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Abstract—We present a family of non-additive quantum or identity. The operators$; generate an Abelian grou@
codes based on Goethals and Preparata codes with parametersyith 27—+ elements, called thstabilizer of the code. It is

m 2™ —5m i H i i i . . . . .
(2™, 2 *+1,8)). The dimension of these codes is eight times 4 subgroup of thes-qubit Pauli groupP, which itself is

higher than the dimension of the best known additive quantum . .
codes of equal length and minimum distance generated by the tensor product af Pauli matrices and

Index Terms—Non-additive quantum code, Goethals code, identity. We further require tha does not contain any non-

Preparata code trivial multiple of identity. Thenormalizerof S in P,,, denoted
by NV, acts on the cod€ = [[n, k, d]]. It is possible to identify
|. INTRODUCTION 2k logical operatorsXy,..., X, and Zy,..., Z; such that

these operators commute with any element in the stabifizer

Most of the known quantum error-correcting codegng gych that together with they generate the normalizer
(QECCs) are based on the so-called stabilizer formallsmlwth of the code. The operatoi®; mutually commute, and so

relates quantum codes to certain additive codes GB(4) g the operator&;. The operatoiX; anti-commutes with the

(see, e.g..[8]LI7]). It is known that non-additive QECCS Cayharat0r7; if i = j and otherwise commutes with it.

have a higher dimen_si_on compared to additive QE_CCs with th&j; has been shown that thequbit Pauli group corresponds
same length and minimum q_lstan(:e 3] [14LI17].1[18]. All, a symplectic geometry, and that one can reduce the problem
these examples of non-additive QECCs are examples of §¢-qnstructing stabilizer codes to finding additive codesro

called codeword stabilized quantum codes which are obiaingF(4) that are self-orthogonal with respect to a symplectic

as the complex span of some so-called stabilizer stateshwhi,,or product([2], [[3]. Up to a scalar multiple, the elements

correspond to self-dual additive codes.[Ih [9] we have edeein ¢ P, can be expressed asio? where (a,b) € F2 is a

the framework of stabilizer codes to the union of stabilizeginary vector. Choosing the basid,w} of GF(4), where
codes (see [8]). This allows to construct non-additive sodg, 5 5 primitive element of3F(4) Wit’h W2 4w+l : 0. we

from any stabilizer code. In general, these non-additv€QE et the following correspondence between the Pauli matrice
correspond to non-additive codes ov&F'(4) which can be gloments ofGF(4), and binary vectors of length two:
decomposed into cosets of an additive code which contains

its dual. Using a construction similar to that of so-calleBiSC operator| GF(4) | F3

2
codes (sed [4]/T15]), families of non-additive quantum esd I 0 (00)
based on the binary Goethals and Preparata codes weredderive o 1 (10)
in [9]. Here we present a new family of non-additives quantum Oy w? (11)
codes which have a dimension that is eight times higher than op w (01)

the dimension of the best known additive quantum codes. This mapping extends naturally to tensor products: ¢fauli
matrices being mapped to vectors of lengtlover GF'(4) or
binary vectors of lengtl2n. We rearrange the latter in such a
A. Stabilizer codes way that the firstn coordinates correspond to the exponents

We start with a brief review of the stabilizer formalism forOlc the operators, and write the vector aga|b), i.e.,

quantum error-correcting codes and the connection to igeldit g=0"c" ®...®@clatn = (alb) = (¥ |g7). (1)
codes overGF(4) (see, e.g.,[I3],[[7]). A stabilizer code

encodingk qubits inton qubits having minimum distancé
denoted byC = [[n, k,d]], is a subspace of dimensi@ of

the complex Hilbert spacgC?)®" of dimension2™. The code - . c
is the joint eigenspace of a setof- k commuting operators the stabilizer corresponds to a binary cadewhich is self-

S1, ..., S.—x Which are tensor products of the Pauli matrice rthogonal with respect to this symplectic inner produdt) a
Y the normalizer corresponds to the symplectic dual code

_ {0 1 (0 —i (1 0 In terms of the correspondence to vectors ogdr(4), the
9%=\1 0) %~ \i o) 77 \o -1)° stabilizer and normalizer correspond to an additive coder ov

Il. UNION STABILIZER CODES

Two operators corresponding to the binary vectar$) and
(c|d) commute if and only if the symplectic inner product
a-d—>b-c = 0. In terms of the binary representation,
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GF(4) and its dual with respect to an symplectic innewherej = 1,..., K, (iyiz...i) € F5, and X; are logical
product, respectively, which we will also denote ®yandC*. operators of the stabilizer codg.
The termadditive quantum codeefers to this correspondence. In order to compute the minimum distance of this code, we
The minimum distancé of the quantum code is given as thdirst consider the distance between two spag€s and (.
minimum weight in the se€* \ C Cc GF(4)™ which is lower As for a fixed stabilizer codé&, two spaces;Cy andt»Cy are
bounded by the minimum distandé of the additive cod€'*. either identical or orthogonal, we can define the distance of
If d = d*, the code is said to bpure and ford > d*, the them as follows:
code is said to b@ure up tod*. ) )

Fixing the logical operatory’; and Z ;, there is a canonical dist(t1Co, t2Co) := min{wgt(p): p € Pn | pt1Co = t2Co}-
basis for the additive quantum code The stabilizer group i _ (5_)
S of the quantum code together with the logical operatofi€re wet(p) is the number of tensor factors in thequbit
7, generate an Abelian group of ord&t which corresponds P.aul| operatorp tha’F argldlﬁerent from identity. Clearly,
to a self-dual additive code. The jointl-eigenspace is one- di5t(t1Co; 12Co) = d_lst(? t1€o,Co). The two spaces are
dimensional, hence there is a unique quantum $iate . 0) € identical if and qnly ifty t1 is an element of the normalizer
C stabilized by all elements &. An orthonormal basis of the 9"0UPo, or equivalently, if the cosetSj +1 andCg +t; of

codeC is given by the states the additive normalizer cod€; are identical. (Note that we
. . denote both am-qubit Pauli operator and the corresponding
livig. . ig) = X, --- X, [00...0), (2) vector overGF(4) by ¢;.) Hence the distanc€](5) can also be

expressed in terms of the associated vectors G\&(4).
Lemma 2:The distance of the spaceg’y and¢.Cy equals

B. Union stabilizer codes the minimum weight in the cosety + ¢; — t».

Proof: Direct computation shows

where (iyis . ..ix) € F5.

The stabilizer grougs gives rise to an orthogonal decompo-
sition of the spac€C?)®" into common eigenspaces of equal dist(t1Co, taCo) = dist(Cy + t1,Cy + t2)
dimension. The stabilizer code is the joint +1-eigenspace o * B *
of dimension2”. In general, the joint eigenspaces &fcan = dist(Gy + (1 = 12). Co)
be labeled by the eigenvalues of a setwof k generators of
S. Moreover, then-qubit Pauli groupP,, operates transitively =min{wgt(v): v € C5 + 11 —f2}. g
on the eigenspaces. Hence one can identify &/set P,, of
2n—F operators such that

= min{wgt(c+t; — t2): c € C§}

While the distance between the cosét$ + ¢, is an upper

bound on the minimum distance of the union cdéijehe true

(C2)®" = @tC. 3) minimum distance can be derived from the following code
over GF(4).

N h h of th e . Definition 3 (union normalizer code)With the union sta-
ote that each of the spacéS s a quantum error-Correcting i, o codeC we associate the (in general non-additivajon
code with the same parameters as the cGdend stabilizer normalizer codegiven by

grouptSt—t. The decompositior{3) corresponds to the de-
composition of then-qubit Pauli groupP,, into cosets with C* = U Co+t={c+tj:ceC;, j=1,...,K},
respect to the normalizeY” of the codeC and likewise to the teTo

decomposition of the full vector spacér(4)" into cosets of where Cj denotes the additive code associated with the

the additive code”*. ) - .
The main idea of union stabilizer codes is to find a subs{)(l.(t)rmal'ZerN0 of the stabilizer codeCo. We will refer to

To of the translations7 such that the spac€, . 1C is a agtt?a,\rleea t\i/::;mgi and the corresponding unitary operators,

good quantum code (see [8]. [3]). Theorem 4:The minimum distance of a union stabilizer
Definition 1 (union stabilizer code)tet Cy = [[n, k]] be a . ; ; .

stabilizer code and lefy = {¢1,...,tx} be a subset of the code with union normalizer cod€” is given by

coset representatives of the normali2éy of the codeCo in g = min{wgt(v) : v € (C* — C*)\ Co}

P,.. Then theunion stabilizer codés defined as > dpin(C*)

C= @ tCo. = min{dist(c + t;, ¢’ + ti/): t;, tir € To,c,c € C}

teTo C+ti #Cl"i_ti’},
Without loss of generality we assume tigtcontains identity. . . .
The dimension of¢ is k2%, and we will use the notation WhereC” — C* := {a —b: a,b € C*} denotes the set of all

teT

C = ((n, K2, d)). differences of vectors i@’*, andCy < C is the additive code
Similar to [2) a canonical basis of the union stabilizer cGde that corresponds to all elements of the stabilizer gréupat
is given by commute with allt; € 7o.

o Proof: Let £ € P, be ann-qubit Pauli error of weight
[iiig. . ig) = t; X, ---X,[00...0), (4) 0 < wgt(E) < d. For two canonical basis statgs,) and|v;)



as given in[(#) we consider the inner product Definition 6 (Goethals code [1])The Goethals codg(m)
of length2™ consists of the codewords described by all pairs

(ta|Elthy) =(jsiri2 .. -Z..k|E|j/§ 1/12/2 cee Z;c>/ ) (X,Y) satisfying:
=(00...0|X, - - X, t;Ety X} --- X,*[00...0) a) | X|is even,|Y| is even,
=+ (000X X B[00 0). b) > =3,

rxeX yey

If £ €S commutes with alk; € To, then (g |E|1y) = Sap. i " i
Otherwise,E ¢ C* — C* since0 < wgt(E) < d, and hence <) Z T+ Z T = Z v,

the inner product vanishes. [ ] zeX ezeX /o yeY
I1l. THE BINARY GOETHALS AND PREPARATA CODES d) > a2+ <Z x) =y
In this section we recall some properties of the binary <% eeX vey T
Goethals codes$ 6] and the Preparata codes [13]. It has beeH" order to relate the two definitions, we distinguish three
ases.

shown that variations of these codes have a simple desmipt? - _
as Z-linear codes[[10], but in our context the description in 1) X =Y Conditions c) and d) imply tha}_ = = 0.

terms of cosets of linear binary codes is used. This is true for all codewords of the cyclic code gener-

In the following m is an even integern¢ > 4) and ated by (z). Adding an overall parity check implies
n=2m"1_1, Leta be a primitive element of the finite field Condition a).
GF(2™~1). By ui(z) we denote the minimal polynomial of 2) X = 0: The left hand side of Conditions b), c),
o' overGF(2), i. e., the polynomial with roots? for j = i2*. and d) vanishes, so the solutions fér correspond
The idempotend;(z) is the unique polynomial satisfying to an extended cyclic code with generator polynomial

; : ok pa(2) i (2) s (2).
fi(a’) =1 and #6i(a’) =0 for j # 2", 3) X = {0,z = a'}: From [B) it follows thatfy (o) =

Codewords of a cyclic code can be represented by polynomials ZyGY_y' So Condition b) holds for the st corre-
f(z), and we usd f(z); f(1)) to denote the codeword of the sponding tofy(z) = 2'01(z). The left hand side of
extended cyclic code obtained by adding an overall parity ~ Conditions c) and d) vanishes, so the solutions ¥or

check. Similar, we uséf(z); f(1); g(z); g(1)) to denote the are eIem_ents of the extende_d cyclic cod_e with generator

juxtaposition of codewords of two extended cyclic codes. polynomial,.(z)s(2). As neitherr nor s is a power of
Definition 5 (Goethals codé [6])The Goethals codé(m) two, the polynomiab, (z) and hencefy () = 2'61(z)

of length 2™ is the union of2™~! cosets of the linear vanishes for” anda?, i.e., Conditions c) and d) hold.

binary codeCg = [2™,2™ — 4m + 2,8]. The codeCg is Finally, all codewords of the Goethals code as given in
obtained via theéu|u+v| construction applied to the extendedefinition [8 are the juxtaposition of two binary vectors of
cyclic codesC; andC,. The cyclic codeC; is a single-error even weight, i.e., Condition a) holds. Hence any codeword
correcting code with generator polynomijal(z), andC; is given by Definition[b fulfills the conditions of Definitiop] 6.
generated by (2)u,(2)pus(2) Wwherer = 1 + 2™/2=2 and The equivalence of the definitions follows from the fact that
s = 142™/2-1, The non-zero coset representatives are givéime codes have equal size.
by (2%1;2%01(2);0) fori=1,...,n — 1. Next we consider the definition of Preparata codes similar
An alternative description of Goethals codes has been givienDefinition[8 given in[[1].
in [1]. The codewords are described by pdiis V') of subsets  Definition 7 (Preparata code [1]):;The extended Preparata
of GF(2m~'). The corresponding codeword is given by theode P(m) of length 2™ and parameter consists of the
juxtaposition of the characteristic functions andyxy of the codewords described by all paif&’, Y) satisfying:

two setX andY’, i.e. a) |X| is even,|Y] is even,

(X,7) = (Lx(a'); 1x (0)s 1y ('); 1y (0)), b) > = v

. reX yey
wherelx(a*) is a short-hand for the vector o+l
iy 0 1 n—1 c) Z AR (Z 55) = Z y7

1x(a') = (1x(a%), 1x(a1), .., 1x(a"™1)) 2 2 =

and Hereo is a power of two anged(o £ 1,n) = 1.
Ls(x) = {1 if €9, Foro = 2"/2-1 andn = 2"~! — 1 we compute
0 ifzdgs.
¢ (2m71 _ 1) _ (2m/271 + 1) (2m/2 ¥ 2) — 17

The non-zero elements of andY give rise to the polyno-
mials fx(z) and fy (z) given by showing thatged(o &+ 1,n) = 1. Hence for this particular

i choice of o, the Preparata code of Definitidd 7 contains
fs(z) = Z 1s(at)z'. (6) the Goethals code. What is even more, we can describe the
=0 Preparata code similar to Definitioh 5 as the union of cosets



of the linear binary cod€’» which contains the linear binary normalizer of the cod€ is generated by
codeCg.

G| 0
Definition 8: The extended Preparata coBém) of length e
2™ is the union of2™~! cosets of the linear binary code DI AD ’

Cp = [2™,2™ — 3m + 1,6]. The codeCp is obtained via ] , ] ] )
the |u|u +v| construction applied to the extended cyclic codgdhere A is a fixed-point free linear transformation. -
O, and 3. The cyclic codeC; is a single-error correcting As the codeCg contains a code that is isomorphic to the

H L
code with generator polynomigl; (z), and C; is generated Reed-Muller coderzM (m — 3,m) it follows that g < Cg.
by i1 (2)us(z) wheres = 1+ 27/2-1. The non-zero coset Hence we can apply Steane’s construction [16] to the chain

representatives are given lby’; 1; 26, (z); 0). Cg < Cg < Cp of linear binary codes and obtain an additive

Comparing Definitiongl5 arid 8 we see that we can use the V?Hf:\ntum code with parametefs = [[2:L21m — 7m + 3, 8]].
same coset representatives to construct the Goethals and he second step we use _tﬁé =2 coset represen-
Preparata code as union of cosets of the linear binary c@glestat'veS ti of the decomp_osm.on of both the _Qoethals an.d
and Cp, respectively. Moreover, all codes lie between codédge Pre.para5325992-+3Th's £y|elds a nog—addltlve code with
that are equivalent to the Reed-Muller codes/ (m — 3,m) Imensionf=2 = 2" whereé = 2" — 5m + 1.
andRM (m —2,m) = [2™,2™ —m — 1,4] (see[11]). This is

illustrated by the following diagram: Gl o
0| G
D | AD

[2m,2m—m—1,4]—TM(m—2,m) 06
P(m)=U,Cp +t; t | tx

27, 2™ —3m 41,6 = Cp — ‘ ]
‘ G(m) =, Cg +t: )

2m,2m —4m 4+ 2,8)=Cg — P
‘ ik |tk

RM(m — 3,m)

Fig. 1. Structure of the non-additive union normalizer cofi¢he quantum
Goethals-Preparata codes.

The components of the codes are summarized as follows:  +1,50rem 10:LetCo = [[2™, 2™ —7m+3, 8] be the additive

Cy:  cyclic code generated by, (z) guantum code obtained from the chain of linear binary codes
C3:  cyclic code generated by, (z)us(2) Cg < Cg < Cp using Steane’s enlargement construction.
Cy:  cyclic code generated by, (z)ur(2)ps(2) Furthermore, lefy = {(t;|t;): i,7 =0,...,2™~1 —1} where
r=142m/272 g=142m/2-1 t; are the coset representatives used to obtain the Goetlthls an
Cg: |ulu+v| construction applied to the extended cycli®reparata code. Then tlgiantum Goethals-Preparata code
codesC; andCs is a union stabilizer code given & and7;. The minimum
Cp: |ulu+v| construction applied to the extended cycliclistance of the quantum Goethals-Preparata code is eight.
codesC; andCs Proof: Let G denote a generator matrix of the cofg
t;: n + 1 coset representatives with and letD be such that § ) generate€’p. The structure of the
non-additive union-normalizer code of the quantum Gosthal
(2%:1;2°01(2);0) fori=0,...,n—1, Preparata codes is illustrated in Fig. 1. A generator matiix
ti = 0,...,0) for i — n. the normalizer of the additive quantum cagigis given above
the horizontal line, while the set of translations is lisbeow
IV. THE QUANTUM GOETHALS-PREPARATA CODES the horizontal line. Every codeword of the non-additiveami
normalizer code is of the form
Before presenting the new family of non-additive quantum 9= (%19%) = (c1 + v+ tilca + w + t;),
codes, we recall Steane’s construction to enlarge the diioen
of CSS codes. wherecy, c; € Cg = [2,2" —4m+2,8] andv, w € Cp/Cg.

Theorem 9 (se€ [16])Let C = [n, k,d] andC’ = [n,k' > FOr9,9 € C", g # g" we compute
kh—i— 1,d'] be Iinea(ljrdbinary codes Wi(fgl,u [? C < C/”. Then  dist(g,¢') =dist((c1 + v + tilea +w + t5),
there exists an additive quantum cade= [[n,k + k' — n, > / . )
. B P = t; t.
min(d, 3d’/2)]]. Given a generator matri&' of the codeC (C}/JFU/IJF l|02+/w”+ -7,)/) )
and a generator matri® of the complement of” in C’, the =wgt((e7 + 0" +ti — tileg + w" +t; — 17)),



wherec) = ¢ — ¢} andc] = ¢; — ¢} are codewords o€’g, Recently, Ling and Solé have constructed some non-additiv
andv” = v —v/, w” = w —w' are codewords of'»/Cg. In  quantum codes fronZ,-linear codes using a CSS-like con-
general, the weight of = (g% |g?) is given by struction [12]. So far it is not clear whether the non-additi
1 codes presented here can also be put into the framework of
wet((g¥|g?)) = i(wgt(gx) + wgt(g?) + wgt(g® + g%)).  Zs-linear codes.
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V. CONCLUSIONS

We have constructed some new non-additive quantum codes
from nested non-linear binary codes which can be decomposed
into cosets of linear codes which contain their dual. It is
interesting to find more good non-linear binary or quatgrnar
codes with this property.
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