ε2
) time algorithm for computing

the Holevo capacity. Although we considered in this paper
quantum Voronoi diagrams and the Holevo channel capacity,
we would like to point out that the scope of computational
geometry in dually flat spaces for (Hermitian) matrices extends
beyond quantum information theory. For example, the von
Neuman divergence has been successfully used for machine
learning algorithms [22]. In future work, we would like to
study geometrically the 1-qubit states for another prominent
class of distortion measures: Csiszár f -divergences based on
the “likelihood” ratio p

q
: If (p||q) =

∫
qf(p

q
)dx. In that case,

the underlying geometry is not anymore necessarily flat as
shown by Yoshizawa and Tanabe [23] for the special case
of multivariate normal distributions. The intersection of the
class of Bregman divergences with the class of Csiszár f -
divergences is the only Kullback-Leibler divergence.
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