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Abstract— Recent outer bounds on the capacity region of Gaus- superposition coding and joint decoding. A simplified form
sian interference channels are generalized ton-user channels of the Han-Kobayashi region was given by Chong-Motani-
with m > 2 and asymmetric powers and crosstalk coefficients. Garg-El Gamal [10], [11]. Various outer bounds have been

The bounds are again shown to give the sum-rate capacity for - .
Gaussian interference channels with low powers and crossta developed in [12]-{16]. Kramer in [14] presented two outer

coefficients. The capacity is achieved by using single-useetec- bounds. The first is obtained by providing each receiver with
tion at each receiver, i.e., treating the interference as rise incurs  just enough information to decode both messages. The second

no loss in performance. _ o is obtained by reducing the IC to a degraded broadcast channe
Index terms — capacity, Gaussian noise, interference. Both bounds dominate the bounds by Sato [12] and Carleial
[13]. The recent outer bounds by Etkin, Tse, and Wang in

) . [15] are also based on genie-aided methods, and they show
This paper extends the results of [1] to asymmetric GaUSSIf’Hat Han and Kobayashi's inner bound is within one bit or a

ICs. The paper further has a new Theorem (Thedtem 4) thatigor of two of the capacity region. This result can also be
not in [2] or in other recent works (see Section V and Motahagkapjished by the methods of Telatar and Tse [16]. We remark
and Khandani [3], and Annapureddy and Veeravalli [4]). ¢ neither of the bounds of [14] and [15] implies each other
The interference channel (IC) models communication Sygymerical results show that the bounds of [14] are better at
tems where transmitters communicate with their respectijg, SR while those of [15] are better at high SNR. The
receivers while causing interference to all other recsivEor hounds of [16] are not amenable to numerical evaluatioresinc

a two-user Gaussian IC, the channel output can be writteny, ontimal distributions of the auxiliary random variabhere
the standard form [5] unknown

Vi = X1+ +VaXo+ 7, In this paper, we present new outer bounds on the capacity
_ region of Gaussian ICs that generalize results of [1]. The ne
Yo = VBXi+ X+ 2, bound is based on a genie-aided approach and an extremal
where \/a and v/b are channel coefficientsY; andY; are inequality proposed by Liu and Viswanath [17]. Based on this
the transmit and receive signals. The user/channel input seiter bound, we obtain new sum-rate capacity results for ICs

I. INTRODUCTION

quenceX;i, X2, -+, X;n IS subject to the power constraintsatisfying some channel coefficient and power constraint co
Z;‘:l E(ij) < nP, i = 1,2. The transmitted signals ditions. We show that the sum-rate capacity can be achieved

X, and X, are statistically independent. The channel noiséy treating the interference as noise when both the channel
Z, and Z, are possibly correlated unit variance Gaussiagain and the power constraint are weak. We say that such
random variables, anZ,, Z5) is statistically independent of channels haveoisy interference. For this class of interference,
(X1, X2). In the following, we denote this Gaussian IC aghe simple single-user transmission and detection syaiteg
IC(a,b, P, Py). sum-rate optimal.

The capacity region of an IC is defined as the closure of This paper is organized as follows. In Section I, we present
the set of rate pair§R;, R2) for which both receivers can an outer bound and the resulting sum-rate capacity for icerta
decode their own messages with arbitrarily small positivere 2-user Gaussian ICs. An extension of the sum-rate capacity
probability. The capacity region of a Gaussian IC is knowander noisy interference tm-user ICs is provided in Section
only for three cases: (1 =0,b=0. (2)a > 1, b > 1: see |ll. Numerical examples are given in Section |V, and Section
[6]-[8]. (3) a =0,b > 1; 0ra > 1, b = 0: see [9]. For the V concludes the paper.
second case both receivers can decode the messages of both
transmitters. Thus this IC acts as two multiple access aklann
(MACs), and the capacity region for the IC is the intersectio® General outer bound
of the capacity region of the two MACs. However, when the The following is a new outer bound on the capacity region
interference is weak or moderate, the capacity region s sbf Gaussian ICs. Note that in contrast to [1] these bounds
unknown. The best inner bound is obtained in [8] by usingermit P, # P, anda # b.

Il. A GENIE-AIDED OUTER BOUND
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Theorem 1. If the rates (R;,R;) are achievable for wheree — 0 asn — oo. For h (Y{*| X7 4+ N7), zero-mean
IC(a,b, P1, Py) with 0 < a < 1,0 < b < 1, they must satisfy GaussianX}* and X7 with covariance matrice®; I and P,I

the following c?rnlsjtraints[(lEIS) fon > 0, 754~ <m < ¢ are optimal, and we have
at+ars
anda <y < Trape: where h (Y| X+ N
n (P + pro1)’
. (0_%70_5) |0%>0,0<U%§1;p? ,|fM21, S§1ogl27re<1+aP2+P1—7P1+U% (10)

1-p}

(61,03)|0<0? < =2,05>0¢, if p<1,

and if 4 > 1 we define

From the extremal inequality introduced in [17, Theorem 1,
Corollary 4], we have

. h(XP + NT) — ph (\/EX? + Z§|N§) (11)
Py, o2 < [(ku)Pl 1,@} 7 n , g )
. . . = b +bu . < 5 log [2me (Pf +07)] — > log [2me (bPf +1—p3)] ,
Pl = 1—p3—buoy (A—p) Py + 1-p5 < 0.2 < 1—p3 (5)
bu—b ) m bu 1 = bu and
0 o? > 1;’)3
T ph (X5 + NJ) = h (VaX; + 2} |N}) 12)
* 2 et
Py =D, 2 = g 6 < %bg [27e (P5 + 03)] — glog [27e (aP5 +1—p})],
where(z)* £ max{z,0}, and if 0 < 1 < 1 we define where equalities hold wheX and X} are both Gaussian
with covariance matrice®; I and P51 respectively. Fronl(9)-
pr_p o2 < 1 — p3 ) (I2) we obtain the outer bound] (1).
1o =% 7 The outer bound if{2) (resd](3)) is obtained by letting the
9 (1-p2) + genie provide side informatioX, to receiver one (respX;
Py, o3 S |(n=1) P2+ = ’ to receiver two), and applying the extremely inequality, ,i.
+
2
Pr={ w(-e)as [(u ~1) P, + “(1;”1)] ®) n(fy +mRz) —ne
a—ap ’ 2 o w(1-2) < I ( XY, X9) +mlI (X35
<o ) n n n n n
0 9 _ u(1-p3) ? ¢ =h(X{'+ Z7') —mh (\/Z;X1 "‘Zz) —h(Z7)
s oy > a

Proof: We give a sketch of the proof. A genie provides
the two receivers with side informatioki; + N; and X5 + No
respectively, wheréV; is Gaussian distributed with varianeg
and&(N; Z;) = p;o;, i = 1,2, Starting from Fano’s inequality,

we have

n(Ry + uRs2) — ne

ST(XT YY) + pd (X55Y5")

STXT Y X+ N 4 ol (X555 X5+ NS
= (X7 + N7 = (VX + Z5INg )| = BN

+mh (Y3")
< glog (151 + 1) — %log (bﬁ’l + 1)

+% log (1 + bP, + P5), (13)

where P, = i’fbjhl for iizg < < L. This is the bound in
(2). Similarly, we obtain bound13). [ |
Remark 1: The bound$](13(3) are obtained by providing
different genie-aided signals to the receivers. There &lap
of the range of:, 1, andns, and none of the bounds uniformly
dominates the other two bounds.
Remark 2: Equationg]2) anfl (3) are outer bounds for the
capacity region of a Z-IC, and a Z-IC is equivalent to a

+ [uh (X3 + N3') = h (VaX3 + ZT|NT')| — uh (N3') degraded IC [9]. For such channels, it can be shown that

+h (V' [XT + NT') + ph (Y9! X5 + NS,

(9)@) and [B) are the same as the outer bounds in [18]. For



m = e andr, = $422, the bounds in[{2) and(3) arethe sum-rate capacity is

tight for a Z-1C (or degraded IC) becaufe = P;, P, = P» in 1 P, 1 P,
(13), and there is no power sharing between the transmitter§’ = 5 log (1 1T aPQ) +5log (1 1T bPl) - (16)
Consequently; £ and {222 are the negative slopes of the
tangent lines for the capacity region at the corner points. Proof: By choosing
Remark 3: The bounds if](2}(3) turn out to be the same as ]
the bounds in [14, Theorem 2]. This can be shown by rewriting; = — {b(aP, + 1)* — a(bP; +1)* + 1
the bounds in [14, Theorem 2] in the form of a weighted sum 2b
rate. + [b(an +1)2 - a(bP, + 1)2 + 1]2 — 4b(aPs + 1)2}
Remark 4: The bounds in [14, Theorem 2] are obtained
by getting rid of one of the interference links to reduce thg2 _ £ {a(bPy +1)> = b(aPy +1)> + 1
IC into a Z-IC. In addition, the proof in [14] allowed the 2a
transmitters to share their power, which further reduces th :l:\/[a(bPl +1)2 —b(aPy +1)2+ 1]2 — da(bP, + 1)2}
Z-IC into a degraded broadcast channel. Then the capacity
region of this degraded broadcast channel is an outer bound _ / 9
for the capacity region of the original IC. The bounds in~ 1 a0y (7
(@) and [8) are also obtained by reducing the IC to a Z-IG,, — /1 — bo?, (18)
Although we do not explicitly allow the transmitters to shar ) )
their power, it is interesting that these bounds are egental the bound[() withy, = 1 is
to the bounds in [14, Theorem 2] with power sharing. In fact 1 P 1 Py
a careful examination of our derivation reveals that pOW(ﬁ1 + Ry < 5 log <1 1T ap2> +5log <1 + m) -(19)

sharing is implicitly assumed. For example, for the te‘”Eut one can achieve equality ih (19) by treating the interfer
h(X{' + 21 —mh VhXT + Z;l) of (I3), userl uses POWer g ce as noise at both receivers. In order that the choice of
P = I;Tb;f < P; , while for the termn; h (Y3*) userl uses andp? are feasible,[(15) must be satisfied. [ |
all the powerP;. This is equivalent to letting usdr use the ~ Remark 7: Consider the bound (1) with= 1, we further
power P, for both terms, and letting us€ruse a power that let
exceedsP;.

Remark 5: Theoreril 1 improves [15, Theorem 3]. Specifi- L—piz a0y, 1-py2boi. (20)
cally, the bound in[(2) is tighter than the first sum-rate lburFrom [8) and[(6) we hav&; = P;, Py = P,. Thus,
of [15, Theorem 3]. Similarly, the bound ifl(3) is tighter tha 1 p 1
the second sum-rate bound of [15, Theorem 3]. The third sumRk; < - log <1 + —é) — —log(aP, + 1 — p?)
rate bound in [15, Theorem 3] is a special case[bf (1). 2 71 2 )

Remark 6: Our outer bound is not always tighter than that +1 log {1 4 aPy+ P — (P1 + p1o1) ]
of [15] for all rate points. The reason is that in [15, last two 2 Py + 0%

equations of (39)], different genie-aided signals are joled 1 P(1+aP,) [ 1 1 2 P,
to t_he_ same receiver. Our outer bound can also_be improve_d in =35 log m (0_—1 1T ap2) 1+ 1+ab,
a similar and more general way by providing different genie- N
aided signals to the receivers. Specifically the startirigtyaf = f(p1,01). (21)
the bound can be modified to be Therefore, for any givem:, when
k
n(Ri+pRy) < Y NI(XHY,U) pio1 =1+ aPs, (22)

=1 then f(p1, 1) achieves its minimum which is usgis single-

+ZMI(X§;Y2”, W,) + ne, (14) user detection rate. Similarly, we haygeos = 1+ bP;. Since

o the constraint in[(20) must be satisfied, we have

k m _ 2 _ 2
where i N = 1,570 iy = 1, i > 0, 415 > 0. L+aP S1/1 bp2’ L+0oP < 1 P (23)
P1 P2 a

B. Sum-rate capacity for noisy interference
The outer bound in Theoref] 1 is in the form of a

optimization problem. Four parametess, p2, 0%, 05 need to is ti - -
L . | . ght. By cancellingpy, p2, we obtain [(Ib).
be optimized for different choices of the weightsn:, 72. Remark 8: The most special choices af p» are in [IT)

When p = 1, the bound[(lL) of Theoref] 1 leads directly tq, 4 sinceT11) an@T12) with — 1 become
the following sum-rate capacity result. as), el{11) and [1.2) wigh

Theorem 2: For the 1Ga, b, Py, P,) satisfying h(XT? 4+ NI —h (\/EX{l + Z§|N§) = —nlogVb
Va(bPy +1) +Vb(aP, + 1) < 1, (15) h(X3 4+ N3') —h (VaXy + ZF|NT') = —nlogva.

As long as there exists @ € (0,1) such that[(2B) is satisfied,
'We can choose; to satisfy [22) and hence the bound @ (1)



Therefore, we do not need the extremal inequality [17] first case isub > 1. In this case P, can be any positive value.
prove Theoreml?2. The second case ih < 1 and P, < 1“ja1b. For both cases,
Remark 9: The sum-rate capacity for a Z-IC with= 0, the signals from use? can be decoded first at both receivers.
0 < b < 1is a special case of Theoréin 2 sinlcel (15) is satisfied
The sum-rate capacity is therefore given byl (16).
Remark 10: Theorem]?2 follows directly from Theorem

@ with © = 1. It is remarkable that a genie-aided bound For anm-user IC, the receive signal at useis defined as

f11. SUM-RATE CAPACITY FOR m-USERIC WITH NOISY
INTERFERENCE

is tight if (IT8) is satisfied since the genie provides extra m
signals to the receivers without increasing the rates. Thi$; = X; + Z (,/cjin) +Z;, i=1,2,...,m, (28)
situation is reminiscent of the recent capacity resultvémtor J=1,j#i

Gaussian broadcast channels (see [19]). Furthermoreythe s
rate capacity[(16) is achieved by treating the interferemze
noise. We therefore refer to channels satisfying (15) as |
with noisy interference.

Remark 11: For a symmetric IC whese= b, P, = P, = P,
the constraint[(15) implies that

where ¢;; is the channel gain fronj" transmitter tos*"
eceiver,Z; is unit-variance Gaussian noise, and the transmit
fynals have the block power constraipty._, £(X3) < nP;.
We have the following sum-rate capacity result.
Theorem 4. For anm-user IC defined in(28), if there exist

pi € (0,1),s =1,...,m, such that the following conditions
1 -2 isfi
o<l p< Va a (24) are satisfied
4 2a? — Gi(l+Qy)? >
Noisy interference is thereforeweaker thanweak interference Z T < 1-p; (29)
as defined in [9] and [20], namety < Y1 2P=1 or J=1.5#i /
- 1
1 1—2a Cij < ., (30)
a<y, PS—m (25) j:;j#l'i‘Qj —p2 T P4 (1+Qi)%/p?

Recall that [20] showed that for “weak interference” sgiis§  \here(; is the interference power at receivierdefined as
(29), treating interference as noise achieves larger suen ra m

than time- or frequency-division multiplexing (TDM/FDM), Q; = Z e P (31)
and [9] claimed that in “weak interference” the largest know ’ e

achievable sum rate is achieved by treating the interferasc . _j:L#i

noise. the sum-rate capacity is

C. Capacity region corner point C— lilog <1 i P; ) (32)
The bounds[{2) and3) of Theordr 1 lead to the following 2= 1+Q;

sum-rate capacity result. ) ]
Theorem 3: For an 1Qa, b, P,, P) witha > 1,0 < b < 1, Therefore, if there exispy, ..., pm, such that[(29) and _(80)
the sum-rate capacity is are satisfied for alf = 1,...,m, the sum-rate capacity of an

m-user IC can be achieved by treating interference as noise.

C = llog(l + P+ llog (1 + 2 ) (26) The proof is omitted due to the space limitation. It can be
2 2 1+bP shown that Theoreifl 2 is a special case of Thedrkm 4.
when the following condition holds Consider a uniformly symmetrig:-user IC where:;; = c,
forall i, =1,...,m,i # j, and P, = P. The bounds[(29)
(1—ab)Pr <a—1. (27)  and [30) withp; = p for all i reduce to
A similar result follows by swapping andb, and P, and P;. — _ _
o< 1 C p< V(m—=1)ec—2(m—1)c (33)
4(m —1) 2(m —1)2¢?

This sum-rate capacity is achieved by a simple scheme: user
1 transmits at the maximum rate and uQetransmits at the IV. NUMERICAL EXAMPLES
rate that both receivers can decode its message with singleA comparison of the outer bounds for a Gaussian IC is
user detection. Such a rate constraint was considered in gden in Fig.[1. Some part of the outer bound from Theorem
Theorem 1] which established a corner point of the capaciily overlaps with Kramer’s outer bound due fd (2) ahdl (3).
region. However it was pointed out in [20] that the proof irSince this IC has noisy interference, the proposed outemdou
[9] was flawed. Theorei] 3 shows that the rate pair of [20] &oincides with the inner bound at the sum rate point.

in fact a corner point of the capacity region wher- 1,0 < The lower and upper bounds for the sum-rate capacity of
b < 1 and [27T) is satisfied, and this rate pair achieves tllee symmetric IC are shown in FIg 2 for high power level.
sum-rate capacity. The upper bound is tight up to point. The bound in [15,

The sum-rate capacity of the degraded(f& = 1,0 < b < Theorem 3] approaches the bound in Theofdm 1 when the
1) is a special case of Theorérh 3. Besides this example, thpmaver is large, but there is still a gap. Fig. 2 also provides a
are two other kinds of ICs to which Theorér 3 applies. Thaefinitive answer to a question from [20, Fig. 2]: whether the



sum-rate capacity of symmetric Gaussian IC is a decreas
function ofa, or there exists a bump like the lower bound whe
a varies from0 to 1. In Fig.[2, our proposed upper bound ani
Sason’s inner bound explicitly show that the sum capacity
not a monotone function of (this result also follows by the
bounds of [15]).

V. CONCLUSIONS EXTENSIONS AND PARALLEL WORK

We derived an outer bound for the capacity region2ef
user Gaussian ICs by a genie-aided method. From this ot
bound, the sum-rate capacities for ICs that satisfy (152d) (
are obtained. The sum-rate capacity foruser Gaussian ICs
that satisfy [[2P) and_(30) are also obtained.

Finally, we wish to acknowledge parallel work. After sub
mitting our2-user bounds and capacity results on the arXiv.oiy
e-Print archive [2], two other teams of researchers - Matahg;,

T
== ETW upper bound
~ = = = Kramer upper bound
Upper bound in Theorem 1]
S : <+ Sason lower bound i

Sum rate in bit per channel use

2. Lower and upper bounds for the sum-rate capacity ainsgtric

and Khandani from the University of Waterloo, Annapureddgaussian ICs withu = b, P, = P» = 5000. The channel gain at point
and Veeravalli from the University of lllinois at Urbana-iS @ = —26.99dB. Sason’s bound is an inner bound obtained from Han and

Champaign - let us know that they derived the saingser
sum-rate capacity results (TheorEm 2).
(3]
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Fig. 1. Inner and outer bounds for the capacity region of GanslCs with [16]
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and Wang in [15, Theorem 3]; the Kramer bound is from [14, Theo2]; [17]
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