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Abstract—The problem of securing a network coding
communication system against a wiretapper adversary is
considered. The network implements linear network coding
to deliver n packets from source to each receiver, and
the wiretapper can eavesdrop onµ arbitrarily chosen
links. A coding scheme is proposed that can achieve the
maximum possible rate of k = n − µ packets that are
information-theoretically secure from the adversary. A
distinctive feature of our scheme is that it is universal:
it can be applied on top of any communication network
without requiring knowledge of or any modifications on
the underlying network code. In fact, even a randomized
network code can be used. Our approach is based on
Rouayheb-Soljanin’s formulation of a wiretap network as
a generalization of the Ozarow-Wyner wiretap channel
of type II. Essentially, the linear MDS code in Ozarow-
Wyner’s coset coding scheme is replaced by a maximum-
rank-distance code over an extension of the field in which
linear network coding operations are performed.

I. I NTRODUCTION

The paradigm of network coding [1]–[3] has provided
a rich source of new problems that generalize traditional
problems in communications. One such problem, intro-
duced in [4] by Cai and Yeung, is that of securing a
multicast network against a wiretapper adversary.

Formally, consider a multicast network with unit ca-
pacity edges implementing linear network coding over
the finite fieldFq. Each link in the network is assumed
to carry a packet ofm symbols inFq. We assume that
the maxflow from source to each receiver is at leastn
and that the network code is feasible for the multicasting
of n packets, that is, each receiver is able to recover
the n packets originated at the source. Now, suppose
there is a wiretapper that can listen to transmissions on
µ arbitrarily chosen links of the network. The secure
network coding problem is to design a network code and
an outer encoder at the source such that a message can
be transmitted from the source to each receiver without
leaking any information to the wiretapper (i.e., security
in the information-theoretic sense).

The work of Cai and Yeung [4] shows that a solution
to this problem exists if the message consists of at most
k = n − µ packets andq is sufficiently large. Their

solution involves changing the network code such that
certain security conditions are met and requires a field
of size at least

(
ℓ
µ

)
, whereℓ is the number of links in

the network. Feldman et al. [5] simplified the conditions
in [4] and showed that it is possible to achieve security
by carefully designing the outer code, while leaving the
network code unchanged. They also show that, if a linear
outer code is used and the network topology is arbitrary,
then there are instances of the problem where a very
large field size is necessary to achieve capacity.

Recently, Rouayheb and Soljanin [6] have shown that
the problem of secure network coding can be regarded as
a network generalization of the Ozarow-Wyner wiretap
channel of type II [7], [8]. Their observation provides
an important connection with a classical problem in
information theory and yields a much more transparent
framework for dealing with network coding security.
In particular, they show that the same technique used
to achieve capacity of the wiretap channel II—a coset
coding scheme based on a linear MDS code—can also
provide security for a wiretap network. Unfortunately, in
their approach, the network code has to be modified to
satisfy certain constraints imposed by the outer code.

Note that, in all the previous works, either the network
code has to be modified to provide security [4], [6], or
the outer code has to be designed based on the specific
network code used [5]. In all cases, the field size required
is significantly larger than the minimum required for
conventional multicasting.

The present paper is motivated by Rouayheb and
Soljanin’s formulation of a wiretap network and builds
on their results. Our main contribution is a coset coding
scheme that neither imposes any constraints on, nor
requires any knowledge of, the underlying network code.
In other words, for any linear network code that is feasi-
ble for multicast, secure communication at the maximum
possible rate can be achieved with a fixed outer code. In
particular, the field size can be chosen as the minimum
required for multicasting. An important consequence of
our result is that the problems of information transport—
designing a feasible network code—and security against
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a wiretapper can be completely separated from each
other. Such a feature of our scheme allows it to be
seamlessly integrated with random network coding.

The essence of our approach is to use a “nonlin-
ear” outer code that is, however, linear over an ex-
tension fieldFqm . Taking advantage of this extension
field, we can then replace the linear MDS code in
Ozarow-Wyner coset coding scheme by a maximum-
rank-distance (MRD) code, which is essentially a linear
code overFqm that is optimal in the rank metric. Codes
in the rank metric were studied by a number of authors
[9]–[12] and have been recently proposed for error
control in random network coding [13], [14]. Here, we
show that the fact that the wiretapper observes a linear
transformation of the transmitted symbols is exactly what
suggests the use of a rank-metric code.

The remainder of the paper is organized as follows. In
Section II we review the models of a wiretap channel II
and a wiretap network, together with their corresponding
security conditions. In Section III we review rank-metric
codes and present our solution to the security problem
in a wiretap network. In Section IV, we provide a brief
discussion of our main result and, in Section V, we
present our conclusions.

II. W IRETAP MODEL

A. Wiretap Channel II

Consider a communication system consisting of a
source, a destination and a wiretapper. The source pro-
duces a messageS =

[
S1 S2 · · · Sk

]T
, where

the symbolsS1, . . . , Sk are drawn from an alpha-
bet F , and encodes this message as a vectorX =
[
X1 · · · Xn

]T
, Xi ∈ F . This vector is transmitted

over a noiseless channel and received by the destina-
tion. The wiretapper has access toµ symbols ofX ,
represented as the vectorW = (Xi, i ∈ I), where
I ⊆ {1, . . . , n}. The goal of the system is for the source
to communicate the message to the destination in such
a way that the wiretapper cannot obtain any information
aboutS from any possible set ofµ intercepted symbols.
More precisely, the conditions for secure communication
are

H(S|X) = 0 (1)

H(S|W ) = H(S), ∀I : |I| = µ. (2)

Condition (1) implies thatS must be a deterministic
function of X . The question is then how to design a
(probabilistic) encoding ofS into X such that conditions
(1) and (2) are satisfied.

Note that, by expandingH(S,X |W ), we have

H(S|W ) = H(S|X,W )
︸ ︷︷ ︸

=0

+H(X |W )−H(X |S,W )

= H(X |W )−H(X |S,W ) (3)

≤ H(X |W ) ≤ n− µ

so the maximum number of symbols that can be securely
communicated is upper bounded byH(S) ≤ n− µ.

This maximum rate can be achieved by using Ozarow-
Wyner coset coding scheme [8], which operates as
follows. AssumeF is a finite field of sufficiently large
cardinality. Let k = n − µ and let C be an (n, µ)
linear MDS code overF with parity-check matrixH .
Encoding is performed by randomly choosing some
X ∈ C such thatS = HX ; in other words, each message
is viewed as a syndrome specifying a coset ofC, and
the transmitted vector is chosen uniformly at random
among the elements of that coset. Upon reception of
X , decoding is performed by simply computing the
syndromeS = HX .

With respect to security, it is immediate that condition
(1) is satisfied in this scheme. SinceC is a linear code,
the probabilistic encoding ensures thatH(X) = H(S)+
µ, and thusH(X |W ) = H(X)−H(W ) = H(S)+µ−
H(W ) ≥ H(S). On the other hand, sinceC is an MDS
code, knowledge ofS andW is sufficient to determine
X , soH(X |S,W ) = 0. These two facts applied in (3)
imply that condition (2) is satisfied, and therefore secure
communication can be achieved.

B. Wiretap Networks

Consider a communication network represented by a
directed multigraph with unit capacity edges, a single
source node and multiple destination nodes. The source
node produces a messageX =

[
X1 · · · Xn

]T
con-

sisting of symbols from an alphabetF , and this message
is requested by each of the destination nodes. Each link
in the network is assumed to transport a symbol inF
free of errors. When network coding is used, each node
in the network produces symbols to be transmitted by
performing arbitrary operations on the received symbols
(or on the message symbols in the case of the source
node). We say that the network code is feasible (and
multicast communication is achieved) if each destination
node is able to recover the source message.

Let Fq be a finite field and assume thatF is a
vector space overFq. In this case, an element ofF may
also be called a packet. When linear network coding is
used, each packet transmitted by a node is anFq-linear
combination of received (or message) packets. LetC be
the minimum value of the mincut from the source node
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to any destination node. It is a well-known result that a
feasible linear network code exists ifn ≤ C and q is
sufficiently large, but no feasible network code exists if
n > C [1]–[3].

The wiretap problem of Section II-A can be gener-
alized to the network scenario above by introducing a
wiretapper who can eavesdrop onµ links, represented
by the setI, and by assuming that the source message
is given byS =

[
S1 S2 · · · Sk

]T
, Si ∈ F , which is

then encoded intoX for transmission over the network.
We assume that linear network coding is used, so the
packets observed by the wiretapper can be represented as
a vectorW = BX , whereB is anµ×n matrix overFq

consisting of the global coding vectors associated with
the edges inI.

Assume thatn ≤ C, q is sufficiently large, and that a
feasible network code is selected, i.e., each destination
node is able to recoverX . The conditions for secure
communication remain the same as before, namely

H(S|X) = 0 (4)

H(S|W ) = H(S), ∀I : |I| = µ. (5)

The question is then how to design an encoding fromS
to X and a feasible linear network code such that (4)
and (5) are satisfied.

ConsideringF = Fq, Rouayheb and Soljanin showed
in [6] that secure communication is possible using the
coset coding scheme of Sec. II-A if the network code is
chosen to satisfy certain constraints. The development is
similar to that of Sec. II-A, where we choosek = n−µ
and letH be the parity-check matrix of an(n, µ) linear
MDS code overF . Equations (4) andH(X |W ) ≥ H(S)
are automatically satisfied by coset encoding, but to
satisfyH(X |S,W ) = 0 we must ensure that the matrix[
H
B

]

is nonsingular for allI such thatB is full-rank.

(Note that the case whereB is not full-rank reduces to
a similar instance with a full-rankB and a smallerµ.)
This condition is equivalent to constraining the network
code such that no linear combination ofµ = n − k or
fewer coding vectors belongs to the space spanned by
the rows ofH .

It follows from this result that secure multicast com-
munication can be achieved in two steps: first, designing
a coset coding scheme based on an MDS code, and then
designing a linear network code so as to satisfy the above
constraint.

In the following, we show that this undesirable cou-
pling between the coset coding scheme and the network
code design can be avoided.

III. R ANK -METRIC CODES FORWIRETAP

NETWORKS

A. Rank-Metric Codes

We first present a brief review of rank-metric codes.
Let Fn×m

q be the set of alln ×m matrices overFq.
A natural distance measure between elementsX andY
of F

n×m
q is given by therank distancedR(X,Y ) ,

rank(Y −X). As observed in [9], the rank distance is
indeed a metric.

A rank-metric codeis a nonempty subset ofFn×m
q

used in the context of the rank metric. The minimum
rank distance of a rank-metric code is the minimum
rank distance among all pairs of distinct codewords. The
Singleton bound for the rank metric (see [12], [14] and
references therein) states that every rank-metric code
C ⊆ F

n×m
q with minimum rank distanced must satisfy

logq |C| ≤ max{n,m}(min{n,m} − d+ 1).

Codes that achieve this bound are calledmaximum-rank-
distance(MRD) codes.

The usual way to construct rank-metric codes is via
the correspondence betweenF

1×m
q and an extension field

Fqm . By fixing a basis forFqm as anm-dimensional
vector space overFq, any element ofFqm can be
regarded as arow vector of lengthm over Fq and,
similarly, anycolumnvector of lengthn overFqm can be
regarded as ann×m matrix overFq. The rank of a vector
X ∈ F

n
qm is the rank ofX as ann×m matrix overFq,

and the same applies for the rank distance. Under this
correspondence, a rank-metric code inF

n×m
q is simply

a block code of lengthn over Fqm used in the context
of the rank metric.

It is useful to considerlinear (n, k) codes overFqm

with minimum rank distanced. For such codes, the
Singleton bound becomes

d ≤ min
{

1,
m

n

}

(n− k) + 1.

Note that the classical Singleton boundd ≤ n − k + 1
can be achieved only whenn ≤ m. For this case, a class
of MRD codes with any specifiedk was described in [9]
by Gabidulin.

We now restate some results from [9] which relate the
minimum rank distance of a linear code with properties
of its parity-check matrix. To avoid confusion, the rank
of a matrixH overFqm is denoted byrankqm H .

Theorem 1:Let C be a linear(n, k) code overFqm

with parity-check matrixH . ThenC has minimum rank
distanced if and only if

rankqm HT = d− 1
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for any full-rank matrixT ∈ F
n×(d−1)
q and

rank qm HT0 < d

for some full-rank matrixT0 ∈ F
n×d
q .

Corollary 2: Assumen ≤ m. A linear (n, k) code
over Fqm with parity-check matrixH is an MRD code
if and only if

rankqm HT = n− k

for any full-rank matrixT ∈ F
n×(n−k)
q .

B. A Universal Coding Scheme for Wiretap Networks

We now present our solution to the wiretap problem
of Section II-B. Following [6], we use a coset coding
scheme similar to that of Section II-A; however, we set
the symbol alphabet to beF = Fqm , while the field for
the linear network coding operations remainsFq. Note
that, since coset encoding/decoding is performed only
at source/destination nodes, settingF to be an extension
field ofFq does not interfere with the underlying network
code.

Let k = n− µ and letH be the parity-check matrix
of a linear(n, µ) code overF . Encoding and decoding
of the source messageS is performed as described in
Section II-A. With respect to security, Rouayheb and
Soljanin’s analysis carries out unchanged, and we arrive

at the same security condition: the matrix

[
H
B

]

must be

nonsingular for allI such thatB ∈ F
µ×n
q is full-rank.

Note that, whileH is defined overF = Fqm , the matrix
B has only entries inFq. This fact is the fundamental
distinction of our approach and will allow us to satisfy
the security condition regardless of the network code
used.

Our main result is a consequence of the following
lemma.

Lemma 3:Let H be the parity-check matrix of a
linear MRD (n, µ) code overFqm . For any full-rank
matrix B ∈ F

µ×n
q , then× n matrix

M =

[
H
B

]

is nonsingular overFqm .
Proof: Consider the system of equations

[
H
B

]

X = 0

in the unknownX ∈ F
n
qm . We will show thatX = 0

is the only solution to this system, which implies that
rankqm M = n.

First, choose some(n−µ)×n matrixD overFq such

that

[
B
D

]

is nonsingular, and let̃X = DX . We have that

[
B
D

]

X =

[
0

X̃

]

=⇒ X =

[
B
D

]
−1 [

0

X̃

]

.

Moreover, ifT is the (full-rank) matrix corresponding to

the lastn− µ columns of

[
B
D

]
−1

, thenX = T X̃.

Now, 0 = HX = HTX̃. By Corollary 2, the(n −
µ)× (n−µ) matrixHT is nonsingular overFqm . Thus,
we must haveX̃ = 0 and henceX = 0.

The following theorem summarizes the results of this
section.

Theorem 4:Consider a multicast communication net-
work that transportsn packets of lengthm ≥ n over
Fq, subject to the presence of a wiretapper who can
eavesdrop on at mostµ links. The maximum number
of source packets that can be securely communicated
to each destination, in such a way that the wiretapper
obtains no information about the source packets, isn−µ.
This rate can be achieved by usingany feasibleFq-linear
network code in conjunction with afixed end-to-end
coset coding scheme based on any linear MRD(n, µ)
code overFqm .

The following example illustrates the above results.

Example 1:Let q = 2, m = n = 3, µ = 2 and
k = n− µ = 1. Let F = F23 be generated by a root of
p(x) = x3+x+1, which we denote byα. According to
[9], one possible(n, µ) MRD code overFqm has parity-
check matrixH =

[
1 α α2

]
.

To form X , we can chooseX2, X3 ∈ Fqm uniformly
at random and setX1 to satisfy

S = HX = X1 + αX2 + α2X3.

Note thatX can be transmitted over any network that
uses a feasible linear network code. The specific network
code used is irrelevant as long as each destination node
is able to recoverX .

Now, suppose that the wiretapper interceptsW =
BX , where

B =

[
1 0 1
0 1 1

]

.

Then

W = B





X1

X2

X3



 =

[
1 0 1
0 1 1

]




S + αX2 + α2X3

X2

X3





=

[
1
0

]

S +

[
α 1 + α2

1 1

] [
X2

X3

]

.
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This is a linear system with3 variables and2 equa-
tions over Fqm . Note that, givenS, there is exactly
one solution for(X2, X3) for each value ofW . Thus,
Pr(W |S) = 1/82, ∀S,W , from which follows thatS
andW are independent.

IV. D ISCUSSION

Theorem 4 shows that the problem of ensuring com-
munication security against a wiretapper can be treated
independently from that of multicasting information, in
effect turning network coding design back into a much
easier and already satisfactorily solved problem [15]. A
byproduct of this result is that, to incorporate security,
we no longer need to enlarge the field of network
coding operations more than what is strictly required
for multicasting—although the network does need to
transport packets of size larger than a single element. In
practice, packet lengths are much larger thann, at least
10 times larger for typical parameters, so the constraint
m ≥ n is not really a concern.

As pointed out in the previous section, encoding and
decoding of the source message require operations to be
performed in the extension fieldFqm . We mention that
each encoding or decoding procedure can be performed
in O(k(n − k)) operations inFqm by using a parity-
check matrixH in systematic form. More precisely, if
H =

[
I P

]
and XT =

[
XT

S XT
R

]
, whereXS has

k rows, thenS = HX = XS + PXR, so S can be
encoded by randomly generatingXR and then setting
XS = S − PXR. Encoding thus amounts essentially
to a matrix multiplication overFqm . Decoding can be
performed similarly.

It is worth to mention that our security scheme can be
seamlessly integrated with random network coding. We
simply require that each packet transports a header of
lengthn containing the global coding vector associated
with the packet; thus, the total packet length must be at
leastn + m symbols inFq. Note that, since a random
linear network code is feasible with high probability, the
only parameter pertaining to the network that we need
to estimate is the effective mincutC, in order to decide
on n, k and the coset coding scheme.

V. CONCLUSION

We consider the problem of providing information-
theoretic security in a communication network subject
to the presence of a wiretapper. We propose a coset
coding scheme similar to that of Ozarow-Wyner, but
defined over the extension fieldFqm . For this reason,
we assume that packets of lengthm are transmitted
rather than individual symbols. We show that transmis-
sion at the maximum possible rate (the network secure

capacity) is possible irrespectively of the underlying
network code. As a consequence, the sub-problems of
information transport and information security can be
treated independently of each other: a feasible linear
network code can be designed (perhaps, randomly) with
only throughput in mind, while afixed outer code can
be used to provide security whenever it is needed. Our
proposed scheme is based on MRD codes and can be
efficiently encoded and decoded.
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