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Abstract— Recent outer bounds on the capacity region of Gaus-
sian interference channels are generalized tom-user channels
with m > 2 and asymmetric powers and crosstalk coefficients.
The bounds are again shown to give the sum-rate capacity for
Gaussian interference channels with low powers and crosstalk
coefficients. The capacity is achieved by using single-userdetec-
tion at each receiver, i.e., treating the interference as noise incurs
no loss in performance.
Index terms — capacity, Gaussian noise, interference.

I. I NTRODUCTION

This paper extends the results of [1] to asymmetric Gaussian
ICs. The paper further has a new Theorem (Theorem 4) that is
not in [2] or in other recent works (see Section V and Motahari
and Khandani [3], and Annapureddy and Veeravalli [4]).

The interference channel (IC) models communication sys-
tems where transmitters communicate with their respective
receivers while causing interference to all other receivers. For
a two-user Gaussian IC, the channel output can be written in
the standard form [5]

Y1 = X1 +
√
aX2 + Z1,

Y2 =
√
bX1 +X2 + Z2,

where
√
a and

√
b are channel coefficients,Xi and Yi are

the transmit and receive signals. The user/channel input se-
quenceXi1, Xi2, · · · , Xin is subject to the power constraint
∑n

j=1 E(X2
ij) ≤ nPi, i = 1, 2. The transmitted signals

X1 andX2 are statistically independent. The channel noises
Z1 and Z2 are possibly correlated unit variance Gaussian
random variables, and(Z1, Z2) is statistically independent of
(X1, X2). In the following, we denote this Gaussian IC as
IC(a, b, P1, P2).

The capacity region of an IC is defined as the closure of
the set of rate pairs(R1, R2) for which both receivers can
decode their own messages with arbitrarily small positive error
probability. The capacity region of a Gaussian IC is known
only for three cases: (1)a = 0, b = 0. (2) a ≥ 1, b ≥ 1: see
[6]–[8]. (3) a = 0, b ≥ 1; or a ≥ 1, b = 0: see [9]. For the
second case both receivers can decode the messages of both
transmitters. Thus this IC acts as two multiple access channels
(MACs), and the capacity region for the IC is the intersection
of the capacity region of the two MACs. However, when the
interference is weak or moderate, the capacity region is still
unknown. The best inner bound is obtained in [8] by using

superposition coding and joint decoding. A simplified form
of the Han-Kobayashi region was given by Chong-Motani-
Garg-El Gamal [10], [11]. Various outer bounds have been
developed in [12]–[16]. Kramer in [14] presented two outer
bounds. The first is obtained by providing each receiver with
just enough information to decode both messages. The second
is obtained by reducing the IC to a degraded broadcast channel.
Both bounds dominate the bounds by Sato [12] and Carleial
[13]. The recent outer bounds by Etkin, Tse, and Wang in
[15] are also based on genie-aided methods, and they show
that Han and Kobayashi’s inner bound is within one bit or a
factor of two of the capacity region. This result can also be
established by the methods of Telatar and Tse [16]. We remark
that neither of the bounds of [14] and [15] implies each other.
Numerical results show that the bounds of [14] are better at
low SNR while those of [15] are better at high SNR. The
bounds of [16] are not amenable to numerical evaluation since
the optimal distributions of the auxiliary random variables are
unknown.

In this paper, we present new outer bounds on the capacity
region of Gaussian ICs that generalize results of [1]. The new
bound is based on a genie-aided approach and an extremal
inequality proposed by Liu and Viswanath [17]. Based on this
outer bound, we obtain new sum-rate capacity results for ICs
satisfying some channel coefficient and power constraint con-
ditions. We show that the sum-rate capacity can be achieved
by treating the interference as noise when both the channel
gain and the power constraint are weak. We say that such
channels havenoisy interference. For this class of interference,
the simple single-user transmission and detection strategy is
sum-rate optimal.

This paper is organized as follows. In Section II, we present
an outer bound and the resulting sum-rate capacity for certain
2-user Gaussian ICs. An extension of the sum-rate capacity
under noisy interference tom-user ICs is provided in Section
III. Numerical examples are given in Section IV, and Section
V concludes the paper.

II. A G ENIE-AIDED OUTER BOUND

A. General outer bound

The following is a new outer bound on the capacity region
of Gaussian ICs. Note that in contrast to [1] these bounds
permitP1 6= P2 anda 6= b.
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R1 + µR2 ≤ min
ρi∈[0,1]
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σ2
1

)
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log
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2
log
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log
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log
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2
log
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(1)

R1 + η1R2 ≤ 1

2
log

(

1 +
bη1 − 1

b− bη1

)

− η1
2

log

(

1 +
bη1 − 1

1− η1

)

+
η1
2

log (1 + bP1 + P2) (2)

R1 + η2R2 ≤ 1

2
log (1 + P1 + aP2)−

1

2
log

(

1 +
a− η2
η2 − 1

)

+
η2
2

log

(

1 +
a− η2
aη2 − a

)

. (3)

Theorem 1: If the rates (R1, R2) are achievable for
IC(a, b, P1, P2) with 0 < a < 1, 0 < b < 1, they must satisfy
the following constraints (1)-(3) forµ > 0, 1+bP1

b+bP1

≤ η1 ≤ 1
b

anda ≤ η2 ≤ a+aP2

1+aP2

, where
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and if µ ≥ 1 we define
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, (6)

where(x)+ , max{x, 0}, and if 0 < µ < 1 we define

P ∗
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b

, (7)
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(8)

Proof: We give a sketch of the proof. A genie provides
the two receivers with side informationX1+N1 andX2+N2

respectively, whereNi is Gaussian distributed with varianceσ2
i

andE(NiZi) = ρiσi, i = 1, 2. Starting from Fano’s inequality,
we have

n(R1 + µR2)− nǫ

≤ I (Xn
1 ;Y

n
1 ) + µI (Xn

2 ;Y
n
2 )

≤ I (Xn
1 ;Y

n
1 , Xn

1 +Nn
1 ) + µI (Xn

2 ;Y
n
2 , Xn

2 +Nn
2 )

=
[

h (Xn
1 +Nn
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(√

bXn
1 + Zn

2 |Nn
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)]

− h (Nn
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(√

aXn
2 + Zn

1 |Nn
1

)]

− µh (Nn
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+h (Y n
1 |Xn

1 +Nn
1 ) + µh (Y n

2 |Xn
2 +Nn

2 ) , (9)

whereǫ → 0 as n → ∞. For h (Y n
1 |Xn

1 +Nn
1 ), zero-mean

GaussianXn
1 andXn

2 with covariance matricesP1I andP2I

are optimal, and we have

h (Y n
1 |Xn

1 +Nn
1 )

≤ n

2
log
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2πe
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2

P1 + σ2
1
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From the extremal inequality introduced in [17, Theorem 1,
Corollary 4], we have

h (Xn
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(√

bXn
1 + Zn

2 |Nn
2

)

(11)
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2
log
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log
[

2πe
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,

where equalities hold whenXn
1 and Xn

2 are both Gaussian
with covariance matricesP ∗

1 I andP ∗
2 I respectively. From (9)-

(12) we obtain the outer bound (1).
The outer bound in (2) (resp. (3)) is obtained by letting the

genie provide side informationX2 to receiver one (resp.X1

to receiver two), and applying the extremely inequality, i.e.,

n(R1 + η1R2)− nǫ

≤ I (Xn
1 ;Y

n
1 , Xn

2 ) + η1I (X
n
2 ;Y

n
2 )

= h (Xn
1 + Zn

1 )− η1h
(√

bXn
1 + Zn

2

)

− h (Zn
1 )

+η1h (Y
n
2 )

≤ n

2
log
(

P̃1 + 1
)

− nη1
2

log
(

bP̃1 + 1
)

+
nη1
2

log (1 + bP1 + P2) , (13)

whereP̃1 = bη1−1
b−bη1

for 1+bP1

b+bP1

≤ η1 ≤ 1
b
. This is the bound in

(2). Similarly, we obtain bound (3).
Remark 1: The bounds (1)-(3) are obtained by providing

different genie-aided signals to the receivers. There is overlap
of the range ofµ, η1, andη2, and none of the bounds uniformly
dominates the other two bounds.

Remark 2: Equations (2) and (3) are outer bounds for the
capacity region of a Z-IC, and a Z-IC is equivalent to a
degraded IC [9]. For such channels, it can be shown that
(2) and (3) are the same as the outer bounds in [18]. For



η1 = 1+bP1

b+bP1

and η2 = a+aP2

1+aP2

, the bounds in (2) and (3) are
tight for a Z-IC (or degraded IC) becausẽP1 = P1, P̃2 = P2 in
(13), and there is no power sharing between the transmitters.
Consequently,1+bP1

b+bP1

and a+aP2

1+aP2

are the negative slopes of the
tangent lines for the capacity region at the corner points.

Remark 3: The bounds in (2)-(3) turn out to be the same as
the bounds in [14, Theorem 2]. This can be shown by rewriting
the bounds in [14, Theorem 2] in the form of a weighted sum
rate.

Remark 4: The bounds in [14, Theorem 2] are obtained
by getting rid of one of the interference links to reduce the
IC into a Z-IC. In addition, the proof in [14] allowed the
transmitters to share their power, which further reduces the
Z-IC into a degraded broadcast channel. Then the capacity
region of this degraded broadcast channel is an outer bound
for the capacity region of the original IC. The bounds in
(2) and (3) are also obtained by reducing the IC to a Z-IC.
Although we do not explicitly allow the transmitters to share
their power, it is interesting that these bounds are equivalent
to the bounds in [14, Theorem 2] with power sharing. In fact,
a careful examination of our derivation reveals that power
sharing is implicitly assumed. For example, for the term
h (Xn

1 + Zn
1 )−η1h

(√
bXn

1 + Zn
2

)

of (13), user1 uses power

P̃1 = bη1−1
b−bη1

≤ P1 , while for the termη1h (Y
n
2 ) user1 uses

all the powerP1. This is equivalent to letting user1 use the
power P̃1 for both terms, and letting user2 use a power that
exceedsP2.

Remark 5: Theorem 1 improves [15, Theorem 3]. Specifi-
cally, the bound in (2) is tighter than the first sum-rate bound
of [15, Theorem 3]. Similarly, the bound in (3) is tighter than
the second sum-rate bound of [15, Theorem 3]. The third sum-
rate bound in [15, Theorem 3] is a special case of (1).

Remark 6: Our outer bound is not always tighter than that
of [15] for all rate points. The reason is that in [15, last two
equations of (39)], different genie-aided signals are provided
to the same receiver. Our outer bound can also be improved in
a similar and more general way by providing different genie-
aided signals to the receivers. Specifically the starting point of
the bound can be modified to be

n (R1 + µR2) ≤
k
∑

i=1

λiI (X
n
1 ;Y

n
1 , Ui)

+
m
∑

j=1

µiI (X
n
2 ;Y

n
2 ,Wj) + nǫ, (14)

where
∑k

i=1 λi = 1,
∑m

j=1 µj = µ, λi > 0, µj > 0.

B. Sum-rate capacity for noisy interference

The outer bound in Theorem 1 is in the form of an
optimization problem. Four parametersρ1, ρ2, σ2

1 , σ
2
2 need to

be optimized for different choices of the weightsµ, η1, η2.
When µ = 1, the bound (1) of Theorem 1 leads directly to
the following sum-rate capacity result.

Theorem 2: For the IC(a, b, P1, P2) satisfying
√
a(bP1 + 1) +

√
b(aP2 + 1) ≤ 1, (15)

the sum-rate capacity is

C =
1

2
log

(

1 +
P1

1 + aP2

)

+
1

2
log

(

1 +
P2

1 + bP1

)

. (16)

Proof: By choosing

σ2
1 =

1

2b

{

b(aP2 + 1)2 − a(bP1 + 1)2 + 1

±
√

[b(aP2 + 1)2 − a(bP1 + 1)2 + 1]
2 − 4b(aP2 + 1)2

}

σ2
2 =

1

2a

{

a(bP1 + 1)2 − b(aP2 + 1)2 + 1

±
√

[a(bP1 + 1)2 − b(aP2 + 1)2 + 1]
2 − 4a(bP1 + 1)2

}

ρ1 =
√

1− aσ2
2 (17)

ρ2 =
√

1− bσ2
1 , (18)

the bound (1) withµ = 1 is

R1 +R2 ≤ 1

2
log

(

1 +
P1

1 + aP2

)

+
1

2
log

(

1 +
P2

1 + bP1

)

. (19)

But one can achieve equality in (19) by treating the interfer-
ence as noise at both receivers. In order that the choices ofσ2

i

andρ2i are feasible, (15) must be satisfied.
Remark 7: Consider the bound (1) withµ = 1, we further

let

1− ρ21 ≥ aσ2
2 , 1− ρ22 ≥ bσ2

1 . (20)

From (5) and (6) we haveP ∗
1 = P1, P

∗
2 = P2. Thus,

R1 ≤ 1

2
log

(

1 +
P1

σ2
1

)

− 1

2
log(aP2 + 1− ρ21)

+
1

2
log

[

1 + aP2 + P1 −
(P1 + ρ1σ1)

2

P1 + σ2
1

]

=
1

2
log

[

P1(1 + aP2)

1 + aP2 − ρ21

(

1

σ1
− ρ1

1 + aP2

)2

+ 1 +
P1

1 + aP2

]

, f(ρ1, σ1). (21)

Therefore, for any givenρ1, when

ρ1σ1 = 1 + aP2, (22)

thenf(ρ1, σ1) achieves its minimum which is user1’s single-
user detection rate. Similarly, we haveρ2σ2 = 1+ bP1. Since
the constraint in (20) must be satisfied, we have

1 + aP2

ρ1
≤
√

1− ρ22
b

,
1 + bP1

ρ2
≤
√

1− ρ21
a

. (23)

As long as there exists aρi ∈ (0, 1) such that (23) is satisfied,
we can chooseσi to satisfy (22) and hence the bound in (1)
is tight. By cancellingρ1, ρ2, we obtain (15).

Remark 8: The most special choices ofρ1, ρ2 are in (17)
and (18), since (11) and (12) withµ = 1 become

h (Xn
1 +Nn

1 )− h
(√

bXn
1 + Zn

2 |Nn
2

)

= −n log
√
b

h (Xn
2 +Nn

2 )− h
(√

aXn
2 + Zn

1 |Nn
1

)

= −n log
√
a.



Therefore, we do not need the extremal inequality [17] to
prove Theorem 2.

Remark 9: The sum-rate capacity for a Z-IC witha = 0,
0 < b < 1 is a special case of Theorem 2 since (15) is satisfied.
The sum-rate capacity is therefore given by (16).

Remark 10: Theorem 2 follows directly from Theorem
1 with µ = 1. It is remarkable that a genie-aided bound
is tight if (15) is satisfied since the genie provides extra
signals to the receivers without increasing the rates. This
situation is reminiscent of the recent capacity results forvector
Gaussian broadcast channels (see [19]). Furthermore, the sum-
rate capacity (16) is achieved by treating the interferenceas
noise. We therefore refer to channels satisfying (15) as ICs
with noisy interference.

Remark 11: For a symmetric IC wherea = b, P1 = P2 = P ,
the constraint (15) implies that

a ≤ 1

4
, P ≤

√
a− 2a

2a2
. (24)

Noisy interference is thereforeweaker thanweak interference
as defined in [9] and [20], namelya ≤

√
1+2P−1
2P or

a ≤ 1

2
, P ≤ 1− 2a

2a2
. (25)

Recall that [20] showed that for “weak interference” satisfying
(25), treating interference as noise achieves larger sum rate
than time- or frequency-division multiplexing (TDM/FDM),
and [9] claimed that in “weak interference” the largest known
achievable sum rate is achieved by treating the interference as
noise.

C. Capacity region corner point

The bounds (2) and (3) of Theorem 1 lead to the following
sum-rate capacity result.

Theorem 3: For an IC(a, b, P1, P2) with a > 1, 0 < b < 1,
the sum-rate capacity is

C =
1

2
log (1 + P1) +

1

2
log

(

1 +
P2

1 + bP1

)

(26)

when the following condition holds

(1− ab)P1 ≤ a− 1. (27)

A similar result follows by swappinga andb, andP1 andP2.

This sum-rate capacity is achieved by a simple scheme: user
1 transmits at the maximum rate and user2 transmits at the
rate that both receivers can decode its message with single-
user detection. Such a rate constraint was considered in [9,
Theorem 1] which established a corner point of the capacity
region. However it was pointed out in [20] that the proof in
[9] was flawed. Theorem 3 shows that the rate pair of [20] is
in fact a corner point of the capacity region whena > 1, 0 <
b < 1 and (27) is satisfied, and this rate pair achieves the
sum-rate capacity.

The sum-rate capacity of the degraded IC(ab = 1, 0 < b <
1) is a special case of Theorem 3. Besides this example, there
are two other kinds of ICs to which Theorem 3 applies. The

first case isab > 1. In this case,P1 can be any positive value.
The second case isab < 1 andP1 ≤ a−1

1−ab
. For both cases,

the signals from user2 can be decoded first at both receivers.

III. SUM-RATE CAPACITY FOR m-USER IC WITH NOISY

INTERFERENCE

For anm-user IC, the receive signal at useri is defined as

Yi = Xi +
m
∑

j=1,j 6=i

(√
cjiXj

)

+ Zi, i = 1, 2, . . . ,m, (28)

where cji is the channel gain fromjth transmitter toith

receiver,Zi is unit-variance Gaussian noise, and the transmit
signals have the block power constraints

∑n

l=1 E(X2
il) ≤ nPi.

We have the following sum-rate capacity result.
Theorem 4: For anm-user IC defined in (28), if there exist

ρi ∈ (0, 1), i = 1, . . . ,m, such that the following conditions
are satisfied

m
∑

j=1,j 6=i

cji(1 +Qj)
2

ρ2j
≤ 1− ρ2i (29)

m
∑

j=1,j 6=i

cij
1 +Qj − ρ2j

≤ 1

Pi + (1 +Qi)2/ρ2i
, (30)

whereQi is the interference power at receiveri, defined as

Qi =
m
∑

j=1,j 6=i

cjiPj , (31)

the sum-rate capacity is

C =
1

2

m
∑

i=1

log

(

1 +
Pi

1 +Qi

)

(32)

Therefore, if there existρ1, . . . , ρm, such that (29) and (30)
are satisfied for alli = 1, . . . ,m, the sum-rate capacity of an
m-user IC can be achieved by treating interference as noise.
The proof is omitted due to the space limitation. It can be
shown that Theorem 2 is a special case of Theorem 4.

Consider a uniformly symmetricm-user IC wherecji = c,
for all i, j = 1, . . . ,m, i 6= j, andPi = P . The bounds (29)
and (30) withρi = ρ for all i reduce to

c ≤ 1

4(m− 1)
, P ≤

√

(m− 1)c− 2(m− 1)c

2(m− 1)2c2
. (33)

IV. N UMERICAL EXAMPLES

A comparison of the outer bounds for a Gaussian IC is
given in Fig. 1. Some part of the outer bound from Theorem
1 overlaps with Kramer’s outer bound due to (2) and (3).
Since this IC has noisy interference, the proposed outer bound
coincides with the inner bound at the sum rate point.

The lower and upper bounds for the sum-rate capacity of
the symmetric IC are shown in Fig 2 for high power level.
The upper bound is tight up to pointA. The bound in [15,
Theorem 3] approaches the bound in Theorem 1 when the
power is large, but there is still a gap. Fig. 2 also provides a
definitive answer to a question from [20, Fig. 2]: whether the



sum-rate capacity of symmetric Gaussian IC is a decreasing
function ofa, or there exists a bump like the lower bound when
a varies from0 to 1. In Fig. 2, our proposed upper bound and
Sason’s inner bound explicitly show that the sum capacity is
not a monotone function ofa (this result also follows by the
bounds of [15]).

V. CONCLUSIONS, EXTENSIONS AND PARALLEL WORK

We derived an outer bound for the capacity region of2-
user Gaussian ICs by a genie-aided method. From this outer
bound, the sum-rate capacities for ICs that satisfy (15) or (27)
are obtained. The sum-rate capacity form-user Gaussian ICs
that satisfy (29) and (30) are also obtained.

Finally, we wish to acknowledge parallel work. After sub-
mitting our2-user bounds and capacity results on the arXiv.org
e-Print archive [2], two other teams of researchers - Motahari
and Khandani from the University of Waterloo, Annapureddy
and Veeravalli from the University of Illinois at Urbana-
Champaign - let us know that they derived the same2-user
sum-rate capacity results (Theorem 2).
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