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Abstract

The capacity of a discrete-time memoryless channel, in which successive symbols fade indepen-

dently, and where the channel state information (CSI) is neither available at the transmitter nor at the

receiver, is considered at low SNR. We derive a closed form expression of the optimal capacity-achieving

input distribution at low signal-to-noise ratio (SNR) and give the exact capacity of a non-coherent channel

at low SNR. The derived relations allow to better understanding the capacity of non-coherent channels

at low SNR and bring an analytical answer to the peculiar behavior of the optimal input distribution

observed in a previous work by Abou Faycal, Trott and Shamai.Then, we compute the non-coherence

penalty and give a more precise characterization of the sub-linear term in SNR. Finally, in order to better

understand how the optimal input varies with SNR, upper and lower bounds on the capacity-achieving

input are given.

Index Terms

Capacity, non-coherent fading channels, energy efficiency.

I. INTRODUCTION

In wireless communication, the channel estimation at the receiver is not often possible due,

for instance, to the high mobility of the sender or the receiver or both. Therefore, achieving

http://arxiv.org/abs/0801.0581v1


reliable communication over fading channels where the channel state information (CSI) is

available neither at the transmitter nor at the receiver, isof a particular interest. Establishing

the performance limits, in terms of channel capacity, errorprobability, etc.., in such a non-

coherent scenario has recently motivated extensive works (see for example [1], [2]). When CSI

is available at the receiver, the channel capacity, commonly known as the coherent capacity has

been studied by Ericson [3] for a Single Input Single Output (SISO) channel and recently by many

other authors for a Multiple Input Multiple Output (MIMO) channel [4] [5]. Conversely, when

CSI is not available at both ends, computing the channel capacity, known as the non-coherent

capacity, as well as computing the optimal input distribution achieving this capacity, for both

SISO and MIMO channels, is a rather tedious task [6] [7]. The main difficulty in computing the

non-coherent capacity relies on the fact that the capacity-achieving input distribution is discrete

with a finite number of mass points, where one of them is located at the origin. The number of

these mass points increases with the signal-to-noise ratio(SNR). Since no bound on the number

of mass points with respect to SNR is actually available, it is very difficult to find closed form

expressions for both the achievable capacity and the optimal input distribution for all SNR values.

Fortunately, numerical computation of the capacity and theoptimal input distribution has been

made possible using the Khun-Tucker condition which is a necessary and sufficient condition

for optimality, for of a SISO channel [6] and for a MIMO channel [7].

Earlier in 1999, using a block fading channel, Marzetta and Hochwald have obtained the

structure of the optimal input, with explicit calculationsfor the special case of a SISO channel

at high SNR values or with a large coherence time [8]. The non-coherent capacity was also

computed as a function of the number of transmit and receive antennas as well as the coherence

time at high SNR in [9]. At a low SNR regime, it was also shown in[9] that to a first order of

magnitude of the SNR, there is no capacity penalty for not knowing the channel at the receiver

which is not the case at the high SNR regime. It has been well established previously that at low

SNR, just like in an additive white Gaussian noise (AWGN) channel, the capacity of a fading

channel varies linearly with the SNR regardless of whether or not the CSI is available at the

receiver [10], [11]. Recently, this power efficiency at a lowSNR regime or equivalently at a

large channel bandwidth has motivated work towards a betterunderstanding of the non-coherent

capacity at a low SNR regime [1], [13], [14] for both SISO and MIMO channels using several

fading models.



In this paper, we analyze the capacity of a discrete time non-coherent memoryless Rayleigh

fading SISO channel at low SNR. The main contributions of this paper are:

1) Derivation of an analytical closed form of the channel mutual information at low SNR,

which may also be considered as a lower bound on the channel mutual information for an

arbitrary SNR value.

2) Derivation of a fundamental relation between the capacity-achieving input distribution and

the SNR value, from which an exact capacity expression is deduced at low SNR.

3) Derivation of novel upper and lower bounds on the non-zeromass point location of the

optimal input, which allow to deduce lower and upper bounds respectively on the non-

coherent capacity at low SNR.

The paper is organized as follows. Section II presents the system model. In section III, we

derive a closed form expression of the channel mutual information at low SNR which is also a

lower bound on the channel mutual information at all SNR values. The optimal input distribution

as well as the non-coherent capacity are presented in Section IV. Numerical results are reported

in Section V and Section VI concludes the paper.

II. CHANNEL MODEL

We consider a discrete-time memoryless Rayleigh-fading channel given by:

r(l) = h(l)s(l) + w(l), l = 1, 2, 3, ... (1)

where l is the discrete-time index,s(l) is the channel input,r(l) is the channel output,h(l)

is the fading coefficient andw(l) is an additive noise. More specifically,h(l) and w(l) are

independent complex circular Gaussian random variables with mean zero and variancesσ2
h and

σ2
w, respectively. The inputs(l) is subject to an average power constraint, that isE[|s(l)|2] ≤ P ,

where E[.] indicates the expected value. It is assumed that the channelstate information is

available neither at the transmitter nor at the receiver. However, even though the exact values of

h(l) andw(l) are not known, their statistics are, at both ends.

Model (1) appears for example during the decomposition of a wideband channel into parallel

noninteracting channels, or when a narrow-band signal is hopped rapidly over a large set of

frequencies, one symbol per hop [1].



Since the channel defined in (1) is stationary and memoryless, the capacity achieving statistics

of the inputs(l) are also memoryless, independent and identically distributed (i.i.d). Therefore,

for simplicity we may drop the time indexl in (1). Consequently, the distribution of the channel

output r conditioned on the inputs can be obtained after averaging out the random fading

coefficienth, yielding:

fr|s(r|s) =
1

π(σ2
h|s|2 + σ2

w)
exp

[ −|r|2
σ2
h|s|2 + σ2

w

]

. (2)

Noting that in (2), the conditional output distribution depends only on the squared magnitudes

|s|2 and|r|2, we will no longer be concerned with complex quantities but only with their squared

magnitudes. Conditioned on the input,|r|2 is chi-square distributed with two degrees of freedom:

f|r|2|s(t|s) =
1

(σ2
h|s|2 + σ2

w)
exp

[ −t

σ2
h|s|2 + σ2

w

]

. (3)

Normalizing to unit variance, lety = |r|2/σ2
w and letx = |s|σhσw. Then (3) may be written

more conveniently as:

fy|x(y|x) =
1

(1 + x2
exp

[ −y

1 + x2

]

, (4)

with the average power constraintE[x2] ≤ a, wherea = Pσ2
h/σ

2
w is the SNR per symbol time.

III. THE CHANNEL MUTUAL INFORMATION

For the channel (4), the mutual information is given by [12]:

I(x; y) =

∫ ∫

fy|x(y|x)fx(x) ln
fy|x(y|x)
f(y;x)(y; x)

dxdy. (5)

The capacity of channel (4) is the supremum

C = sup
E[x2]≤a

I(x; y) (6)

over all input distributions that meet the constraint power. The existence and uniqueness of such

an input distribution was established in [6]. More specifically, the optimal input distribution for

channel (4) is discrete with a finite number of mass points, where one of them is necessarily

null. That is, the capacity (6) is expressed by

C = max
E[x2]≤a

N−1∑

i=0

pi

∫ ∞

0

fy|xi
(y|xi) ln

[

fy|xi
(y|xi)

∑

j pjfy|xj
(y|xj)

]

dy, (7)

wherex0 = 0 < x1 < x2 . . . < xN−1 are the mass point locations and wherep0, p1 . . . , pN−1

their probabilities respectively. This optimization problem is very difficult since the number



of discrete mass points, the optimum probabilities and their locations are unknown. In [6],

numerical evaluation of the capacity and the optimum input distribution was given using the

Khun-Tucker condition which is necessary and sufficient foroptimality. The authors have found

empirically that two mass points are optimal for low SNR and that the number of mass points

increases monotonically with SNR. Many other papers have used these results in order to further

understand the non-coherent capacity and the optimal inputdistribution behavior as the SNR

approaches zero [13], [14].

Since we focus on the low SNR regime, we may use in (7) a discrete input distribution

with two mass points, where one of them is null, to obtain the optimal capacity at low SNR.

Furthermore, this on-off signaling also provides a lower bound on the non-coherent capacity for

all SNR values. Clearly, using computer simulation, it was shown in [6] that on-off signaling

provides a tight lower bound on the capacity for the SNR values considered. That is, a lower

bound on the capacity may be expressed by:

CLB = max
E[x2]≤a

ILB(x; y), (8)

whereILB(x; y) is a lower bound on the channel mutual informationI(x; y) given by:

ILB(x; y) = ILB(x1, p1) =
1∑

i=0

pi

∫ ∞

0

fy|xi
(y|xi) ln

[

fy|xi
(y|xi)

∑

j pjfy|xj
(y|xj)

]

dy, (9)

and the average constraint power becomes:p1x
2
1 ≤ a. Note that the optimization problem in

(8) is less complex than in (7) since we deal with only two unknownsp1 ND x1. Furthermore,

it is proven below that further simplifications can be obtained, using the fact thatILB(x1, p1)

is monotonically increasing inx1 and thus the problem at hand may be reduced to a simpler

maximization problem without constraint. We summarize this result in lemma 1.

Lemma 1:The optimal capacity at low SNR and a lower bound on it for all SNR values is

given by:

CLB = max
x1≥

√
a
ILB(x1, a), (10)

whereILB(x1, a) is the channel mutual information for a given mass point location x1 and a



given SNR valuea. Furthermore,ILB(x1, a) may be written as:

ILB(x1, a) =







a− a
[
ln (1+x2

1)

x2
1

+ 1
1+x2

1

+
x2
1

1+x2
1

· 1F2

(

1, 1
x2
1

, 1 + 1
x2
1

,− (1+x2
1)(x

2
1−a)

a

)]

− ln
(

1− a
x2
1

)

− ln
(

1 + a
(1+x2

1
)(x2

1
−a)

)

if x1 >
√
a,

0 if x1 =
√
a

(11)

where2F1(·, ·, ·, ·) is the Gauss hypergeometric function.

Proof: For convenience, the proof is presented in Appendix I.

In Lemma 1, the existence of a maximum for a given SNR valuea is guaranteed by the

continuity of ILB(x1, a) and the fact that it is bounded with respect tox1 over the interval

[
√
a,∞[. This can be readily seen in Fig. 1 where we have plotted the lower boundILB(x1, a) for

different values ofa. As can be seen in Fig. 1,ILB(x1, a) has a maximum for the 3 SNR regimes.

The existence of such a maximum is also rigorously established in Appendix I. Clearly, as was

discussed in Appendix I, the maximization (10) is reduced tosolving the equation∂
∂x1

ILB(x1, a)

for a given SNR valuea. Ideally, an analytical solution would provide an insight as to how the

non-coherent capacity and the optimal input distribution vary with the SNR. However, solving

such an equation for arbitrary SNR values is very ambitious since it involves an analytical solution

to a transcendental equations. Nevertheless, it is of interest to focus on the low SNR regime

to get the benefit of some advantageous simplifications in order to elucidate the non-coherent

capacity behavior at low SNR.

IV. NON-COHERENT CAPACITY AT LOW SNR

In this section, we will use Lemma 1 to derive a fundamental analytical relation between the

optimal input distribution at a low SNR regime and the particular SNR valuea. We show in

Theorem 1 that this fundamental relation holds up to an orderof a strictly less than 2. As is

shown below, the derived relation is very useful since it allows computing the optimal input

distribution for a given SNR valuea while providing a rigorous characterization as to how the

non zero mass point locations and their probabilities vary with a. Moreover, the derived relation

may be used to compute the exact non-coherent capacity at lowSNR values.



A. A fundamental relation between the optimal input distribution and the SNR

We present the fundamental relation between the optimal input distribution and the SNR value

in the following Theorem:

Theorem 1:At a low SNR valuea, the optimal input probability distribution for an order of

magnitude ofa strictly less than 2, is given by:

fx(x) =







x1 with probability p1 = a
x2
1

,

0 with probability p0 = 1− p1,
(12)

wherex1 is the solution of the equation:

x2
1−(1+x2

1) ln(1+x2
1)−π

(
a

x2
1 + x4

1

) 1

x2
1

csc

(
π

x2
1

)[

1 + x2
1 − π cot

(
π

x2
1

)

+ ln

(
a

x2
1 + x4

1

)]

= 0.

(13)

Furthermore, the non-coherent channel capacity is given by:

C(a, x1) = a− a · ln (1 + x2
1)

x2
1

− a
1+ 1

x2
1 ·

π csc
(

π
x2
1

)(
1

x2
1
+x4

1

) 1

x2
1

1 + x2
1

(14)

Proof: For convenience, the proof is presented in Appendix II.

Clearly, (13) is also a transcendental equation, for which determining an analytical solution

is a very tedious task. Although it is very involved to derivean analytical solution of (13) in

the form of x1 = f(a), it is of interest from an engineering point of view, to resolve (13)

numerically and obtain the optimalx1 for a given SNR valuea. One may then get the value of

the non-coherent capacity by replacing in (14) the obtainedvalue ofx1. Moreover, (13) provides

some insight on the behavior ofx1 as a tends toward zero. For example, using (13), one may

determine the limit ofx1 as a tends toward zero. To see this, letM be this limit and let us

assume thatM is finite. From Appendix II, we know that for the optimal inputdistribution, the

non-zero mass point locationx1 is greater than one. Thus, its limit asa tends toward zero is

greater or equal than oneM ≥ 1. Then, taking the limits on both sides of (13) asa goes to zero

yields:

M2 − (1 +M2) ln (1 +M2) = 0. (15)



That is, ifM is finite, it would be equal to zero, the unique solution to (15), but this is impossible

sinceM ≥ 1. Hence, consistently with [6], [13],lim
a→0

x1 = ∞ . Furthermore, we have found that

(13) may be written in a more convenient way as:

a = exp

[

x2
1W
(
k, ϕ(x1)

)
− x2

1 + π cot
( π

x2
1

)
+ ln (x2

1) + ln (1 + x2
1)− 1

]

, (16)

with k = −1 if a ≤ a0 andk = 0 elsewhere, and whereW (·, ·) is the Lambert function, with

ϕ(x) given by:

ϕ(x) = −sin ( π
x2 )(−x2 + ln (1 + x2) + x2 ln (1 + x2))

πx2
· exp

(

−π cot
(

π
x2

)

x2
+ 1 +

1

x2

)

. (17)

Also, a0 is the solution of (13) forx1 = x0, wherex0 is the root of the equationϕ(x) = −1
e
.

The number−1
e

comes out in our analysis from the fact that it is the unique point shared by

the principal branch of the Lambert functionW (0, x) and the branch withk = −1, W (−1, x).

That isW (0,−1
e
) = W (−1,−1

e
). This guarantees the continuity ofa in (16) for all x1 values.

Numerically, we have found thata0 = 0.0582 and x0 =
√
3.93388. Hence, (16) may also be

viewed as a fundamental relation between the optimal input distribution anda for discrete-time

non-coherent memoryless Rayleigh fading channels at low SNR. On the other hand, (16) provides

the global answer as to how the non-zero mass point location of the optimal on-off signaling

and the SNR are linked together. For this purpose, a simple analysis of (16) has been done and

some important results are recapitulated in the following corollary.

Corollary 1: At low SNR, we have:

1) For all a ≤ a0, a0 = 0.0582, a is an decreasing function with respect tox1 and for all

a > a0, a is an increasing function ofx1.

2) For all a, x1 ≥ x0, wherex0 =
√
3.93388.

3) lim
x1→∞

a = 0.

Corollary 1 agrees with [6] where it was shown using computersimulation that the non-zero

mass point location passes through a minimum before moving upward. However, by specifying

the edge point(x0, a0), Corollary 1 gives a more precise characterization concerning this peculiar

behavior of the non-zero mass point locations. Furthermore, Corollary 1 also refines the lower



bound onx1, x1 > 1 and derivesx0 as an improved lower bound on the non-zero mass point

location at low SNR. Moreover, from (16), we may write:

ln (a) + x2
1 = x2

1W
(
k, ϕ(x1)

)
+ π cot

( π

x2
1

)
+ ln (x2

1) + ln (1 + x2
1)− 1. (18)

It is then easy to check that the right hand side (RHS) of (18) is a decreasing function ofx1 for

x1 < x0, which yields an upper bound onx1:

x2
1 ≤ − ln (a) + ξ0, (19)

whereξ0 = ln (a0) + x2
0, which is again consistent with the upper bound derived in [13]. Note

that the upper bound (19) is valid for alla ≤ a0 whereas the upper bound provided in [13] holds

for a ≪ a0 for which ξ0 is negligible. On the other hand, combining (19) and the lower bound

on x1 provided in Corollary 1 one may obtain:

aαx2
0 ≤ aαx2

1 ≤ aα(ξ0 − ln (a)). (20)

for all α > 0. That is:

lim
a→0

(
aαx2

1

)
= 0, (21)

which means thataα tends toward zero faster thanx2
1 does toward infinity. This result may also

be used to gain further insight on the capacity behavior at low SNR. For instance, from (14),

we may write the non-coherent capacity as:

C(a) = a+ o(a), (22)

whereo(a) = −a · ln (1+x2
1
)

x2
1

−a
1+ 1

x2
1 ·

π csc

„

π

x2
1

«„

1

x2
1
+x4

1

« 1

x2
1

1+x2
1

, meaning that the non-coherent capacity

varies linearly witha at low SNR and hence non-coherent communication at low SNR may be

qualified as energy efficient communication.

B. Energy efficiency and non-coherence penalty

In general, the capacity of a channel including a Gaussian channel and a Rayleigh channel

varies linearly at low SNR [13]. The difference between these channels in terms of capacity can

only be explained by the sub-linear termo(a) in (22). The sub-linear term has been defined in

[13] as:

∆(a) := a− C(a). (23)



At low SNR, the sub-linear term∆(a) is also related to the energy-efficiency. letEn be the

transmitted energy in Joules per information nat, then we have:

En

σ2
w

· C(a) = a. (24)

Using (23), we can write:
En

σ2
w

=
1

1− ∆(a)
a

≈ 1 +
∆(a)

a
, (25)

where the approximation holds if∆(a)
a

is sufficiently small. Note that if

∆(a)

a
→ 0, (26)

then from (23) and (25), we have respectively:

C(a) ≈ a (27)

En

σ2
w

≈ 1, (28)

which implies that the highest energy efficiency of -1.59 (dB) per information bit could be theo-

retically achieved. For a Gaussian channel and a fading channel under the coherent assumption,

the sub-linear terms are respectively given by [13]:

∆AWGN(a) =
1

2
a2 + o(a2) (29)

∆coherent(a) =
1

2
E[‖h‖4]a2 + o(a2) (30)

For a non-coherent Rayleigh fading channel, the sub-linearterm can be computed using (14):

∆(a) = a · ln (1 + x2
1)

x2
1

+ a
1+ 1

x2
1 ·

π csc
(

π
x2
1

)(
1

x2
1
+x4

1

) 1

x2
1

1 + x2
1

. (31)

Note that at very low SNR and following (31),∆(a)
a

converges to zero making the non-coherent

Rayleigh channel also energy efficient. However, as SNR increases, the convergence of∆(a)
a

to

zero is slower than∆AWGN (a)
a

and ∆coherent(a)
a

. This could be seen from (21) indicating thatx1

converges slower to infinity thana does to zero. To illustrate this, as an example, let us calculate

the value of∆(a)
a

for an SNR valuea = −30dB. Following (31), we can write:

∆(a)

a
=

ln (1 + x2
1)

x2
1

+ a
1

x2
1 ·

π csc
(

π
x2
1

)(
1

x2
1
+x4

1

) 1

x2
1

1 + x2
1

. (32)



Solving (16) fora = −30dB with respect tox2
1 yields: x2

1 ≈ 4.96815. Then, substituting this

value in (32), we obtain∆(a)
a

≈ 49%. Note that for AWGN and coherent Rayleigh fading

channels,∆AWGN (a)
a

and ∆coherent(a)
a

are at the same order of magnitude than the SNR value in

this case. It takes a lower SNR for non-coherent communication to achieve the same energy

efficient as AWGN and coherent Rayleigh fading channels.

In the range of SNR values of interest, we may define the non-coherence penalty per SNR

as:
Ccoherent(a)− C(a)

a
. (33)

whereCcoherent is the channel capacity under coherent assumption. Now, from [13], we can write

Ccoherent as:

Ccoherent(a) = a + O(a) = a+ o(a2−α), (34)

for any 1 > α > 0. Recalling that the non-coherent capacity in (14) was obtained using series

decomposition to an order strictly smaller than 2, then combining (14) and (34), we derive the

exact non-coherence penalty per SNR up to this order:

Ccoherent(a)− C(a)

a
=

Ccoherent − C

Ccoherent

=
ln (1 + x2

1)

x2
1

+ a
1

x2
1 ·

π csc
(

π
x2
1

)(
1

x2
1
+x4

1

) 1

x2
1

1 + x2
1

(35)

Now using (21), dividing both sides of (35) byaα, (α > 0) and taking the limit asa tends to

zero yields:

Ccoherent(a)− C(a) ≫ a1+α, (36)

where≫ means:

lim
a→0

Ccoherent(a)− C(a)

a1+α
= ∞. (37)

Inequality (36) indicates that not only the non-coherent capacity is much greater thana2 as was

established in [1], but more precisely, it is much greater thana1+α sincea1+α ≫ a2, 1 > α > 0.

Again, this result is in full agreement with [13].

In this subsection, we have discussed exact closed forms of the optimal input distribution and

the non-coherent capacity based on the fundamental relation (13) or equivalently (16). However,

one may be interested in deriving simpler lower and upper bounds on these quantities in order

to better understand how they vary with the SNR valuea. This is discussed next.



C. Upper and lower bounds on the non-coherent capacity

Considering (16), since we are interested in the low SNR regime, we assume for simplicity

that a ≤ a0. Thus the Lambert function in (16) is the branch withk = −1, that isW (−1, x).

A lower bound on the non-coherent capacity is easily obtained by combining (19) and (14) and

will be referred to asCLB(a). We now derive the lower bound on the optimal non-zero mass

point location and the upper bound on the non-coherent capacity in Theorem 2.

Theorem 2:At low SNR valuesa, a lower bound on the optimal non-zero mass point location

is given by:

x1,LB =
y

√
√
√
√−W

(

−1, ϕ
(

y

− ln
(
−ϕ(y)

)

)
) , (38)

wherey =
√

1 + ln 1
a
. Furthermore, an upper bound on the non-coherent capacity can be obtained

from (14) as:

CUB(a) = C(a, x1,LB) (39)

Proof: For convenience, the proof is presented in Appendix III.

V. NUMERICAL RESULTS AND DISCUSSION

The curves in Fig. 2 show respectively, the non-zero mass point location of the capacity-

achieving input distributionx1 obtained using maximization (10), and the one obtained using

relation (13) or equivalently (16). As can be seen from Fig. 2, the two curves are undistinguishable

at low SNR, confirming that (17) is exact at low SNR. As the SNR increases, a small discrepancy

between the two curves starts to appear. This is expected since (16) holds for up to an order of

magnitude strictly smaller than 2 and thus for small SNR values, (but not smaller than about

2.10−2), a discrepancy may appear. Nevertheless, even for an SNR greater than2.10−2, the curve

obtained using (16) is very instructive especially as it follows the same shape as the one obtained

by simulation results. An interesting future work would be to use (17) in order to understand

why a new mass point should appear as the SNR increases. It should be mentioned that the

discrepancy observed in Fig. 2 may be rendered as small as desired using high order series

expansion. However, the analysis would be unrewardingly too complex.



Figure 3 depicts the non-coherent capacity curves. Again, the curve obtained by computer sim-

ulation and the one obtained using (14) are undistinguishable. More interestingly, the discrepancy

observed at not very low SNR values in Fig. 2 has vanished, implying that the capacity is not very

sensitive to the non-zero mass point location. Also shown inFig. 3 is the linear approximation

C(a) = a, which is an upper bound on the capacity. As can be noticed in Fig. 3, the linear

approximation follows the same shape as the exact non-coherent capacity curves at low SNR

and becomes quite loose for SNR values greater than10−2. This implies that the sub-linear term

defined in (23) is much more important at these SNR values. This can be seen in Fig. 4 where

we have plotted the non-coherence penalty percentage givenby (35). Figure 4 confirms that

there is no substantial gain in the channel knowledge in a capacity sense at very low SNR, thus

indicating that non-coherent communication is almost as power-efficient as AWGN and coherent

communications. As the SNR increases, a non-coherence penalty begins to appear reaching up

to 70%.

The derived upper and lower bounds on the non zero mass point locations given respectively

by (19) and (38) as well as well as the bounds derived in [13] are plotted in Fig. 5 along with

the exact curves at low SNR. As can be seen in Fig. 5, the upper bound in [13], albeit tighter

than (19), crosses the exact curves at about2.10−2. At these not so low SNR values, the derived

bound in [13] is no longer an upper bound, consistently with our discussion in Subsection IV-A.

On the other hand, the lower bound (38) is tighter than the onederived in [13] for all SNR

values.

VI. CONCLUSION

In this paper, we have addressed the analysis of the capacityof discrete-time non-coherent

memoryless Rayleigh fading channels at low SNR. We have computed explicitly the channel

mutual information at low SNR which is also a lower bound on the channel mutual information,

albeit not necessarily at low SNR values.

Using the derived expression of the channel mutual information, we have been able to provide

a fundamental relation between the non-zero mass point location of the capacity-achieving input

distribution and the SNR. This fundamental relation bringsthe complete answer about how

the optimal input distribution varies with the power constraint at low SNR. It also provides

an analytical explanation on what was previously observed through computer simulation in [6]



about the peculiar behavior of the non-zero mass point location at low SNR values. The exact

non-coherent capacity has been derived and insights on the capacity behavior which can be

gained through functional analysis has been shown.

In order to better understand how the non-zero mass point location varies with the SNR, we

have also derived lower and upper bounds which have been compared to recently derived bounds.

The newly derived lower bound is tighter for all SNR values ofinterest, whereas somewhat looser,

the upper bound was shown to hold for larger SNR values.

APPENDIX I

PROOF OF LEMMA 1

For convenience, we will usef(x) instead offx(x) to denote the probability density function

of the random variablex at the valuex. We first prove thatILB(x; y) is a strictly monotonically

increasing function with respect tox1.1 Differentiating (9) with respect tox1 yields

∂

∂x1
ILB(x1, p1) = p1

∫ ∞

0

∂

∂x1
f(y|x1) ln

(
f(y|x1)

f(y)

)

dy (I.40)

Differentiating (4), we obtain:

∂

∂x1
f(y|x1) =

2x1

(1 + x2
1)

2

[
y − (1 + x2

1)
]
f(y|x) (I.41)

Substituting (I.41) in (I.40) yields:

∂

∂x1
ILB(x1, p1) =

2p1x1

(1 + x2
1)

2

∫ ∞

0

[
y − (1 + x2

1)
]
f(y|x1) ln

(
f(y|x1)

f(y)

)

dy (I.42)

Let g(y) be defined asg(y) = ln
(

f(y|x1)
f(y)

)

. Now, we need the following lemma.

Lemma 2:Let f(y) be a probability density function with meanm. If g(y) is a strictly

monotonically increasing function then
∫

(y −m)f(y)g(y) > 0 (I.43)

Proof: The proof follows along similar lines as Lemma 1 in [6].

To apply Lemma 2, it is sufficient to note that

f(y)

f(y|x1)
= p1 + p0(1 + x2

1) exp

[

y

(
1

1 + x2
1

− 1)

)]

(I.44)

1Note that the technic used here to prove thatILB(x; y) is strictly monotonically increasing function with respect to x1

follows along the same lines as the technic used to establishthat the optimal input distribution has necessarily a mass point at

zero in [6], albeit the two technics have strictly differentobjectives



is strictly decreasing with respect toy because the exponent of the exponential function is

negative, thereforef(y|x1)
f(y)

is strictly increasing and so isg(y). Finally, using the fact that(1+x2
1)

is the mean off(y|x1) and applying Lemma 2 to (I.42), we obtain:

∂

∂x1
ILB(x1, p1) > 0, (I.45)

which means thatILB(x1, p1) is strictly increasing with respect tox1. Consequently, the average

power constraint holds with equality. That isE[x2] = p1x
2
1 = a. Hence (8) is equivalent to:







CLB = max
x1≥

√
a
ILB(x1, p1)

p1x
2
1 = a.

(I.46)

Next, we prove the existence of the maximum in (I.46). Clearly, ILB(x1, p1) is now a function

of x1 anda sincep1x2
1 = a. Thatx1 ≥

√
a follows automatically from the fact thatp1 ≤ 1. On

the other hand,ILB(x1, p1) in (9) is positive-definite and continue with respect tox1 andp1 and

thus so isILB(x1, a) for a given SNR valuea. MoreoverILB(x1, a) is upper-bounded over the

interval [
√
a,∞[ otherwise, one would have, for some SNR value, saya0 :

∀ ǫ > 0, ∃ x0
1 >

√
a0 | ILB(x

0
1, a

0) > ǫ. (I.47)

But this statement also means that the channel mutual information-an upper bound onILB(x1, a
0)-

is unbounded fora0 which contradicts the fact that the capacity exists for all SNR values as

proven in [6]. Hence,ILB(x1, a) is necessarily upper-bounded. Furthermore, the continuity of

ILB(x1, a) over [
√
a,∞[ implies that the upper-bound is either achieved at a finite value x1 or at

∞. The last case is however impossible. To see this, it is sufficient to observe that for a givena, as

x1 goes to infinity,p1 tends toward zero. Thus following (9),lim
x1→∞

ILB(x1, a) = ILB(∞, 0) = 0,

and consequentlyILB(x1, a) = 0 for all x1 ∈ [
√
a,∞[ which is impossible since the discrete

input distributionx and the outputy are dependent. That is, the upper bound is achieved at a finite

valuex1 and this proves the existence of the maximum in (I.46). Moreover, since the maximum

is not at the borders of[
√
a,∞[, we necessarily have at the maximum∂

∂x1
ILB(x1, a) = 0.



Finally, in order to prove (11), we directly compute the lower boundILB(x1, p1) from (9):

ILB(x1, p1) = p0

∫ ∞

0

f(y|0) ln (f(y|0))dy
︸ ︷︷ ︸

I1

− p0

∫ ∞

0

f(y|0) ln (f(y))
︸ ︷︷ ︸

I2

+ p1

∫ ∞

0

f(y|x1) ln (f(y|x1))

︸ ︷︷ ︸

I3

− p1

∫ ∞

0

f(y|x1) ln (f(y))

︸ ︷︷ ︸

I4

(I.48)

I1 andI3 may be easily computed:

I1 = p0

∫ ∞

0

e−y ln (e−y)dy = −p0 = 1− p1 (I.49)

I3 = p1

∫ ∞

0

1

1 + x2
1

e
− y

1+x2
1 ln

(
1

1 + x2
1

e
− y

1+x2
1

)

dy

= −p1
(
1 + ln (1 + x2

1)
)

(I.50)

I2 = p0

∫ ∞

0

e−y ln

(

p0e
−y +

p1
1 + x2

1

e
− y

1+x2
1

)

dy

=

∫ ∞

0

p0e
−y ln

(
p0e

−y
)
dy

︸ ︷︷ ︸

I21

+

∫ ∞

0

p0e
−y ln

(

1 +
p1

p0(1 + x2
1)
e

„

1− 1

1+x2
1

«

y

)

dy

︸ ︷︷ ︸

I22

(I.51)

I21 can be easily computed:

I21 = p0 [ln (p0)− 1] (I.52)

In order to computeI22, let α = 1 + x2
1 andβ = p1

p0α
= p1

(1−p1)α
. Thus,I22 may be written:

I22 =
p0α

α− 1

∫ ∞

1

t
1−2α
α−1

ln (1+βt)dt

=
p0α

α− 1

{[
1− α

α
t−

α
α−1 ln (1 + βt)

]∞

1

− 1− α

α
β

∫ ∞

1

t−
α

α−1

1 + βt
dt

}

(I.53)

The integral on the RHS of (I.53) may be computed as [15]:
∫ ∞

1

t−
α

α−1

1 + βt
dt =

α− 1

αβ
· 2F1

(

1, 1 +
1

α− 1
, 2 +

1

α− 1
,− 1

β

)

(I.54)

Substituting (I.54) in (I.53), we obtain:

I22 = p0

[

ln (1 + β) +
α− 1

α
2F1

(

1, 1 +
1

α− 1
, 2 +

1

α− 1
,− 1

β

)]

, (I.55)

and thus combining (I.51), (I.52) and (I.55), yields:

I2 = p0 [ln (p0)− 1] + p0

[

ln (1 + β) +
α− 1

α
· 2F1

(

1, 1 +
1

α− 1
, 2 +

1

α− 1
,− 1

β

)]

. (I.56)



The integralI4 may be computed similarly. We skip the details and give belowthe final result:

I4 = p1 ln (p0)− p1α + p1

[

ln (1 + β) + (α− 1) · 2F1

(

1,
1

α− 1
, 1 +

1

α− 1
,− 1

β

)]

. (I.57)

Following (I.48), (I.49), (I.50), (I.56), (I.57) and usingthe fact that:

2F1

(

1,
1

α− 1
, 1 +

1

α− 1
,− 1

β

)

+
1− p1
p1

· 2F1

(

1, 1 +
1

α− 1
, 2 +

1

α− 1
,− 1

β

)

= 1, (I.58)

we obtain:

ILB(x1, p1) = − ln (1− p1) + p1
(
x2
1 − ln (1 + x2

1)
)
− ln (1 + β)

−p1(α− 1)

α

[

(α− 1) · 2F1

(

1,
1

α− 1
, 1 +

1

α− 1
,− 1

β

)

+ 1

]

. (I.59)

Combining (I.59) and (I.46) yields (11) which completes theproof of Lemma 1.

APPENDIX II

PROOF OF THEOREM1

At low SNR, a discrete input distribution with two mass points, one of them located at zero,

achieves the non-coherent capacity [6]. Thatp1 = a/x2
1 was proven in Appendix I. Therefore,

(12) is true. To derive (13), it is a matter of series expansion calculus.

Before proceeding, it should be reminded that for the optimal input distribution given in

Theorem 1, the non-zero mass point locationx1 is greater than 1(x1 > 1) [6], [13]. Then,

series expansion of (11) to the second order, around the point (x1, a) = (x1, 0), wherex1 is an

arbitrary real greater than one, can be obtained using Mathematica:

ILB(x1, a) =

(

(1− log(1 + x2
1)

x2
1

)a+
1

2(x2
1 − 1)

a2 + o(a2)

)

−a
1

x2
1

(

πx2
1

(

x2
1(1 + x2

1)

)− 1+x2
1

x2
1

csc

(
π

x2
1

)

a

+

π

(

x2
1(1 + x2

1)

)− 1+x2
1

x2
1

csc

(

π
x2
1

)

x2
1

a2 + o(a2)

)

, (II.60)

where the symbol◦(an) represents a function sayg(x1, a), such thatlim
a→0

g(x1,a)
an

= 0. Sincex1 > 1,

then there existsǫ > 0 such that1 + 1
x2
1

< 2− ǫ. Thus, (I.40) may be written as:

ILB(x1, a) =

(

1− log(1 + x2
1)

x2
1

)

a− πx2
1

(

x2
1(1+ x2

1)

)− 1+x2
1

x2
1

csc

(
π

x2
1

)

a
1+ 1

x2
1 + o(a2−ǫ), (II.61)



which represents series expansion to an order strictly lessthan 2. Up to this order, we may make

some abuse of notation, drop the termo(a2−ǫ) and write (II.61) as:

ILB(x1, a) =

(

1− log(1 + x2
1)

x2
1

)

a− πx2
1

(

x2
1(1 + x2

1)

)− 1+x2
1

x2
1

csc

(
π

x2
1

)

a
1+ 1

x2
1 . (II.62)

Maximizing (I.42) with respect tox1 > 1 is equivalent to:

min
x1>1

[

log(1 + x2
1)

x2
1

+ πx2
1

(

x2
1(1 + x2

1)

)− 1+x2
1

x2
1

csc

(
π

x2
1

)

a
1+ 1

x2
1

]

. (II.63)

As was proven in Appendix I, at the maximum, we have necessarily ∂
∂x1

ILB(x1, a) = 0.

Differentiating (II.63) with respect tox1 yields (13). Finally, (14) follows from (II.62). This

completes the proof of Theorem 1.

APPENDIX III

PROOF OF THEOREM2

For a < a0 andx1 > x0, (16) may be written as:

a(x1) = exp
[
x2
1W
(
−1, ϕ(x1)

)
− x2

1 + π cot
( π

x2
1

)
+ ln (x2

1) + ln (1 + x2
1)− 1

]
. (III.64)

Moreover, it is easy to check thata in (III.64) is a decreasing function with respect tox1 and

that:

− x2
1 + π cot

( π

x2
1

)
+ ln (x2

1) + ln (1 + x2
1)− 1 > 1, (III.65)

for x1 > x0. Thus, using (III.64) and (III.65), we have:

a(x1) > alb(x1) = exp
[
x2
1W
(
−1, ϕ(x1)

)
+ 1
]
, (III.66)

wherealb(x1) is a lower bound ona(x1). Sincealb(x1) is also a decreasing function with respect

to x1, then for a low SNR valuea, (III.66) may be seen as a lower bound on the optimal non-zero

mass point locationx1 and we equivalently have:

x1 > x1,lb, (III.67)

wherex1,lb is the solution ofalb(x1) = a. Next, we derive a lower bound onx1,lb.

Let us fixe a low SNR valuea < a0 and consider the function on the RHS of (III.66) written

for simplicity as:

a = exp
[
x2
1,lbW

(
−1, ϕ(x1,lb)

)
+ 1
]
, (III.68)



or equivalently by lettingy =
√

1 + ln
(
1
a

)
:

x2
1,lb =

y2

−W
(
−1, ϕ(x1,lb)

) . (III.69)

Since−W
(
−1, ϕ(x1,lb)

)
> 1 for x1,lb > x0, it is easy to see thaty2 > x2

1,lb. Hence, using the

fact thatϕ(·) and−W
(
−1, ·

)
are strictly increasing functions, we have:

x
(1)
1,LB =

y
√

−W
(
−1, ϕ(y)

) < x1,lb =
y

√

−W
(
−1, ϕ(x1,lb)

) , (III.70)

where the superscript(1) on the left hand side of (III.70) means a first lower bound. Next we

improve the lower boundx(1)
1,LB to obtain a tighter one. But before going on, we remind this

result from [16] which aims at resolving transcendental equations involving Lambert function

iteratively using self-mapping techniques:

Lemma 3:For the region specified byx < 1 and−1
e
< y < 0, an infinite-ladder solution to

the equation:

y(x) = xex (III.71)

is easily identified as

x(y) = L<(y), (III.72)

with the ladderL<(y) defined as

L<(y) = − ln

(

ln ln (...)
−y

−y

)

. (III.73)

Proof: The proof and more details concerning the Lambert function can be found in [16].

Clearly, using (III.73) and the fact that the solution of (III.71) is alsox(y) = W (−1, y), one can

obtain a simple upper bound on the Lambert function in the interval of interest:

W (−1, y) ≤ ln (−y)− ln
(
− ln (−y)

)
. (III.74)

Since for x1,lb > x0, ϕ(x1,lb) ∈] − 1
e
, 0[ and W (−1, ϕ(x1,lb)) < 0, then applying (III.74) to

ϕ(x1,lb) yields:

W (−1, ϕ(x1,lb)) ≤ ln
( −ϕ(x1,lb)

− ln
(
−ϕ(x1,lb)

)
)

(III.75)

≤ ln
( −ϕ(y)

− ln
(
−ϕ(x1,lb)

)
)

(III.76)

≤ ln
(
−ϕ(y)

)
. (III.77)



Inequality (III.76) holds becausey > x1,lb andϕ(·) is an increasing function, likewise (III.77)

follows from the fact that forx > x0, ϕ(x) > −1
e

and thus 1

− ln
(
−ϕ(x)

) < 1. Moreover, (III.77)

implies
y

− ln
(
−ϕ(y)

) ≥ y

−W (−1, ϕ(x1,lb))
= x1,lb (III.78)

Applying again respectivelyϕ(·) and−W (−1, ·) to both sides of (III.78) gives:

x
(2)
1,LB =

y
√

−W

(

−1, ϕ
(

y

− ln
(
−ϕ(y)

)

))
≤ y
√

−W (−1, ϕ(x1,lb))
= x1,lb. (III.79)

Finally, to prove thatx(2)
1,LB is tighter thanx(1)

1,LB, it is sufficient to note that sinceϕ(x1,lb) ∈]− 1
e
, 0[,

y > x1,lb andϕ(·) is an increasing function, thenϕ(y) ∈] − 1
e
, 0[ and we have consequently:

y > y

− ln
(
−ϕ(y)

) . Applying again respectivelyϕ(·) and−W (−1, ·) to this inequality yields:

x
(1)
1,LB =

y
√

−W
(
−1, ϕ(y)

) ≤ y
√

−W

(

−1, ϕ
(

y

− ln
(
−ϕ(y)

)

))
= x

(2)
1,LB. (III.80)

Combining (III.79) and (III.80), we have:

x
(1)
1,LB ≤ x

(2)
1,LB ≤ x1,lb, (III.81)

from which (38) follows by lettingx(2)
1,LB = x1,LB. Finally, (39) may be obtained by applying

(14) to x1,LB. This completes the proof of Theorem 2.
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Fig. 1. Channel mutual information lower bound versus non-zero mass point for 3 SNR regimes: a) Very Low SNR, b) Low

SNR and c) High SNR
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Fig. 2. Location of non-zero mass point versus the SNR valuea (linear).
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Fig. 3. Non-coherent capacity versus the SNR valuea (linear).
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Fig. 4. Non-coherentce penalty per SNR versus the SNR valuea (linear).
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the SNR valuea (linear).
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